Глубина на которую должна быть вкопана железобетонная свая в качестве искусственного заземлителя
Заземление на фундамент в частном доме: плюсы, минусы и требования правил
Как правило, заземление в частном доме выполняется с помощью отдельного заземляющего устройства , так называемого "контура заземления" - трёх и больше стальных электродов, забитых в землю на глубину больше 2 метров.
Однако существует и другая возможность . Если ваш дом оснащён ленточным иди другим сплошным фундаментом достаточно большой площади, можно присоединиться к его арматуре и, таким образом специального заземлителя не потребуется . Как это правильно сделать и что об этом говорят правила - разбираем все плюсы и минусы !
Каким должен быть фундамент для заземления?
Ленточный фундамент Ленточный фундаментДля того, чтобы выполнять функцию заземляющего устройства, фундамент должен иметь :
- глубину ниже уровня промерзания , чтобы зимой в мороз и летом в засуху всегда контактировать с влажной почвой;
- внутреннюю арматуру (армирование), соединённую с помощью сварки - арматура, связанная проволокой не годится, так как имеет большое переходное сопротивление между арматуринами;
- достаточно большую площадь соприкосновения с землёй: столбчатый фундамент для этой цели не годится.
Что говорят о заземлении на фундамент Правила?
Давайте заглянем в ПУЭ и посмотрим, что наши правила говорят о таком способе заземления.
Для заземления электроустановок могут быть использованы искусственные и естественные заземлители. Если при использовании естественных заземлителей сопротивление заземляющих устройств или напряжение прикосновения имеет допустимое значение, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве и допустимые плотности токов в естественных заземлителях, выполнение искусственных заземлителей в электроустановках до 1 кВ не обязательно .
"Естественный" заземлитель, о котором говорится в данном пункте правил - и есть наш фундамент . Если внимательно прочесть весь текст становится понятно, что сделать вывод о том, можно использовать ваш фундамент для заземления или нет можно только после замера его сопротивления - оно должно быть не больше 30 Ом (норма для повторного заземления в сети 380 Вольт - пункт 1.7.103 ).
И, для самых недоверчивых, ещё один пункт правил, который прямо указывает на фундамент, как на способ заземления ( 1.7.109 ):
В качестве естественных заземлителей могут быть использованы:
1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений .
Как правильно присоединиться к фундаменту?
Присоединение заземляющего провода к арматуре фундамента Присоединение заземляющего провода к арматуре фундаментаЛучше всего предусмотреть вывод ещё на этапе заливки , например вывести длинный болт , приваренный к арматуре за пределы бетонного объёма. Но если это не было сделано, не переживайте! Возьмите перфоратор и, в любом удобном для вас месте, начинайте долбить бетон - до тех пор, пока вы не наткнётесь на арматуру .
После этого, приварите к арматуре болт и присоедините к нему заземляющий провод, идущий в щиток (не меньше 10 квадрат для меди и 16 квадрат для алюминия), с помощью болтового наконечника. Для надёжности, смажьте наконечник токопроводящей смазкой и закрутите с дополнительной гайкой.
Не забудьте, что после присоединения, нужно замерить сопротивление заземления с помощью специального прибора. Если у вас его нет, вызовите электрика - это недорого, но необходимо.
Можно ли использовать железобетонный фундамент в качестве заземления молниезащиты?
Современные здания, как правило, имеют в своем составе железобетонные конструкции и стоят на железобетонном фундаменте. Это обстоятельство значительно упрощает создание систем заземления. Действующие нормативные документы рекомендуют использовать в первую очередь естественные заземлители.
Применительно к заземлению электрооборудования до сих пор действует ГОСТ 12.1.030-81 «Электробезопасность. Защитное заземление. Зануление». Применительно к системам молниезащиты сложилась гораздо более сложная ситуация, поскольку в них заземление должно пропускать через себя большой электрический заряд за короткий промежуток времени.
Особенности заземления для систем молниезащиты
Основным документом, регламентирующим устройство молниезащиты, является СО 153-34.21.122-2003 "Инструкция по молниезащите зданий, сооружений и промышленных коммуникаций". Но данный нормативный документ касается вопросов использования железобетонного фундамента в качестве естественного заземлителя очень кратко. В п. 3.2.3.3 говорится, что арматура должна отвечать требованиям п. 3.2.2.5, т.е. обеспечивать электрическую непрерывность соединения между элементами. Кроме этого, для предварительно напряженного бетона необходимо оценить воздействие протекающего электрического ток на предмет возможных механических воздействий. Остальные факторы (марка бетона, свойства почвы, защитное покрытие железобетонных конструкций) в Инструкции не рассматриваются, хотя они важны для оценки возможности использования фундамента в качестве заземления. Поэтому на практике приходится обращаться к документу РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений».
Согласно РД 34.21.122-87, п. 1.8, рекомендуется использовать естественные заземлители, кроме случаев, когда с целью защиты от агрессивных грунтов металлические элементы фундамента имеют эпоксидное или полимерное покрытие. Также запрещается использование фундамента для заземления системы молниезащиты при влажности грунта менее 3%. П. 1.8 Инструкции требует наличия непрерывного электрического соединения железобетонного фундамента с токоотводом по арматуре, причем соединение арматуры с закладными деталями должно быть выполнено сваркой.
Современный подход к заземлению для систем молниезащиты предусматривает нормирование не значения сопротивления растеканию, а типовых конструкций заземления. РД 34.21.122-87 рассматривает железобетонный фундамент в качестве одной из таких типовых конструкций. Согласно п. 2.2 Инструкции сказано, что для использования в качестве естественного заземления молниезащиты пригодны железобетонные фундаменты произвольной формы, имеющие площадь контакта с грунтом не менее 10 кв. м. Еще одно важное ограничение — фундамент не должны разрушаться при попадании молнии.
В то же время, агрессивные грунты в большинстве случаев представляют собой естественное природное явление, которое встречается даже в самых экологически чистых местностях. Соответственно, наличие у фундамента защитного покрытия - весьма распространенное явление. Применение при этом отдельного заземления зачастую нецелесообразно ни с технической, ни с экономической точек зрения. Другой вопрос, что такой фундамент должен обеспечить необходимый уровень электробезопасности при ударе молнии.
Агрессивные грунты и защита железобетона от их действия
В настоящее время вопросы защиты железобетонных конструкций от агрессивного воздействия грунтов регулируются в России межгосударственным стандартом ГОСТ 31384-2008 «Защита бетонных и железобетонных конструкций от коррозии. Общие требования». Согласно этому ГОСТ, агрессивность грунта определяется по глубине, на которую бетон разрушается, либо теряет защитные свойства относительно стальной арматуры, за 50 лет. Слабая степень агрессивности — менее 10 см, средняя — от 10 см до 20 см, высокая — более 20 см.
К первичным методам защиты относят изменения состава бетона, а также комплекс проектно-конструкторских решений, снижающих уровень коррозии. Бетон должен быть более плотным, обеспечивать более надежную защиту стальной арматуры, чем обычно. К вторичным мерам относят нанесение на железобетонные конструкции защитных покрытий, а также обработка антисептиком, если причиной коррозии является действие бактерий.
Вторичная защита железобетона подразумевает нанесение специального покрытия
Для слабоагрессивных грунтов применяют в основном первичные методы защиты, а вторичные — по мере необходимости. В среднеагрессивных грунтах обязательно применение как первичной, так и вторичной защиты, причем последняя ограничивает доступ веществ, вызывающих коррозию, к железобетону. Наконец, в грунтах с высокой степенью агрессивности применяются в обязательном порядке и первичные, и вторичные методы защиты, причем вторичные методы должны полностью изолировать железобетон от действия агрессивной среды.
Влияние типа бетона и свойств почвы на параметры заземления
Удельное электрическое сопротивление водоупорного бетона, используемого для первичной защиты от агрессивных грунтов, значительно выше, чем у обычного. Это связано с более плотной структурой, содержащий минимальное количество пор. Для водоупорного бетона удельное объемное электрическое сопротивления может быть вычислено на основании данных о коэффициенте водопоглощения и марке по водонепроницаемости. Также встречаются сорта бетона, устойчивые к действию агрессивных сред за счет введения в их состав специальных присадок. Объемное удельное сопротивление таких сортов бетона определяется путем проведения измерений на конкретных образцах.
Возможность использования железобетонного фундамента в качестве заземления системы молниезащиты в значительной степени зависит от свойств грунта. Как правило, если грунт обладает высокой степенью агрессивности, использование фундамента в качестве заземления также невозможно, поскольку ГОСТ требует обеспечить полную изоляцию железобетона от агрессивной среды.
А вот с грунтами малой и средней степенями агрессивности вполне можно работать. Тем не менее, они накладывают свои ограничения не только в связи с тем, что мероприятия по защите увеличивают сопротивление растеканию. Агрессивные грунты обычно богаты сульфатами и хлоридами. В результате электролиза выделяются хлор и сера, которые вносят дополнительный вклад в разрушение железобетона. Поэтому для грунтов слабой и средней агрессивности для оценки способности фундамента «работать» заземлением в качестве критерия берется плотность тока, стекающего с арматуры (о том, где взять предельно допустимые значения этого параметра, будет сказано далее).
Методики оценки
В России до сих пор действует ГОСТ 12.1.030-81. “Электробезопасность. Защитное заземление. Зануление.” У него есть справочное приложение “Оценка возможности использования железобетонных фундаментов промышленных зданий в качестве заземлителей”. Казалось бы, вот он, официальный нормативный документ, но… В качестве критерия пригодности взято сопротивление растекания. Этот критерий пригоден для расчета заземлений электроустановок, но в молниезащите он сейчас не применяется.
Выводы
Основные работы по созданию методик оценки применимости фундамента в качестве заземления были выполнены в нашей стране в 80-х — начале 90-х годов. С тех пор дальнейшее развитие данное научное направление получило лишь в РЖД для решения частных проблем по замене одного типа опор контактной сети на другой.
Заземляющие устройства, правила монтажа, глубина залегания, нормы установки
Защитное заземление представляет собой соединение с землёй металлических элементов электрических установок, на которые не подводится напряжение (корпуса измерительных трансформаторов, фланцы опорных изоляторов, кожухи трансформаторов, рукоятки приводов разъединителей и т.д.). Монтаж устройств заземления осуществляется в несколько этапов:
Для погружения вертикальных заземлителей на основе угловой стали либо отбракованных труб пользуются методом вдавливания или забивки. Если сталь круглая, то применяется вдавливание или ввёртывание. Для выполнения данных работ используют специальные приспособления и механизмы: копры для забивки в грунт, механизм ПЗД-12 для ввёртывания заземляющих электродов в грунт, приспособления к сверлилке для ввёртывания стержневых электродов в грунт.
Чаще всего, чтобы организовать заземление, применяются электрозаглубители, которые имеют редуктор и стандартную электросверлилку. Редуктор служит для изменения частоты вращения, вплоть до менее 100 об/мин, чтобы максимально увеличить на ввёртываемом электроде крутящий момент. В случае использования заглубителя, к концу заземлителя приваривается наконечник-забурник, позволяющий разрыхлить грунт, тем самым облегчая погружение электрода. В практике монтажа используются различные виды наконечников, но наиболее распространённым является наконечник в виде изогнутой по винтовой линии стальной полосы шириной 16 мм с острым концом.
Магистральные заземляющие проводники прокладываются по стенам на расстоянии 0,5-1 м от поверхностей, высота от уровня пола должна составлять 0,4-0,6 м. Расстояние между точками подключения необходимо выдерживать на уровне 0,6-1,0 м. Если в помещении отсутствуют химически активные среды и достаточно сухо, разрешается прокладка проводников заземления вплотную к стене.
Для закрепления полос к стенам используются дюбеля, пристреливаемые строительно-монтажным пистолетом. Также нередко используют закладные в стену детали, к которым можно приварить полосы заземления. Все части электроустановок, которые должны быть заземлены, необходимо подсоединять к заземляющим магистралям исключительно отдельными ответвителями.
После монтажа заземляющего контура необходимо провести измерение сопротивления заземления, что бы оно соответствовало нормам.
Назначение и характеристики искусственного заземлителя
Если коротко ответить на вопрос, что является определением понятия искусственного заземлителя, можно сказать, что это проводящий элемент, напрямую контактирующий с землей. Элементов может быть несколько, и контакт может осуществляться посредством промежуточной среды, проводящей электрический ток. От естественного заземления искусственное приспособление отличается тем, что сделано специально с применением расчетов и должной подготовки.
Основные функции
В электротехнике используются такие понятия, как заземление рабочее и защитное. Рабочее заземление применяется с целью обеспечения эффективной и бесперебойной работы установки. Молниеотводы, защищающие электроустановки от небесного электричества и воспламенений, также принадлежат к категории рабочих, поскольку в этом случае заземление никак не ограждает от поражений электрическим током.
Для защиты человека от электротока или удара молнией применяется защитное заземление. Другими словами, защитное заземление выполняется с целью снизить напряжение прикосновения до безопасного уровня. Это особенно важно на электрооборудовании с высоким, опасным для жизни напряжением.
Заземлитель является частью заземляющего устройства (заземления, ЗУ). Он плотно контактирует с грунтом. Один его конец подключен к электроприбору, благодаря чему происходит выравнивание потенциалов прибора и земли, и это защищает от удара током.
Согласно пункту 1.7.28 ПУЭ, заземлением является преднамеренно выполненное электрическое соединение точки электросети, электроустановки или оборудования с заземляющим устройством. Заземление подключают на всех электроустановках.
Расположение в грунте
Искусственное заземление применяется там, где нет возможности воспользоваться естественным заземлением, либо когда токовые нагрузки на естественные заземлители превышают допустимые нормы. Искусственные заземляющие устройства изготавливаются из стальных конструкций, но если в почвах превышена кислотность, или напротив, она подвержена ощелачиванию, применяются ЗУ из меди или оцинкованного металла.
По форме и структуре искусственный заземлитель похож на классический электрод. Чаще, это стержень, выполненный из стальной полосы или круглого прута. По типу расположения существуют 2 основных вида ЗУ. В горизонтальном типе заземлители укладывают по периметру фундамента на дне траншеи.
Вертикальные заземлители делают из стержней диаметром 12-15 мм и длиной до 4-5 метров. Их забивают в грунт на глубину 0,5-0,7 м.
Допускается расположение искусственных заземлителей под некоторым углом, и тогда понятия вертикальный или горизонтальный становится условным.
Наклонное расположение применяют в том случае, если стена строения расположена под углом к вертикали. Наклон не сказывается существенным образом на выполняемых функциях устройства.
В заземлении электроустановок с высоким напряжением используются так называемые сложные заземлители, в которых вертикальные элементы соединены с горизонтальными.
Когда устройство искусственных заземлителей оказывается на пахотной земле, все электроды должны размещаться на глубине не менее 1 метра. Это позволяет увеличить контакт с грунтом.
Какие требования предъявляются к искусственным заземлителям
Искусственные заземлители не подлежат окрашиванию, так как окраска играет роль изолятора и препятствует отведению электротока в землю. Таким образом, цвет заземлителя должен быть естественным, которым обладает применяемый в заземляющих устройствах, металл. Но места соединения проводников (сварочные швы) должны быть окрашены битумной краской, для предотвращения разрушения.
Нельзя размещать искусственные или применять естественные заземлители вблизи источников тепла, которые сушат землю. Для засушливых территорий существует особая железобетонная конструкция. Заземлитель делают в форме емкости, и помещают ниже поверхности земли. Емкость заполняют водой через люк. Таким образом, в заземлении принимает участие водораспределительная система. Стальные электроды соединены с выводом из емкости. Так обеспечивается оптимальное сопротивление.
Для создания искусственных заземлителей используются следующие материалы с указанными параметрами:
- диаметр стального арматурного прута не менее 10 мм;
- диаметр оцинкованного прута не менее 6 мм;
- в уголках толщина стенок от 4 мм;
- при использовании полосовой стали ее толщина должна быть не менее 4 мм;
- в молниезащитных заземлителях сечение берется от 155 мм2;
- толщина стенок отбракованных труб не менее 3,5мм.
Только для временных электроустановок можно применять электроды с минимальными значениями. Чтобы заземляющее устройство служило 40-50 лет в благоприятных грунтовых условиях, достаточно выбрать стержни для него на 2-3 мм больше. Во влажных грунтах толщина и диаметры ЗУ должны быть в 2 раза выше минимального.
Из всех названых материалов наиболее оптимальным признано использование круглой арматуры, поскольку расход металла в этом случае снижается в 1,5 раза, уменьшается соответственно и себестоимость заземляющих устройств.
Коррозионная стойкость у круглой стали выше, чем у линейной, потому что у круглого электрода площадь соприкосновения с землей самая малая в сравнении с другими формами ИЗ. Еще одно преимущество состоит в том, что стержневые круглые электроды легче монтируются, экономится время, затрачиваемое на устройство ЗУ.
При заземлении мощных высоковольтных установок применяются контуры, состоящие из горизонтальных лучей, раскинувшихся на сотни метров и нескольких десятков вертикально установленных стержней. Чтобы искусственные заземлители не экранировали друг на друга, лучи разводят горизонтально в противоположные стороны. Если лучей 3, или 4, их располагают под углом 90 и 120 градусов соответственно.
Сопротивление искусственного заземлителя
Чтобы ЗУ эффективно выполняло свою задачу, оно должно иметь сопротивление растекания, не превышающее определенных значений. Данный параметр показывает, насколько хорошо устройство проводит электрический ток.
Для заземляемой электроустановки с напряжением 380В сопротивление искусственного заземлителя не должно превышать 30 Ом. Работающие под высоким напряжением, медицинская аппаратура, серверные блоки, системы видеонаблюдения заземляются с сопротивлением 0,5-1 Ом.
Расчет для искусственных заземлителей производится с целью определить, какое количество вертикальных и горизонтальных токопроводящих стержней должно быть смонтировано для получения оптимального сопротивления.
Что такое естественный заземлитель
Для безопасной работы с различными электрическими установками требуется использовать заземление. Естественное заземление является одной из распространенных мер. В качестве него можно использовать стальную арматуру, являющуюся частью бетонной конструкции. Кроме того, применимы другие металлические устройства, расположенные в грунте. Подходят водопроводные коммуникации, кабели, реже для заземлителя могут быть использованы надземные конструкции, такие, как металлические трубы или рельсы.
Преимущества
Естественные заземлители не делают специально, а применяют то, что есть под рукой. Для того чтобы использоваться металлические конструкции в роли заземлителей, они должны полностью соответствовать требованиям, предъявляемым правилами для электроустановок.
Естественный заземлитель можно сочетать с искусственным. Такая схема применяется, когда требуется отвести большие токи. Искусственный заземлитель будет направлять ток к естественному, по которому он уйдет в грунт.
Естественные контуры применяются достаточно часто без искусственных, сами по себе. Благодаря такому подходу обеспечивается не только безопасная работа, но и происходит значительная экономия материалов, расходуемых на обустройство заземляющего контура.
Так как конструкция уже существует, не требуется монтировать что-то еще, благодаря этому можно значительно сузить временные рамки, отведенные на монтаж, использовать простое, недорогое приспособление.
Как происходит соединение
Вне зависимости от того, какой естественный заземляющий контур используется (железобетонная конструкция, рельсы, металлические трубы, арматура), важно при соединении элементов заземления создать непрерывную электрическую цепь. Она должна проходить по металлическим поверхностям. При использовании железобетонных изделий происходит более сложная подготовка, так как требуется предусмотреть металлические закладки. Если используется здание, такие закладки нужно делать на каждом этаже.
Закладки являются элементами, благодаря которым происходит соединение электрического оборудования с цепью. Сюда же можно подключить любое технологическое оборудование, находящееся внутри или снаружи здания, и таким образом заземлить его. Многие бетонные конструкции оснащены ушками из арматуры, имеют в качестве соединительных деталей сварочные швы или болты.
Такие выступы можно использовать для создания цепи без использования дополнительных металлических деталей. При отсутствии подобных соединений монтажники пользуются гибкими перемычками, которые можно приварить к металлическим конструкциям.
Внимание! Перемычки не должны быть в сечении меньше 100 мм2.
Что нельзя использовать
При монтаже рабочего заземления нельзя применять некоторые железобетонные конструкции, поскольку они могут не соответствовать требованиям безопасности. Например, если фундамент сборный, он не подходит в качестве естественного заземлителя, так как вряд ли удастся создать непрерывную цепь.
В этом случае лучше использовать арматуру блоков, расположенных близко друг к другу. Только после такой операции можно будет преступать к сооружению естественного заземления.
При невозможности по каким-либо причинам создать такой контур лучше отказаться от использования естественного заземлителя и создать искусственную цепь.
Запрещено применять в качестве заземлителя стоковые трубы (канализацию), поскольку на стыках у них слабый электрический контакт.
Железобетонные стойки на подстанциях можно использовать только в том случае, если они были сделаны с использованием специального бетона (электротехнического).
Использование фундамента
При создании контура необходимо знать, как происходит соединение железобетонных элементов здания. Например, фундамент чаще всего соединяется с остальными элементами путем сваривания арматуры. Если фундамент выполнен из свай, соединение арматуры фундаментных блоков с ними или свай с ростверком можно осуществить при помощи электросварки. Стоит обратить внимание на то, что такой способ не подходит для соединения каркасов из металла и пространственных колонн. Их соединение выполняют при помощи точечной сварки.
В качестве заземлителя не всегда можно использовать фундамент из железобетона. Применять такой контур можно лишь в случаях, когда влажность почвы не ниже 3 %. При меньшей влажности сопротивление фундамента будет слишком высоким, что не позволит применить его для устройства контура.
Фундамент подходит в качестве заземляющего контура, если находится в слабоагрессивной среде. Например, к такому воздействию относится наличие грунтовых вод с низкой жесткостью. Хорошо подходят фундаменты, не имеющие гидроизоляции, либо поверхность которых защищена битумом. При этом нельзя применять фундамент из железобетона, находящийся в непосредственном контакте с агрессивной средой. Такое воздействие приведет к коррозии его элементов. Существуют конструкции, в которые включена напрягаемая арматура, они также не подходят для создания естественного заземляющего контура.
При внимательном осмотре здания можно решить, подходит его фундамент или другие элементы для создания заземления или нет. Стоит отметить, что большинство бетонных конструкций таким требования отвечают, поэтому никакой необходимости создавать искусственное заземление не возникает. Благодаря этой особенности бетонных сооружений не придется производить большие затраты на провода. Все они будут находиться внутри здания, что позволит сэкономить на их длине, и это значительно снизит расходы на материалы.
Другие варианты
Существуют и другие естественные заземлители. Чтобы изучить подходящие варианты, можно воспользоваться ПУЭ п.109 раздела 1.7. В нем говорится том, что вполне подходит применение трубопровода из стали. Основным условием является наличие внутри трубопровода негорючей жидкости. Кроме этого, в качестве естественного заземлителя можно взять металлическую обсадную трубу скважин.
Для ЛЭП, как заземлители, применяют железобетонные подножники, поскольку при контакте с грунтом они хорошо увлажняются.
Таким образом, используя естественные заземлители, можно значительно сэкономить время и деньги, однако требуется учитывать большое количество факторов, способных повлиять на безопасность. Конструкции не только должны образовывать единую цепь, но и оказывать сопротивление, не превышающее допустимого параметра.
Характеристики вертикального заземлителя и его монтаж
Для того чтобы обеспечить электротехническую безопасность в доме или на предприятии, необходимо установить заземляющий контур. Земля, является отличным проводником, который заряжен отрицательно, и если корпус мощных электрических приборов соединить с этим проводником, посредством вертикального заземления, то можно не опасаться поражения электрическим током, даже в случае утечки фазного напряжения.
Чтобы осуществить монтаж вертикального заземления, которое бы отвечало всем правилам и стандартам, необходимо ознакомиться с основными принципами правильной установки этого метода электротехнической защиты.
Материалы для вертикального заземления
Для того чтобы осуществить соединение стержней между между собой, необходимо приобрести арматуру, которая приваривается к каждому заземлителю из круглой стали, и вводится в дом для подключения к электрическим приборам и устройствам.
Цена стального стержня невелика, а при наличии электросварочного аппарата, все работы можно выполнить самостоятельно. Стоимость расходных материалов при проведении подобных работ, также не будет слишком большой, поэтому заземление, которое выполнено с использование стальных стержней и арматуры, не потребует значительных финансовых вложений.
Расчёт параметров
Прежде чем приступить к выполнению монтажных работ, необходимо осуществить правильный расчёт параметров заземления. Площадь соприкосновения вертикального заземлителя с породой напрямую зависит от сопротивления грунта.
Если монтаж заземления осуществляется в северных районах страны, где грунт промерзает на значительную глубину, площадь соприкосновения проводника с грунтом должна быть более значительной, чем на юге, где грунт не промерзает на глубину более 0,5 метра.
При промерзании грунта его сопротивление резко увеличивается, что негативно сказывается на эффективности заземляющего контура. Поэтому, для обеспечения надлежащего уровня электротехнической защиты в условиях вечной мерзлоты, могут применяться монтажные технологии, отличающиеся от общепринятых.
Если земля полностью промёрзла, то необходимо осуществить бурение на значительную глубину, установить металлические электроды и засыпать отверстие ранее удалённым грунтом.
От породы, в которой необходимо осуществить заземление, также зависит площадь соприкосновения грунта с грунтом и удельное сопротивление вещества.
Если осуществляется монтаж заземления в чернозёме и торфе, то для обеспечения нормального заземления, достаточно погружения электрода на глубину 1,5 метра.
Монтаж оборудования
После того, как будет определён тип грунта, где планируется установка заземления, можно приступать к установке стержней.
Если грунт достаточно каменист, можно применить отбойным молоток со специальной насадкой для установки вертикальных стержней.
После установки всех вертикальных заземлителей их соединяют между собой горизонтально расположенными кусками арматуры.
Диаметр горизонтально расположенных стержней должен составлять не менее 10 см, иначе не будет достигнуто показание сопротивления на необходимом уровне.
Чтобы обеспечить беспрепятственное истечение электрического тока по проводнику следует обеспечить по всему периметру электрического контура, сопротивление вертикальных заземлителей, равное 4 Ом. Если не удаётся добиться данного идеального показателя сопротивления, допустимо отклонение этого значения до 10 Ом, без ухудшения защитных свойств вертикального заземления.
Если сразу после установки электротехнической защиты её вводят в эксплуатацию, то места, где расположены вертикальные стержни, необходимо полить значительным количеством воды. Таким образом удаётся восстановить структуру грунта, который будет максимально эффективно передавать электрический потенциал от металлических стержней земле.
Самостоятельная установка
Вертикальные электроды заземления, можно установить самостоятельно. При установке необходимо знать состав грунта, чтобы определить примерную глубину установки рабочих электродов. Для установки заземления потребуется приобрести сварочный аппарат и необходимое количество электродов для того чтобы сварить вертикальные и горизонтальные заземлители.
Для соединения металлов не рекомендуется использовать различные зажимы и другие резьбовые соединения. Со временем такие места могут значительно ухудшить проводимость участка электрической цепи, что негативно скажется на эффективности заземляющего контура. Если грунт не промерзает в зимнее время на глубину более 0,5 метра, и не является скальным или каменистым, то можно использовать круглый стержень длиной не более 1,5 метров.
При неблагоприятных условиях для установки заземления, глубина размещения стержней должна составлять не менее 3 метров, а расстояние между ними может быть уменьшено до 4 метров. Не рекомендуется далее уменьшать расстояние между электродами, иначе общее сопротивление заземляющей установки может значительно увеличиться, за счёт эффекта экранирования.
Если нет желания заниматься монтажом заземления самостоятельно, то можно обратиться в специализированные фирмы, которые в кратчайшие сроки установят вертикальное заземление на прилегающем к дому участке. Несмотря на то, что такие услуги будут стоить денег, экономия времени может быть значительна. И если этот ресурс, является очень важным, то лучше доверить работу профессионалам.
Заземление по правилам: главное, что нужно знать
Для сооружения хорошего заземления , которое будет надёжно защищать ваш дом и вас самих долгие годы, действовать нужно не "на глаз", а по правилам , которые разрабатывались долгие десятилетия. Одним из самых ценных документов является ГОСТ Р 50571.5.54-2013 , целиком посвящённый заземлению, его сооружению и проверке. Кроме этого документа, стоит иметь в виду ПУЭ , а точнее их раздел 1.7 , также рассказывающий про заземление (и всё, что с ним связано).
Мы подобрали для вас 5 самых главных правил , выполнение которых обязательно при сооружении заземления . Помните - заземление не должно быть не дорогим, а лишь эффективным