К видам информации обрабатываемой с помощью компьютера относятся
Как ранее было сказано, человек имеет дело со многими видами информации. Рассмотрим, какую информацию компьютер, по сравнения с человеком, не может принять, поэтому, обработать, хранить и выдавать.
- Так, ввести в компьютер запах розы, вкус яблока или мягкость плюшевой игрушки - нельзя никак.
Ранее говорилось, что компьютер это электронная машина, а значит, он работает с сигналами. Поэтому компьютер может работать только с той информацией, которую можно представить в виде сигнала. Если бы можно было представить вкус, запах в виде сигнала, то компьютер ног бы работать и с такой информацией, но делать этого пока не научились.
Надо отметить, что хорошо превращается в сигналы то, что мы видим. Для этой цели используют специальные электронные устройства: видеокамеры, цифровые фотоаппараты, сканеры.
Давно научились превращать в сигналы то, что мы слышим. Делают это с помощью микрофона.
Очень трудно превращать в сигналы то, что человек чувствует с помощью обоняния, осязания и вкуса. Ученые ещё не нашли таких способов. Значит, компьютеры с такой информацией работать, пока, не могут.
Вывод:
Компьютер может, работать только с той информацией, которую мы видим и слышим.
Пять видов компьютерной информации
Современные компьютеры могут работать с пятью видами информации:
1. Числовой информацией (числа);
2. Текстовой информацией (буквы, слова, предложения, тексты);
3. Графической информацией (картинки, рисунки, чертежи);
4. Звуковой информацией (музыка, речь, звуки);
5. Видеоинформацией (видеофильмы, мультфильмы, кинофильмы).
Все эти пять видов информации вместе называют одним словом: - мультимедиа.
Если компьютер может работать со всеми этими пятью видами информации, то его называют мультимедийным.
Если компьютерная программа использует все эти виды информации, то её называют мультимедийной.
Числовая информация
Для передачи информации на большое расстояние по проводам сто лет начал человек изобрел телеграф. Нашелся способ превращения чисел и букв в сигналы - специальная телеграфная азбука (Азбука Морзе). Короткий сигнал «точка». Длинный сигнал - «тире».
Для компьютеров азбука Морзе не пригодна, так как очень неудобно разбираться с тем, какой сигнал длинный, а какой короткий. Придумали более простые сигналы: если есть сигнал, то это единица. Если нет - нолик. Осталось научиться представлять числа в виде единиц и ноликов. Компьютер делает гак:
2 – 10 (ноль - один)
3 – 11 (один - один)
4 – 100 (один - ноль - ноль)
5 – 101 (один - ноль - один)
6 – 110 (один - один - ноль)
7 – 111 (один - один - один)
8 – 1000 (один - ноль - ноль - ноль)
9 – 1001 (один - ноль - ноль - один)
10 – 1010 (один - ноль - один - ноль)
Если необходимо перевести число 1999 в сигналы (двоичный код) то компьютер сам способен перевести его.
Минимальное число представления информации - (ноль и один) – называют битами. Группа из восьми битов - байтами. Их четырех - полубайт.
В один байт можно записать число от 0 до 255. Для записи числа 1998 необходимо воспользоваться вторым байтом.
В двух байтах можно записать число - от 0 до 65535.
В трех - от 0 до 16 миллионов.
Текстовая информация
Каждой букве присваивается числовой номер. Например - букве «А» число 1, а букве «Б» - 2. Надо сказать, что прописные и заглавные буквы имеют разное число. В том числе, русский алфавит и латинский имеют свою кодировку. Для того чтобы различные компьютеры понимали друг - друга ученые выработали единый стандарт представления букв числами и назвали его «Кодировкой символов» «КОИ» (Рис. 1.1.1).
Рис. 1.1.1. Кодировка символов
Превратив буквы в числа, компьютер превращает числа в сигналы, и записывает их битами, из которых собираются байты:
А - 192- 11000000
Б - 193 - 11000001
В - 194- 11000010
Д - 196 – 11000100 и так далее.
Графическая информация
Компьютеры могут работать с графической информацией. Это могут быть рисунки или фотографии. Для того чтобы картинка могла храниться и обрабатываться в компьютере, ей превращают в сигналы. Такое превращение называют оцифровкой (Рис. 1.1.2).
Для оцифровки графической информации служат специальные цифровые фотокамеры или специальные устройства – сканеры.
Рис. 1.1.2 Пример оцифровки рисунка
Цифровая камера работает, как обычный фотоаппарат, только изображение не попадает на фотопленку, а «запоминается» в электронной памяти такого «фотоаппарата». Потом такой аппарат подключают к компьютеру и по проводу передают сигналы, которыми зашифровано изображение.
Если картинка сделана на бумаге, то для того, чтобы превратить её в сигналы, используют сканеры. Картинку кладут в сканер. Сканер просматривает каждую точку этой картинки и передает в компьютер числа (байты), которыми зашифрован цвет каждой точки. Например:
Черная точка: 0, 0, 0;
Белая точка: 255, 255, 255;
Коричневая точка:153, 102, 51;
Светло-серая точка: 160, 160, 160;
Темно-серая точка: 80, 80, 80.
У каждого цвета свой шифр (его называют цветовым кодом).
Если каждый цвет передавать тремя байтами, то можно зашифровать более 16 миллионов цветов. Это гораздо больше, чем может различить человеческий глаз, но для компьютера это не предел.
Звуковая информация
Звук, музыка и человеческая речь поступает в компьютер в виде сигналов и тоже оцифровывается (Рис. 1.1.3. Рис. 1.1.4.), то есть превращается в числа, а потом - в байты и биты. Компьютер их хранит, обрабатывает и может воспроизвести (проиграть музыку или произнести слово).
Для того чтобы ввести звуковую информацию в компьютер, к нему подключают микрофон или соединяют с другими электронными музыкальными устройствами, например, с магнитофоном или проигрывателем. Если в компьютере есть специальная, звуковая плата, то он может обрабатывать звуковую информации и воспроизводить человеческую речь, музыку и звуки.
Видеоинформация
Современные компьютеры могут работать с видеоинформацией. Они могут записывать и воспроизводить видеофильмы, мультфильмы и кинофильмы. Как и все прочие виды информации, видеоинформация тоже превращается в сигналы и записывается в виде битов и байтов. Происходит это точно так же, как и с картинками - разница лишь в том, что таких «картинок» надо обрабатывать очень много.
Фильмы состоят из кадров. Каждый кадр - эго как бы отдельная картинка. Чтобы изображение на экране, выглядело «живой» и двигалось, кадры должны сменять друг друга с большой скоростью - 25 кадров в секунду. Если компьютер мощный и быстрый, то он может 25 раз в секунду обрабатывать в своей памяти новую картинку и показывать её на экране.
Сигналы для записи видеоизображений компьютер получает от видеокамеры. Как и все другие виды информации, он преобразует эти сигналы в биты и байты и записывает их в свою память.
Выводится видеоизображение на экран компьютерного монитора. При этом вместе с изображением может выводиться и звук.
Вопросы для повторения
1. Понятие: информация и информатика.
2. Воздействие средств информации на органы чувств человека.
3. Виды компьютерной информации. Дать их понятие и способы представления в ПК.
Теоретический материал для самостоятельного изучения:
В основе любой информационной деятельности лежат так называемые информационные процессы — совокупность последовательных действий (операций), производимых над информацией для получения какого-либо результата (достижения цели). Информационные процессы могут быть различными, но все их можно свести к трем основным: обработка информации, передача информации и хранение информации.
Обработка информации
Обработка информации — это целенаправленный процесс изменения формы ее представления или содержания.
Из курса информатики основной школы вам известно, что существует два различных типа обработки информации:
- обработка, связанная с получением новой информации (например, нахождение ответа при решении математической задачи; логические рассуждения и др.);
- обработка, связанная с изменением формы представления информации, не изменяющая ее содержания. К этому типу относятся:
— кодирование — переход от одной формы представления информации к другой, более удобной для восприятия, хранения, передачи или последующей обработки; один из вариантов кодирования — шифрование, цель которого — скрыть смысл информации от посторонних;
— структурирование — организация информации по некоторому правилу, связывающему ее в единое целое (например, сортировка);
— поиск и отбор информации, требуемой для решения некоторой задачи, из информационного массива (например, поиск в словаре).
Общая схема обработки информации может быть представлена следующим образом:
Исходные данные — это информация, которая подвергается обработке.
Правила — это информация процедурного типа. Они содержат сведения для исполнителя о том, какие действия требуется выполнить, чтобы решить задачу.
Исполнитель — тот объект, который осуществляет обработку. Это может быть человек или компьютер. При этом человек, как правило, является неформальным, творчески действующим исполнителем. Компьютер же способен работать только в строгом соответствии с правилами, т.е. является формальным исполнителем обработки информации.
Рассмотрим отдельные процессы обработки информации более подробно.
Кодирование информации
Кодирование информации — это обработка информации, заключающаяся в ее преобразовании в некоторую форму, удобную для хранения, передачи, обработки информации в дальнейшем.
Код — это система условных обозначений (кодовых слов), используемых для представления информации.
Кодовая таблица — это совокупность используемых кодовых слов и их значений.
Нам уже знакомы примеры равномерных двоичных кодов — пятиразрядный код Бодо и восьмиразрядный код ASCII.
Самый известный пример неравномерного кода — код Морзе. В этом коде все буквы и цифры кодируются в виде различных последовательностей точек и тире.
Чтобы отделить коды букв друг от друга, вводят еще один символ — пробел (пауза). Например, слово «byte», закодированное с помощью кода Морзе, выглядит следующим образом:
При использовании неравномерных кодов важно понимать, сколько различных кодовых слов они позволяют построить.
Пример 1. Имеющаяся информация должна быть закодирована в четырехбуквенном алфавите . Выясним, сколько существует различных последовательностей из 7 символов этого алфавита, которые содержат ровно пять букв А.
Нас интересует семибуквенная последовательность, т. е.
Если бы у нас не было условия, что в ней должны содержаться ровно пять букв А, то для первого символа было бы 4 варианта, для второго — тоже 4, и т. д.
Тогда мы получили бы: 4 · 4 · 4 · 4 · 4 · 4 · 4 = 16384 варианта.
Теперь вернемся к имеющемуся условию и заполним пять первых мест буквой А. Получим:
Так как на 6-м и 7-м местах могут стоять любые из трех оставшихся букв B, C, D, то всего существует 9 (3 · 3) вариантов последовательностей.
Но ведь буквы А могут находиться на любых пяти из семи имеющихся позиций. А сколько таких вариантов всего?
Префиксный код — код со словом переменной длины, обладающий тем свойством, что никакое его кодовое слово не может быть началом другого (более длинного) кодового слова.
- Код, состоящий из слов 0, 10 и 11, является префиксным.
- Код, состоящий из слов 0, 10, 11 и 100, не является префиксным.
Также достаточным условием однозначного декодирования неравномерного код является обратное условие Фано. В нем требуется, чтобы никакой код не был окончанием другого (более длинного) кода.
Пример 2. Двоичные коды для 5 букв латинского алфавита представлены в таблице:
Можно заметить, что для заданных кодов не выполняется прямое условие Фано:
B=01, E=011, и D=10, C=100.
А вот обратное условие Фано выполняется: никакое кодовое слово не является окончанием другого. Следовательно, имеющуюся строку нужно декодировать справа налево (с конца). Получим
01 10 100 011 000 = BDCEA
Для построения префиксных кодов удобно использовать бинарные деревья, в которых от каждого узла отходят только два ребра, помеченные цифрами 0 и 1.
Пример 3. Для кодирования некоторой последовательности, состоящей из букв А, Б, В и Г, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. При этом используются такие кодовые слова: А — 0, Б — 10, В — 110. Каким кодовым словом может быть закодирована буква Г? Если таких слов несколько, укажите кратчайшее из них.
Построим бинарное дерево:
Чтобы найти код символа, нужно пройти по стрелкам от корня дерева к нужному листу, выписывая метки стрелок, по которым мы переходим.
Определим положение букв А, Б и В на этом дереве, зная их коды. Получим:
Чтобы код был префиксным, ни один символ не должен лежать на пути от корня к другому символу. Уберем лишние стрелки:
На получившемся дереве можно определить подходящее расположение буквы Г и его код.
Поиск информации
Задача поиска обычно формулируется следующим образом. Имеется некоторое хранилище информации — информационный массив (телефонный справочник, словарь, расписание поездов, диск с файлами и др.). Требуется найти в нем информацию, удовлетворяющую определенным условиям поиска (телефон какой-то организации, перевод слова, время отправления поезда, нужную фотографию и т. д.). При этом, как правило, необходимо сократить время поиска, которое зависит от способа организации данных и используемого алгоритма поиска.
Алгоритм поиска, в свою очередь, также зависит от способа организации данных.
Если данные никак не упорядочены, то мы имеем дело с неструктурированным набором данных. Для осуществления поиска в таком наборе применяется метод последовательного перебора.
При последовательном переборе просматриваются все элементы подряд, начиная с первого. Поиск при этом завершается в двух случаях:
— искомый элемент найден;
— просмотрен весь набор данных, но искомого элемента среди них не нашлось.
— искомый элемент оказался первым среди просматриваемых. Тогда просмотр всего один;
Если же информация упорядочена, то мы имеем дело со структурой данных, в которой поиск осуществляется быстрее, можно построить оптимальный алгоритм.
Одним из оптимальных алгоритмов поиска в структурированном наборе данных может быть метод половинного деления.
Напомним, что при этом методе искомый элемент сначала сравнивается с центральным элементом последовательности. Если искомый элемент меньше центрального, то поиск продолжается аналогичным образом в левой части последовательности. Если больше, то — в правой. Если же значения искомого и центрального элемента совпадают, то поиск завершается.
Пример 4. В последовательности чисел 61 87 180 201 208 230 290 345 367 389 456 478 523 567 590 требуется найти число 180.
Процесс поиска представлен на схеме:
Передача информации
Передача информации — это процесс распространения информации от источника к приемнику через определенный канал связи.
На рисунке представлена схема модели процесса передачи информации по техническим каналам связи, предложенная Клодом Шенноном.
Работу такой схемы можно пояснить на примере записи речи человека с помощью микрофона на компьютер.
Источником информации является говорящий человек. Кодирующим устройством — микрофон, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Канал связи — провода, соединяющие микрофон и компьютер. Декодирующее устройство — звуковая плата компьютера. Приемник информации — жесткий диск компьютера.
При передаче сигнала могут возникать разного рода помехи, которые искажают передаваемый сигнал и приводят к потере информации. Их называют «шумом».
В современных технических системах связи борьба с шумом (защита от шума) осуществляется по следующим двум направлениям:
Но чрезмерная избыточность приводит к задержкам и удорожанию связи. Поэтому очень важно иметь алгоритмы получения оптимального кода, одновременно обеспечивающего минимальную избыточность передаваемой информации и максимальную достоверность принятой информации.
Важной характеристикой современных технических каналов передачи информации является их пропускная способность — максимально возможная скорость передачи информации, измеряемая в битах в секунду (бит/с). Пропускная способность канала связи зависит от свойств используемых носителей (электрический ток, радиоволны, свет). Так, каналы связи, использующие оптоволоконные кабели и радиосвязь, обладают пропускной способностью, в тысячи раз превышающей пропускную способность телефонных линий.
Современные технические каналы связи обладают, перед ранее известными, целым рядом достоинств:
— высокая пропускная способность, обеспечиваемая свойствами используемых носителей;
— надёжность, связанная с использованием параллельных каналов связи;
— помехозащищённость, основанная на автоматических системах проверки целостности переданной информации;
— универсальность используемого двоичного кода, позволяющего передавать любую информацию — текст, изображение, звук.
Объём переданной информации I вычисляется по формуле:
где v — пропускная способность канала (в битах в секунду), а t — время передачи.
Рассмотрим пример решения задачи, имеющей отношение к процессу передачи информации.
Пример 5. Документ объемом 10 Мбайт можно передать с одного компьютера на другой двумя способами.
А. Передать по каналу связи без использования архиватора.
Б. Сжать архиватором, передать архив по каналу связи, распаковать.
Какой способ быстрее и насколько, если:
— средняя скорость передачи данных по каналу связи составляет 2 18 бит/с;
— объем сжатого архиватором документа равен 25% от исходного объема;
— время, требуемое на сжатие документа — 5 секунд, на распаковку — 3 секунды?
Для решения данной задачи диаграмма Гантта не нужна; достаточно выполнить расчёты для каждого из имеющихся вариантов передачи информации.
Рассмотрим вариант А. Длительность передачи информации в этом случае составит:
Рассмотрим вариант Б. Длительность передачи информации в этом случае составит:
Итак, вариант Б быстрее на 232 с.
Хранение информации
Сохранить информацию — значит тем или иным способом зафиксировать её на некотором носителе.
Носитель информации — это материальная среда, используемая для записи и хранения информации.
Основным носителем информации для человека является его собственная память. По отношению к человеку все прочие виды носителей информации можно назвать внешними.
Основное свойство человеческой памяти — быстрота, оперативность воспроизведения хранящейся в ней информации. Но наша память не надёжна: человеку свойственно забывать информацию. Именно для более надёжного хранения информации человек использует внешние носители, организует внешние хранилища информации.
Виды внешних носителей менялись со временем: в древности это были камень, дерево, папирус, кожа и др. Долгие годы основным носителем информации была бумага. Развитие компьютерной техники привело к созданию магнитных (магнитная лента, гибкий магнитный диск, жёсткий магнитный диск), оптических (CD, DVD, BD) и других современных носителей информации.
В последние годы появились и получили широкое распространение всевозможные мобильные электронные (цифровые) устройства: планшетные компьютеры, смартфоны, устройства для чтения электронных книг, GPS-навигаторы и др. Появление таких устройств стало возможно, в том числе, благодаря разработке принципиально новых носителей информации, которые:
- Обладают большой информационной ёмкостью при небольших физических размерах.
- Характеризуются низким энергопотреблением при работе, обеспечивая наряду с этим высокие скорости записи и чтения данных.
- Энергонезависимы при хранении.
- Имеют долгий срок службы.
Всеми этими качествами обладает флеш-память (англ. flash-memory). Выпуск построенных на их основе флеш-накопителей, называемых в просторечии «флэшками», был начат в 2000 году.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока "Обработка информации и алгоритмы"
С прошлого урока мы с вами знаем, что с информацией можно производить следующие действия: сбор, обработку, хранение и передачу.
Сбор информации – это деятельность субъекта, в ходе которой он получает сведения об интересующем его объекте.
Хранение информации – это процесс поддержания исходной информации в виде, обеспечивающем выдачу данных по запросам конечных пользователей в установленные сроки.
К цифровым носителям информации относятся магнитные носители информации, оптические диски, флеш-носители.
Передача информации – это физический процесс, при котором происходит перемещение информации в пространстве. Этот процесс происходит при наличии приёмника и источника.
На уроке мы с вами вспомним, что такое обработка информации, узнаем, какие существуют виды обработки информации. Также вспомним, что такое алгоритм.
Итак, обработка информации – это преобразование информации из одного вида в другой, которое осуществляется по строгим формальным правилам.
Обработку информации может выполнять человек или техническое устройство. Тот, кто производит обработку информации является исполнителем. Исходные данные – это информация, которая подвергается обработке.
Давайте рассмотрим схему, при помощи которой разберёмся, как происходит сам процесс обработки информации.
Итак, исполнитель получает исходные данные для обработки и вместе с этим правила, которые нужно использовать при обработке информации. После того, как исполнитель обработал полученные данные в соответствии с правилами, он выдаст результат.
Давайте разберёмся на примерах, как это происходит.
Сейчас вы изучаете информатику, получаете информацию от учителя и из книг.
То есть исходными данными являются знания, которые вам даёт учитель. Затем вы перерабатываете эту информацию, переосмысливаете, выделяете для себя самое важное.
В результате вы получите новые знания, которые вы систематизировали и сможете использовать при ответе на следующем уроке, при выполнении контрольной работы или на экзамене.
В этом примере представлены два вида обработки информации: получение новой информации и новых сведений; и систематизация и структурирование данных.
И снова рассмотрим пример. На уроке иностранного языка учитель продиктовал текст на русском языке, который нужно было записать и перевести на английский.
При записи и переводе происходит обработка информации и перевод текста с русского языка на английский с соблюдением определённых правил. Результатом будет текст на английском языке.
Здесь у нас также присутствует один из видов обработки информации: изменение формы представления информации.
И ещё один пример. На уроке истории вам задали реферат на тему: «Эпоха правления Петра первого». Для того, чтобы написать реферат, вам нужно идти в библиотеку и найти нужную книгу в каталоге или же зайти в интернет и задать соответствующий запрос.
Таким образом, исходными данными будут являться каталог книг в библиотеке или же Всемирная сеть, а также критерий поиска – тема реферата. А результатом будет готовый реферат.
В этом примере описан такой вид обработки информации, как поиск.
Исходя из вышесказанного, можно сделать вывод, что существует четыре вида обработки информации: получение новой информации, новых сведений; изменение формы представления информации; систематизация, структурирование данных; поиск информации.
Как было сказано ранее, обработку может выполнять человек или техническое устройство. Разница лишь в том, что при выполнении обработки информации человеком, правила не всегда выполняются в строгом порядке. Техническое устройство, например, компьютер будет выполнять обработку информации по строгим правилам, то есть по заданному алгоритму действий.
Происхождение термина «алгоритм» связано с математикой.
В IX веке в Багдаде жил Абу Аль-Хорезми – один из крупнейших средневековых персидских учёных IX века, математик, астроном, географ и историк.
В одном из своих трудов он описал десятичную систему счисления и впервые сформулировал правила выполнения арифметических действий над целыми числами и обыкновенными дробями.
Арабский оригинал этой книги был утерян, но остался латинский перевод XII века, по которому Западная Европа и познакомилась с десятичной системой счисления и правилами выполнения арифметических действий.
Аль-Хорезми стремился к тому, чтобы сформулированные им правила были понятными. Достичь этого в IX веке, когда ещё не была разработана математическая символика (знаки операций, скобки, буквенные обозначения и так далее), было сложно. Однако ему удалось выработать чёткий стиль строгого словесного предписания, который не давал читателю возможность уклониться от предписанного или пропустить какие-нибудь действия.
Правила в книгах Аль-Хорезми в латинском переводе начинались словами «Алгоризми сказал». В других латинских переводах автор именовался как Алгоритмус. Со временем было забыто, что Алгоризми (Алгоритмус) – это автор правил, и эти правила стали называть алгоритмами.
Многие столетия разрабатывались алгоритмы для решения всё новых и новых классов задач, но само понятие алгоритма не имело точного математического определения.
В XX веке возникла наука, которая занимается теорией алгоритмов. В рамках этой науки понятие алгоритма было уточнено.
Алгоритм – это строгий порядок правил, которые определяют последовательность шагов обработки информации.
Но не все люди, которые решают те или иные примеры, знают, что они выполняют алгоритм.
Каждое утро люди пьют чай или кофе.
Они бессознательно выполняют один и тот же алгоритм, который звучит следующим образом:
· налить воду в чайник;
· насыпать кофе в кружку;
· налить воду в кружку.
В данном случае исполнителем является человек, поэтому порядок действий алгоритма может меняться или же некоторые действия и вовсе могут опускаться, например, если в чайнике уже есть вода. Или же, если человек пьёт кофе без сахара.
Рассмотрим ещё один пример.
(7 + 16) · (23 – 5) : 5 – 203
Все мы знаем, что для решения этого примера необходимо:
· выполнить операции в скобках слева направо;
Порядок действий решения примера и есть алгоритм.
Большинство учеников пятого класса не знают строгого научного определения алгоритма, но в то же время они являются исполнителями алгоритма. Действия при этом будут формальными, то есть будут выполняться в строго определённом порядке.
Люди давно мечтали создать машину, которая будет исполнять формальный алгоритм без помощи человека.
Для того, чтобы создать такую машину, не достаточно было создать её со всеми техническими требованиями, нужно было ещё досконально знать, как осуществляется алгоритм для обработки информации, и разработать формализованный способ представления таких алгоритмов.
Когда, как и кем была создана такая машина мы с вами узнаем чуть позже.
А сейчас давайте подведём итоги урока.
· Обработка информации – это преобразование информации из одного вида в другой, которое осуществляется по строгим формальным правилам.
· Виды обработки информации: получение новой информации, новых сведений; изменение формы представления информации; систематизация, структурирование данных; поиск информации.
· Алгоритм – это строгий порядок правил, которые определяют последовательность шагов обработки информации.
Обработка (преобразование) информации — это процесс изменения формы представления информации или её содержания. Обрабатывать можно информацию любого вида, и правила обработки могут быть самыми разнообразными.
В результате обработки имеющейся (входной) информации мы получаем новую (выходную) информацию.
Во многих задачах бывает заранее известно правило, по которому следует осуществлять преобразование входной информации в выходную. Это правило может быть представлено в виде формулы или подробного плана действий.
Обработка информации — это решение информационной задачи, или процесс перехода от исходных данных к результату.
Процесс обработки информации не всегда связан с получением каких-то новых сведений. Например, при переводе текста с одного языка на другой. Обработка информации, связанная с изменением её формы, но не изменяющая содержания, происходит при систематизации информации, поиске информации, кодировании информации.
Обработка информации – это:
· представление и преобразование информации из одного вида в другой в соответствии с формальными правилами;
· процесс интерпретации (осмысления) данных;
· процесс преобразования к виду, удобному для передачи или восприятия (кодирование, декодирование и т.д.);
· процесс преднамеренного искажения или изменения структуры данных, изменение числовых значений данных и т.д.
Обработка информации заключается в различных преобразованиях самой информации или формы ее представления:
- извлечение новой информации из данной путем логических рассуждений, например, раскрытие преступления по собранным уликам
- изменение формы представления информации, например, перевод текста с одного языка на другой или шифровка (кодирование) текста;
- сортировка информации, например, упорядочение списка фамилий по алфавиту;
- поиск информации, например, поиск телефона в телефонной книге или поиск иностранного слова в словаре.
Под обработкой информации в информатике понимают любое преобразование информации из одного вида в другой, производимое по строгим формальным правилам. Примерами таких преобразований могут служить: замена одной буквы на другую в тексте; замена нулей на единицы, а единиц на нули в последовательности битов; сложение двух чисел, когда из информации, представляющей слагаемые, получается результат – сумма.
Слова «Обработка информации», таким образом, вовсе не подразумевают восприятие информации или ее осмысление. Компьютер – всего лишь машина и способна только к технической, машинной обработке информации.
Конечно, технические преобразования информации обычно производятся с целью достижения некоторого осмысленного эффекта. Например, если в тексте восклицательный знак заменить на вопросительный, то это будет соответствовать и некоторому смысловому изменению. Однако сама замена восклицательного знака на вопросительный носит технический характер и может быть произведена в любом тексте:
Это правда! à Это правда?
а+%599-!222 à а+%599-?222
Обработка информации на ЭВМ обычно состоит в выполнении огромного количества такого рода элементарных, технических операций.
Но всегда ли нам известно, как, по каким правилам входная информация преобразовывается в выходную?
Такую систему, в которой наблюдателю доступны лишь входные и выходные величины, а её структура и внутренние процессы неизвестны, называют «чёрным ящиком».
Обработка информации по принципу «черного ящика» - процесс, в котором пользователю важна и необходима лишь входная и выходная информация, но правила, по которым происходит преобразование, его не интересуют и не принимаются во внимание.
"Черный ящик" - это система, в которой внешнему наблюдателю доступны лишь информация на входе и на выходе этой системы, а строение и внутренние процессы неизвестны.
Читайте также: