Глубина заложения свай моста
Тема 3.3. Фундаменты глубокого заложения.
Свайные фундаменты – один из наиболее распространенных видов фундаментов глубокого заложения, в частности опор мостов. Конструкция фундамента зависит от размеров моста, величины пролетов, конструкции опор, местных гидрологических условий, а также производственных возможностей. Свайные и столбчатые фундаменты в мостостроении применяют в тех случаях, когда в верхних слоях грунтовой толщи залегают грунты, имеющие низкую прочность и высокую сжимаемость. Их устраивают и в хороших грунтах, залегающих у поверхности, но при большой глубине воды или значительном размыве дна водотока.
Свайные фундаменты состоят из свай и объединяющей их плиты, называемой ростверком. Сваи служат для передачи давлений на глубоко залегающие слои грунта, при этом давление передаются сваями не только нижними концами, но и через трение боковой поверхности на окружающий грунт.
Рис. 59. Свайные фундаменты.
а) с низким ростверком, б) с высоким ростверком
В опорах современных мостов ростверк делают в виде бетонной или ж/б плиты. Для надежного защемления в бетоне ростверка сваи заводят в него на глубину, равную 1,5-2 их диаметра. При ж/б сваях головы их разбивают и заводят обнажившуюся арматуру в толщу бетона ростверка.
В зависимости от уровня расположения ростверка по отношению к поверхности грунта различают низкие и высокие свайные ростверки.
Низким называют свайный ростверк, расположенный на таком уровне, чтобы головы свай были ниже поверхности грунта. Высоким называют свайный ростверк, в котором верхние части свай оказываются выше грунта и защемлены в нем только нижними частями. В некоторых случаях свайный фундамент, вначале работающий как низкий ростверк может в результате размыва грунта превратиться в фундамент с высоким ростверком.
3.3.2. Сваи по материалу и способу погружения.
Существуют следующие виды свай:
а) сваи забивные железобетонные и деревянные, погружаемые в грунт с помощью молота, вибропогружателей и вибровдавливающих агрегатов;
б) сваи-оболочки железобетонные;
в) сваи набивные бетонные и железобетонные, устраиваемые в грунте на месте;
г) сваи буроопускные железобетонные, устраиваемые из готовых железобетонных элементов, погружаемых в заранее пробуренные в грунте скважины;
д) сваи винтовые со стальным или железобетонным стволом.
Рис. 60. Типы железобетонных свай.
а — призматические сваи сплошного сечения; б — призматические сваи с круглой полостью; в — сваи с уширением в нижней части; г — пирамидальные сваи; д — сваи переменного сечения; е, ж, з, и — сваи с поперечным сечением в виде креста, тавра, двутавра, швеллера соответственно; к — полые круглые сваи; л — сваи-оболочки; м — винтовые сваи
В процессе забивки свай образуется уплотненная грунтовая зона в основном в пределах 3d, где d —сторона или диаметр поперечного сечения свай. Этим и объясняется тот факт, что расчетное сопротивление грунта под нижним концом забивных свай в зависимости от естественной плотности или консистенции грунтов в несколько раз больше, чем для таких же грунтов при фундаментах на естественном основании.
Забивные железобетонные сваи и сваи-оболочки подразделяются:
а) по способу армирования — на сваи и сваи-оболочки с ненапрягаемой продольной арматурой с поперечным армированием и на предварительно-напряженные со стержневой или проволочной продольной арматурой (из высокопрочной проволоки и арматурных канатов) с поперечным армированием и без него, причем без поперечного армирования изготавливаются только сваи квадратного поперечного сечения;
б) по форме поперечного сечения — на сваи квадратные, прямоугольные, квадратные с круглой полостью и полые круглые диаметром до 800 мм включительно и сваи-оболочки диаметром более 800 мм;
в) по форме продольного сечения — на призматические и с наклонными боковыми гранями (пирамидальные, трапецеидальные, ромбовидные);
г) по конструктивным особенностям ствола сваи — на цельные и составные (из отдельных секций);
д) по конструкции нижнего конца — на сваи с заостренным или плоским нижним концом, с уширением (булавовидные сваи) или без него, полые сваи — с закрытым или открытым нижним концом и с камуфлетной пятой.
В целях повышения качества изготовления составлены ГОСТы на следующие конструкции забивных железобетонных свай сплошного квадратного сечения:
с ненапрягаемой арматурой длиной 3 — 16 м, сечением от 200 ´ 200 до 400 ´ 400 мм (ГОСТ 19804.1 — 79);
с напрягаемой арматурой из высокопрочной проволоки длиной 3 — 16 м, сечением от 200 ´ 200 до 400 ´ 400 мм (ГОСТ 19804.2 — 79);
с напрягаемой стержневой арматурой длиной 9 — 20 м, сечением от 300 ´ 300 до 400 ´ 400 мм (ГОСТ. 19804.2 — 79);
с напрягаемой прядевой арматурой длиной 11 — 20 м, сечением от 300 ´ 300 до 400 ´ 400 мм (ГОСТ 19804.2 — 79);
без поперечного армирования с напрягаемой арматурой длиной 3 — 12 м, сечением 250 ´ 250 и 300 ´ 300 мм (ГОСТ 19804.4 — 78).
Разработаны также чертежи типовых конструкций свай квадратного сечения с круглой полостью длиной 3 — 8 м, сечением 300 ´ 300 и 400 ´ 400 мм по серии 1.011-6 и полых круглых свай диаметром от 400 до 800 мм и свай-оболочек диаметром 1000 — 1600 мм по серии 1.011-5.
Полые круглые сваи и сваи-оболочки в соответствии с типовыми чертежами разработаны цельными длиной 4 — 12 м и составными, т. е. состоящими из отдельных секций, наращиваемых в процессе погружения. Соединение отдельных секций указанных составных свай осуществляется с помощью сварных или болтовых стыков. Элементы этих стыков предусмотрены в виде стальных закладных деталей, устанавливаемых в процессе бетонирования по торцам секций составных свай.
Погружение свай-оболочек в связи с большими диаметрами (более 800 мм) осуществляется по особой технологии. Чаще всего они догружаются с помощью вибраторов. В процессе погружения свай-оболочек, производят полную или частичную выемку грунта из полости либо оставляют грунтовое ядро нетронутым. Во всех этих случаях несущая способность свай-оболочек может быть разной, даже в одинаковых грунтовых условиях.
Полые круглые сваи диаметром до 800 мм применяются с открытым и закрытым нижним концом.
Сваи-оболочки погружаются с открытым нижним концом вибропогружателями без выемки или с выемкой грунта (частичной или полной) из внутренней полости.
Внутренняя полость свай-оболочек заполняется бетоном на всю высоту или только в нижней части, а также частично песчаным грунтом, а в верхней части — бетоном. Решение о том или ином виде заполнения принимается в зависимости от величины действующих на сваи нагрузок, характера грунтовых напластований, глубины заложения подошвы ростверка, глубины промерзания грунтов и т.п.
Забивные железобетонные сваи квадратного сечения без поперечного армирования рекомендуется применять при прорезке сваями песков средней плотности и рыхлых, супесей пластичной и текучей консистенции, суглинков и глин от тугопластичных до текучих при условии, что сваи погружены в грунт на всю глубину или выступают над поверхностью грунта на высоту не более 2 м.
Опирание нижних концов свай без поперечного армирования допускается на все виды грунтов, за исключением скальных, крупнообломочных, торфов, слабых грунтов типа илов, глинистых текучей консистенции и других сильносжимаемых грунтов, с учетом дополнительных указаний, приведенных в рабочих чертежах свай.
Забивные сваи сплошного квадратного сечения с поперечным армированием, полые круглые сваи и сваи-оболочки могут применяться при любых сжимаемых грунтах, подлежащих прорезке, с опиранием нижних концов на любые грунты, за исключением торфов, слабых грунтов типа илов, глинистых грунтов текучей консистенции и других видов сильносжимаемых грунтов. Они могут применяться для фундаментов мостовых сооружений и воспринимать вертикальные вдавливающие и выдергивающие, а также горизонтальные нагрузки и изгибающие моменты.
Полым круглым сваям и сваям-оболочкам следует отдавать предпочтение при слабых грунтах большой мощности и при больших горизонтальных нагрузках.
При использовании предварительно-напряженных свай любого типа, в том числе типовых конструкций, следует иметь в виду, что в случае необходимости обеспечения жесткого их сопряжения с плитой ростверка, а также при передаче на них растягивающих сил голова таких свай должна заделываться в плиту ростверка на величину, требуемую расчетом. Однако предварительно-напряженные сваи с продольной арматурой из высокопрочной проволоки и семипроволочных прядей позволяют снизить расход стали (в натуральном весе) до 50 % по сравнению со сваями с ненапрягаемой арматурой.
Типовые конструкции прямоугольных свай не разработаны. Однако практически прямоугольные сваи часто применяются в фундаментах сооружений, воспринимающих значительные горизонтальные нагрузки (для фундаментов опор мостов, набережных, опор трубопроводов и т.п.). Большая сторона поперечного сечения таких свай в указанных случаях располагается в направлении действия наибольших моментов и горизонтальных сил.
В последнее время находят применение новые виды свай, в том числе булавовидные, пирамидальные, ромбовидные. Типовые конструкции таких свай также не разработаны.
Булавовидные железобетонные сваи целесообразно применять, только когда на строительной площадке от поверхности планировки залегают слабые оплывающие грунты (рыхлые пески, супеси текучей консистенции, илы и т.п.), подстилаемые относительно плотными грунтами. Такие сваи могут применяться для устройства фундаментов зданий и сооружений при передаче на них главным образом статических вдавливающих нагрузок. Булавовидные сваи воспринимают меньшие горизонтальные нагрузки, чем железобетонные призматические сваи, поэтому применение их не рекомендуется при больших горизонтальных нагрузках, передаваемых на фундаменты.
Забивные пирамидальные железобетонные сваи могут быть двух видов — пирамидальные сваи с большими углами конусности и пирамидальные сваи с малыми углами конусности.
Пирамидальные сваи с малыми углами конусности (углами наклона боковых граней 1 — 4°) рекомендуется применять в однородных по глубине грунтах; а также в случаях, когда сваями вынужденно прорезаются слои плотных грунтов и их нижний конец заглубляется в более слабые грунты.
Набивные сваи по способу изготовления подразделяются на:
а) набивные, устраиваемые путем предварительного погружения инвентарных труб, нижний конец которых закрыт оставляемым в грунте башмаком или бетонной пробкой, с последующим извлечением этих труб по мере заполнения скважин бетонной смесью;
б) набивные виброштампованные, устраиваемые в пробуренных или в пробитых скважинах путем заполнения скважин жесткой бетонной смесью, уплотняемой виброштампом, выполненным в виде трубы с заостренным нижним концом и закрепленным на ней вибропогружателем;
в) набивные в выштампованном ложе, устраиваемые путем выштамповки в грунте скважин пирамидальной или конусной формы с последующим заполнением их бетонной смесью;
г) буронабивные с уширениями и без них, устраиваемые в неводонасыщенных глинистых грунтах без крепления стенок скважин, а в обводненных грунтах и в песках с закреплением стенок скважин глинистым раствором или инвентарными извлекаемыми обсадными трубами и только в виде исключения при соответствующем обосновании ¾ обсадными трубами, оставляемыми в грунте;
д) буронабивные с камуфлетной пятой, устраиваемые путем бурения скважин с последующим образованием уширения взрывом и заполнением скважин бетонной смесью.
Буронабивные сваи в настоящее время устраиваются диаметром ствола 400 — 1700 мм. Они могут иметь в нижней части уширение диаметром до 3500 мм. Устраиваются такие сваи без крепления или с креплением стенок скважины.
Рис.61. Изготовление буронабивной сван с использованием глинистого
раствора:
а — бурение скважины под глинистым раствором; б — опускание каркаса; в — установка бетонолитной трубы с вибробункером; г — бетонирование сваи методом вертикального перемещения трубы (ВПТ) с вытеснением глинистого раствора из скважины
Рис.62. Изготовление буронабивной сваи с использованием обсадной
трубы, задавливаемой при помощи стола:
а, б, в — бурение скважины грейферным буром с наращиванием обсадной трубы; г опускание бетонолитной трубы и начало бетонирования; д — окончание
бетонирования и извлечение последнего звена обсадной трубы
На рис. 62 показано устройство буронабивной сваи установкой фирмы «Франки» с использованием грейферного бура и составной обсадной трубы, погружаемой в грунт с помощью специального стола с домкратами. Стол является принадлежностью базовой машины и передает на обсадную трубу продольное вдавливающее усилие и колебательный момент вращения. Столы большой массы (до ЗО т) для задавливания обсадных труб могут использоваться самостоятельно без передачи усилий на базовую машину. данная установка позволяет изготавливать сваи диаметром до 1800 мм при наибольшем вдавливающем усилии на обсадную трубу — 25 т.
При бурении в нескальных грунтах обсадная труба задавливается всегда с опережением, размер которого зависит от плотности грунта. Бурение ведется внутри трубы (с отставанием), что позволяет избежать разуплотнения грунта за пределами ствола сваи и даже получить некоторое дополнительное его уплотнение при значительном опережении погружения обсадной трубы. Наращивание обсадной трубы звеньями длиной 3. 5 м осуществляется с помощью базовой машины или с использованием самоходного стрелового крана. После достижения нижним концом обсадной трубы проектной глубины грунт внутри трубы удаляется до ее нижней кромки.
Вскважину устанавливают арматурный каркас, бетонолитную трубу и немедленно приступают к бетонированию с одновременным извлечением обсадной трубы. Задержка бетонирования недопустима, поскольку это приводит к разуплотнению грунта в
забое с последующим возникновением дополнительной осадки сваи.
Наиболее широко применяют следующие способы устройства уширений: разбуривание, раскатывание или раздвигание грунта с помощью специальных механических или гидравлических устройств, опускаемых в скважину (рис. 63, а; рис. 64); втрамбовывание бетона в грунт ниже обсадной трубы (рис. 63, в); взрывание камуфлетного заряда на дне скважины под слоем бетонной смеси (рис. 63, 6). Заметим, что два последних способа применимы только при устройстве свай с использованием обсадных труб. Устройство уширений этими способами позволяет не только увеличить несущую способность сваи, но и избежать дополнительных осадок, связанных с наличием разрыхленного грунта в забое скважины.
Рис.63. Схемы устройства уширений нижних концов свай:
а — разбуриванем; б — взрыванием камуфлетного заряда; в — втрамбовыванием жесткой бетонной смеси
Рис.64. Разбуривание полости в грунте уширителем:
а - положение уширителя во время разбуривания скважины; б - то же, в процессе разбуривания полости; 1 - грунтосборник; 2 - режущие ножи; 3 - скважина; 4 - штанга; 5 - уширенная полость
Взрывной способ устройства уширений (рис.65). В пробуренную скважину устанавливают обсадную трубу. На дно скважины опускают заряд взрывчатого вещества расчетной массы и выводят провода от детонатора к взрывной машинке, находящейся на поверхности. Скважину заполняют бетонной смесью на 1,5-2,0 м, поднимают на 0,5 м обсадную трубу и производят взрыв. Энергия взрыва уплотняет грунт и создает сферическую полость, которая заполняется бетонной смесью из обсадной трубы. После этого порциями и с необходимым уплотнением заполняют обсадную трубу бетонной смесью доверху.
Рис.65. Технологическая схема устройства свай с камуфлетным уширением:
а - опускание заряда ВВ и заполнение скважины бетонной смесью; б - подъем бетонолитной трубы и образование уширенной пяты взрывом; в - готовая набивная свая с камуфлетным уширением; 1 - заряд ВВ; 2 - провод к подрывной машине; 3 - обсадная труба; 4 - приемная воронка; 5 - бетонная смесь; 6 - бадья с бетонной смесью; 7 - уширенная пята; 8 - арматурный каркас.
Винтовые сваи по сравнению с другими типами свай гораздо лучше работают на выдергивание и поэтому используются главным образом в сооружениях, где на фундаменты передаются преимущественно выдергивающие силы.
Рис.66 . Устройство винтовой сваи:
а — подготовка агрегата к работе; б — образование винтовой полости в грунте; в —
установка арматурного каркаса; г — вывинчивание трубы с наконечником при
одновременной подаче бетонной смеси; д — готовая свая
Сваи-столбы рекомендуется применять преимущественно для устройства фундаментов опор мостов, строящихся в районах, распространения пучинистых грунтов, при невозможности забивки свай в них ввиду наличия плотных песчаных, гравелистых и галечниковых грунтов, в которых столбы должны быть заделаны исходя из условий воспринятия сил морозного пучения.
Применение свай-столбов обеспечивает повышение уровня индустриализации строительных работ в отдаленных районах.
Стыки звеньев составных железобетонных свай и свай-оболочек должны обеспечивать:
а) равнопрочность стыкового соединения и ствола сваи (сваи-оболочки) на осевые вдавливающие и горизонтальные нагрузки и изгибающие моменты, а для фундаментов со сваями, работающими на выдергивающие нагрузки, — также на растягивающие силы;
б) соосность стыкуемых элементов.
Забивные деревянные сван подразделяются на:
а) цельные, изготовляемые из одного бревна;
б) срощенные по длине;
в) пакетные, сплоченные из нескольких цельных или срощенных по длине бревен или брусьев.
Деревянные сваи, изготавливаемые из целого бревна, имеют обычно длину 4,5 — 8,5 м и диаметр в отрубе 160 — 340 мм. Реже применяются сваи из цельных бревен длиной до 12м.
Заготовка деревянных свай длиной свыше 16 м представляет значительные трудности как по отбору бревен такой длины, так и по вывозу их с участка лесозаготовок. По этим причинам применяют или срощенные сваи из двух (и даже трех) бревен по длине, или так называемые пакетные сваи, состоящие из нескольких бревен как по длине, так и поперечному сечению.
Пакетные сван изготовляются длиной до 25 м, поперечным сечением (диаметром) до 600 мм и более.
Основным недостатком срощенных и пакетных свай является возможность расстройства стыков при забивке, а также в последующем — ржавление стальных частей стыков, находящихся в условиях грунтовых вод, агрессивных по отношению к стали.
Деревянные сваи рекомендуется применять в районах, где лес является местным, строительным материалом, в целях экономии бетона и стали.
Рис.67. Детали деревянной сваи и стыки.
1 — свая; 2— бугель; З — башмак; 4— накладка; 5— штырь; б — болты; 7— стальная труба; 8 — ерши
Классификация свай определяется тем, что при разных видах свай грунтовая среда, в которую погружена свая, может претерпевать различные изменения. При забивных сваях грунт вокруг сваи и в ее основании уплотняется. При набивных сваях грунт, окружающий сваю, либо остается в естественном состоянии, либо степень плотности его нарушается из-за заполнения скважины водой и размягчения вследствие этого грунта вокруг сваи, оставления шлама в забое скважины, задержек в бетонировании и т.п. Некоторое уплотнение грунта может быть получено при устройстве набивных свай в пробитых скважинах. Однако степень этих уплотнений оказывается меньшей, чем при забивных сваях.
Сваи, в зависимости от свойств грунтов, залегающих под нижним концом, подразделяются на сваи-стойки и висячие сваи.
К сваям-стойкам относятся сваи всех видов и сваи-оболочки, которые пepeдaют нагрузку нижним концом на практически несжимаемые грунты. Силы трения грунта на боковой поверхности свай-стоек в расчетах их несущей способности по грунту основания на сжимающую нагрузку не учитываются.
К висячим сваям относятся сваи всех видов и сваи-оболочки, погруженные в сжимаемые грунты. Висячие сваи передают нагрузку на грунт боковой поверхностью и нижним концом.
Примечание. К практически несжимаемым грунтам относятся скальные, крупнообломочные (валунный, галечниковый, щебенистый, гравийный, дресвяный) с песчаным заполнителем и глинистые грунты твердой консистенции.
3.3.3. Фундаменты на опускных колодцах.
3. Одним из специальных видов фундаментов, когда применение свай оказывается невозможным, являются фундаменты в виде опускных колодцев. Их применяют, когда глубина заложения фундамента превышает 8м и устройство открытого котлована сильно затруднено. Сущность заключается в том, что сначала изготовляют полую бетонную или ж/б конструкцию – колодец, имеющий ограждающие стенки. Затем, выбирая грунт под этими стенками и на дне колодца, его заставляют погружаться под действием собственного веса и преодоления сил трения по его боковым поверхностям. Колодец делают сразу полной высоты или постепенно наращивают его сверху по мере опускания. Когда колодец дойдет до проектной отметки и достигнет надежного грунта, дальнейшее его погружение прекращают, внутреннее пространство заполняют бетонной кладкой, которая вместе с оболочкой-колодцем образует массивный фундамент. Внутреннее пространство колодца не всегда обязательно полностью заполнять кладкой. Возможно устройство в нижней его части бетонной подушки, распределяющей давление фундамента на грунт, и ж/б плиты по верху колодца для поддержания вышележащей части опоры.
На суходоле их изготавливают на спланированной площадке, в водотоке - на искусственно отсыпанных островках.
Рис.68. Искусственные островки на реке для опускания колодцев
1 - островок; 2 - колодец.
Рис.69. Опускной колодец для возведения мостовой опоры в русле реки.
1 — стенка колодца; 2— консоли; З — подводный бетон; 4 — бетонная смесь, укладываемая
насухо; 5—железобетонная плита; б—тело опоры
Глубина заложения свай моста
Сведения о своде правил
1 ИСПОЛНИТЕЛИ - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова - институт АО "НИЦ "Строительство" (НИИОСП им.Н.М.Герсеванова)
2 ВНЕСЕН Техническим комитетом по стандартизации (ТК 465) "Строительство"
3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики
Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минрегион России) в сети Интернет
ВНЕСЕНЫ опечатки, опубликованные в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 6, 2011 г.
Опечатки внесены изготовителем базы данных
Изменения N 1, 2, 3 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2017 год; М.: Стандартинформ, 2019
Введение
Настоящий свод правил устанавливает требования к проектированию фундаментов из разных типов свай в различных инженерно-геологических условиях и при любых видах строительства.
Разработан НИИОСП им.Н.М.Герсеванова - институтом ОАО "НИЦ "Строительство": д-ра техн. наук Б.В.Бахолдин, В.П.Петрухин и канд. техн. наук И.В.Колыбин - руководители темы; д-ра техн. наук: А.А.Григорян, Е.А.Сорочан, Л.Р.Ставницер; кандидаты техн. наук: А.Г.Алексеев, В.А.Барвашов, С.Г.Безволев, Г.И.Бондаренко, В.Г.Буданов, A.M.Дзагов, О.И.Игнатова, В.Е.Конаш, В.В.Михеев, Д.Е.Разводовский, В.Г.Федоровский, О.А.Шулятьев, П.И.Ястребов, инженеры Л.П.Чащихина, Е.А.Парфенов, при участии инженера Н.П.Пивника.
Изменение N 2 разработано институтом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководители темы - д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский; исполнители - д-р техн. наук Н.З.Готман, д-р техн. наук Л.Р.Ставницер, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.А.Ковалев, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук О.А.Шулятьев, канд.техн. наук П.И.Ястребов) при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева.
Изменение N 3 к своду правил подготовлено АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководители темы - д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский, д-р техн. наук Н.З.Готман, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.В.Сёмкин, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук А.В.Шапошников, канд. техн. наук П.И.Ястребов, при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева).
1 Область применения
Настоящий свод правил распространяется на проектирование свайных фундаментов вновь строящихся и реконструируемых зданий и сооружений (далее - сооружений).
Свод правил не распространяется на проектирование свайных фундаментов сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе.
2 Нормативные ссылки
ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик
ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями
ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент
ГОСТ 8734-75 Трубы стальные бесшовные холоднодеформированные. Сортамент
ГОСТ 9463-2016 Лесоматериалы круглые хвойных пород. Технические условия
ГОСТ 10704-91 Трубы стальные электросварные прямошовные. Сортамент
ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава
ГОСТ 19804-2012 Сваи железобетонные заводского изготовления. Общие технические условия
ГОСТ 19804.6-83 Сваи полые круглого сечения и сваи-оболочки железобетонные составные с ненапрягаемой арматурой. Конструкция и размеры
ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием
ГОСТ 20276-2012 Грунты. Методы полевого определения характеристик прочности и деформируемости
ГОСТ 20295-85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия
ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний
ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия
ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения
ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния
СП 14.13330.2018 "СНиП II-7-81* Строительство в сейсмических районах"
СП 21.13330.2012 "СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах" (с изменением N 1)
СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"
СП 25.13330.2012 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах" (с изменением N 1)
СП 26.13330.2012 "СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками" (с изменением N 1)
СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменением N 1)
СП 38.13330.2018 "СНиП 2.06.04-82* Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)"
СП 40.13330.2012 "СНиП 2.06.06-85 Плотины бетонные и железобетонные"
СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"
СП 58.13330.2012 "СНиП 33-01-2003 Гидротехнические сооружения. Основные положения" (с изменением N 1)
СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, 2, 3)
СП 71.13330.2017 "СНиП 3.04.01-87 Изоляционные и отделочные покрытия"
СП 126.13330.2017 "СНиП 3.01.03-84 Геодезические работы в строительстве"
СП 131.13330.2012 "СНиП 23-01-99* Строительная климатология" (с изменениями N 1, 2)
Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.
3 Термины и определения
Термины с соответствующими определениями, используемые в настоящем СП, приведены в приложении А.
Наименования грунтов оснований зданий и сооружений приняты в соответствии с ГОСТ 25100.
4 Общие положения
4.1 Основное назначение свай - это прорезка залегающих с поверхности слабых слоев грунта и передача действующей нагрузки на нижележащие слои грунта, обладающие более высокими механическими показателями. Свайные фундаменты должны проектироваться на основе и с учетом:
а) результатов инженерных изысканий для строительства;
б) сведений о сейсмичности района строительства;
в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия их эксплуатации;
г) действующих на фундаменты нагрузок;
д) условий существующей застройки и влияния на нее нового строительства;
е) экологических требований;
ж) технико-экономического сравнения возможных вариантов проектных решений;
Глубина заложения свай моста
ПРОЕКТИРОВАНИЕ И УСТРОЙСТВО ФУНДАМЕНТОВ ОПОР МОСТОВ В РАЙОНАХ РАСПРОСТРАНЕНИЯ ВЕЧНОМЕРЗЛЫХ ГРУНТОВ
CODE OF PRACTICE IN PROJECTING AND BUILDING THE FOUNDATIONS OF THE PIERS OF BRIDJES IN THE AREA OF PERMAFROST GROUNDS
Дата введения 1996-04-01
1 РАЗРАБОТАН Научно-исследовательским институтом транспортного строительства (АО "ЦНИИС")
ВНЕСЕН Корпорацией "Трансстрой"
2 СОГЛАСОВАН Федеральным дорожным департаментом Минтранса РФ (N НТО-8/151 от 14.11.94 г.) и МПС РФ (N ЦПИ от 30.11.94 г.)
3 ОДОБРЕН Минстроем России (письмо N 13-238 от 05.06.95 г.)
4 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией "Трансстрой" (N МО-299 от 22.12.95)
5 ВВЕДЕН ВПЕРВЫЕ
ВНЕСЕНЫ опечатки, приведенные в настоящем издании
Опечатки внесены изготовителем базы данных
Введение
Разработанный Свод правил позволяет обеспечить современный уровень проектирования и устройства фундаментов опор мостов на вечномерзлых грунтах в традиционных и вновь осваиваемых регионах.
При разработке настоящих правил использован опыт проектирования, строительства и эксплуатации мостов, построенных на железных и автомобильных дорогах севера Западной Сибири, полуострова Ямал, на БАМе и в других регионах страны, а также результаты научно-исследовательских работ, проведенных АО "ЦНИИС", его филиалом (СибЦНИИС) и Тындинской мерзлотной станцией (ТМС).
Свод правил разработан в лаборатории оснований и фундаментов АО "ЦНИИС" (канд. техн. наук В.П.Рыбчинский - ответственный исполнитель). Приложения А.1, Б и Г разработаны лабораторией инженерного мерзлотоведения АО "ЦНИИС" (соответственно кандидаты техн. наук В.В.Пассек, Л.Н.Слоев, инж. В.И.Петров); приложения А.2 и В - лабораторией оснований и фундаментов ТМС (канд. техн. наук А.А.Опарин); приложение Д - лабораториями теории и методов расчета мостов (д-р техн. наук А.А.Потапкин) и оснований и фундаментов АО "ЦНИИС"; приложение Е - c использованием материалов СибЦНИИСа (канд. техн. наук Э.А.Аблогин); приложение Ж - с использованием материалов лаборатории земляного полотна АО "ЦНИИС"; приложение И - по материалам лаборатории долговечности бетона АО "ЦНИИС" (канд. техн. наук В.С.Гладков).
При разработке отдельных положений правил использованы предложения проектных организаций, в том числе АО "Ленгипротранс", АО "Мосгипротранс", Союздорпроекта, АО "Гипростроймост", АО "Ленметрогипротранс", Сибгипротранса.
1 Область применения
Настоящий свод правил распространяется на проектирование и устройство фундаментов опор постоянных мостов, путепроводов и эстакад на железных и автомобильных дорогах, сооружаемых в районах распространения вечномерзлых грунтов, включая север Западной Сибири и полуостров Ямал.
Положения настоящего документа обязательны для предприятий, организаций и объединений независимо от форм собственности и принадлежности, осуществляющих проектирование и строительство указанных сооружений в районах распространения вечномерзлых грунтов.
2 Нормативные ссылки
В настоящем своде правил использованы ссылки на следующие документы:
СНиП 2.01.01-82 Строительные климатология и геофизика.
СНиП 2.02.01-83 Основания зданий и сооружений.
СНиП 2.02.03-85 Свайные фундаменты.
СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах.
СНиП 2.02.07-87 Инженерные изыскания для строительства.
Вероятно, ошибка оригинала. Следует читать: СНиП 1.02.07-87. - Примечания изготовителя базы данных.
СНиП 2.03.01-84* Бетонные и железобетонные конструкции.
СНиП 2.03.11-85 Защита строительных конструкций от коррозии.
СНиП 2.05.03-84* Мосты и трубы.
СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты.
СНиП 3.03.01-87 Несущие и ограждающие конструкции.
СНиП 3.06.04-91 Мосты и трубы.
СНиП II-23-81* Стальные конструкции.
СНиП III-4-80* Техника безопасности в строительстве.
ГОСТ 22266-76* Цементы сульфатостойкие. Технические условия.
ГОСТ 25100-95 Грунты. Классификация.
ВСН 165-85 Устройство свайных фундаментов мостов (из буровых свай).
ВСН 156-88 Инженерно-геологические изыскания железнодорожных, автодорожных и городских мостовых переходов.
ВСН 203-89 Нормы и технические условия на проектирование и строительство железных дорог на полуострове Ямал.
ВСН 83-92 Технические указания по проектированию бетонов и цементно-песчаных растворов, твердеющих на морозе, при устройстве искусственных сооружений.
3 Определения
4 Общие положения
4.1 Указания настоящего свода правил предназначены для использования при проектировании и устройстве фундаментов опор мостов (путепроводов, эстакад), возводимых на вечномерзлых грунтах, используемых по принципу I и II.
4.2 В своде правил приведены только дополнительные к содержащимся в действующих нормативных документах указания в объеме, необходимом для учета характерных особенностей проектирования и сооружения на вечномерзлых грунтах безростверковых опор, свайных и мелкого заложения фундаментов с использованием типовых или апробированных на практике и рекомендованных для широкого применения проектов, а также для разработки индивидуальных конструктивно-технологических решений опор.
Общие указания, относящиеся к вопросам проектирования и устройства фундаментов опор мостов как на используемых в мерзлом или талом состоянии вечномерзлых грунтов, так и на немерзлых грунтах в части проектирования и сооружения фундаментов и надфундаментной части опор, отсыпки и укрепления конусов, укрепления русел и т.п., следует принимать в соответствии с действующими нормативными документами.
4.3 Проектирование и сооружение фундаментов опор мостов должно осуществляться с учетом требований к охране окружающей среды.
5 Проектирование фундаментов опор мостов
5.1 Основные положения
5.1.1 При выборе оптимального конструктивно-технологического решения фундаментов опор мостов, проектируемых на разных вечномерзлых грунтах, следует ориентироваться, как правило, на применение безростверковых конструкций устоев и промежуточных опор или опор с ростверком, расположенным выше поверхности грунта, а в пределах водотоков - выше или ниже уровня первой подвижки льда. Опоры с фундаментами мелкого заложения допускается применять в тех случаях, когда оттаивание мерзлых грунтов не приведет к появлению недопустимых по условиям нормальной эксплуатации мостов деформаций опор, нормированных СНиП 2.05.03-84.
5.1.2 При проектировании фундаментов опор на мерзлых грунтах, используемых по принципу I, необходимо предусматривать мероприятия, направленные на поддержание в течение всего периода эксплуатации мостового перехода расчетной отрицательной температуры основания. С этой целью следует свести до минимума нарушения мохорастительного покрова, природного режима течения поверхностных и подземных вод на переходе, а при недостаточности этих мер - предусмотреть мероприятия по искусственному поддержанию расчетных температур путем использования специальных конструктивно-технологических решений опор и применения охлаждающих устройств.
Выбор вышеуказанных мероприятий должен производиться на основании теплотехнического расчета.
5.1.3 Для сохранения естественных водных режимов на мостовом переходе, грунты основания фундаментов опор которого используются по принципу I, необходимо по возможности исключить или свести к минимуму:
- пропуск воды под один мост нескольких соседних постоянных или периодических водотоков (за исключением протоков одного водотока);
- застои воды в пересыпанных протоках;
- длительную аккумуляцию воды под мостами и на подходах;
- срезки дна водотоков без укрепления его против размыва;
- срезку русла со вскрытием сильнольдистых грунтов или подземных льдов;
- завалы грунта, приводящие к застою воды под мостом;
- погружение свай с использованием метода протаивания грунтов основания;
- применение фундаментов мелкого заложения или заглубление в грунт сооружаемых в котлованах ростверков свайных фундаментов.
5.1.4 На участках залегания большой толщи (свыше 15 м) сильнольдистых грунтов (с относительной осадкой при оттаивании более 0,03) или подземных льдов, в местах наличия криопегов, в пределах водотоков с наледями, на неустойчивых косогорах и в других сложных условиях решение о месте расположения, типе и конструкции опор безростверковых или с ростверком следует принимать индивидуально для каждого проектируемого мостового перехода исходя из особенностей природных условий и результатов технико-экономического сравнения целесообразных вариантов конструкции моста в целом и подходов к нему, а также мер по предотвращению появления недопустимых деформаций опор в течение всего периода эксплуатации дороги. При этом рекомендуется обследовать целесообразность переноса места расположения мостового перехода, увеличения глубины заложения фундаментов, обеспечения сохранности мерзлого состояния грунтов основания опор с помощью охлаждающих устройств или других мер.
ТРЕБОВАНИЯ К МАТЕРИАЛАМ ИНЖЕНЕРНЫХ ИЗЫСКАНИЙ
5.1.5 Основания и фундаменты опор следует проектировать с использованием материалов инженерных изысканий, включающих результаты инженерно-геологических, мерзлотных, гидрогеологических, гидрологических и геодезических изысканий, выполненных в соответствии с требованиями СНиП 1.02.07-87 и ВСН 156-88.
5.1.6 Материалы инженерно-геокриологических изысканий должны содержать:
- данные о характере мерзлотно-грунтовых условий строительной площадки, в том числе об особенностях распространения по площади и глубине залегания вечномерзлых грунтов, их генезиса, литологическом и гранулометрическом составах, криогенном строении, особенностях напластования, температуре, толщине слоя сезонного промерзания и оттаивания, средней годовой температуре, о мерзлотных процессах (наледях, буграх пучения, термокарсте, солифлюкционно-оползневых образованиях и др.), степени засоленности грунтов, наличии включений концентрированных солевых растворов (криопегов) и их напоре;
- результаты полевых и лабораторных исследований и испытаний грунтов, отражающие литологические типы, криогенное строение, физические и механические свойства в талом и мерзлом состояниях для нескальных грунтов - плотность, влажность, льдистость, просадочность при оттаивании, угол внутреннего трения, сцепление, теплоемкость, коэффициент теплопроводности; для скальных грунтов - степень выветрелости и трещиноватости, временное сопротивление на одноосное сжатие, коэффициент размягчаемости в воде и др.;
- дополнительные данные, необходимые для прогнозирования возможных изменений геокриологических условий строительной площадки, в том числе данные о продолжительности периодов и значениях положительных и отрицательных температур воздуха, толщине снежного покрова, мохорастительном покрове, а также о характерных особенностях проектируемого мостового перехода и производства работ по возведению опор моста и т.п.;
- исходные данные и требования, необходимые для разработки мероприятий по охране окружающей среды, подлежащие включению в проект опор моста, а также в проект организации и производства строительных работ (с целью обеспечения максимальной сохранности мохорастительного покрова, минимальных нарушений естественных условий напластования грунтов и протекания водотоков).
5.1.7 Материалы гидрогеологических и гидрологических изысканий должны содержать данные: об уровнях появления и установления подземных вод; химическом составе подземных вод с целью определения основных показателей их агрессивности по отношению к бетону или стальным оболочкам фундаментов; характере гидравлической связи подземных вод с водами открытых водоемов (рек, водохранилищ или озер).
Кроме сведений о подземных водах должны быть получены: характерные данные о наземных (поверхностных) водах, включающие расчетные уровень и расход воды; рабочие уровни для каждого месяца в году; уровни высокой и низкой межени; графики среднемноголетней продолжительности стояния характерных уровней воды; сведения о датах начала и конца ледостава и ледохода, толщине льда, уровнях ледостава и ледохода, возможных заторах льда; сведения о характере и степени агрессивности воды.
В дополнение к перечисленным сведениям необходимо собрать данные о специфических особенностях водотоков, характеризующие:
- прохождение паводков поверх ледяного покрова, обычно образующегося на перекатах при промерзании водотоков до дна, а также в местах появления наледей или ледяных заторов, возникающие при таких паводках подпоры воды и связанное с ними повышение ее уровней;
Глубина заложения сваи в несущий грунт по СП с учетом сейсмики
СНиП 2.02.03-85
Свайные фундаменты
11.11. Заглубление в грунт свай в сейсмических районах должно быть не менее 4 м, а при наличии в основании нижних концов свай водонасыщенных песчаных грунтов средней плотности - не менее 8 м. Допускается уменьшение заглубления свай при соответствующем обосновании, полученном в результате полевых испытаний свай имитированными сейсмическими воздействиями.
Для одноэтажных сельскохозяйственных зданий, не содержащих ценного оборудования, и в случае опирания свай на скальные грунты их заглубление в грунт принимается таким же, как в несейсмических районах.
11.9. Для свайных фундаментов в сейсмических районах следует применять сваи всех видов, кроме свай без поперечного армирования и булавовидных.
Применение буронабивных свай допускается только в устойчивых грунтах, не требующих закрепления стенок скважин, при этом диаметр свай должен быть не менее 40 см, а отношение длины сваи к ее диаметру - не более 25.
Примечание. Как исключение допускается прорезка водонасыщенных грунтов набивными и буровыми сваями с применением извлекаемых обсадных труб.
Читайте также: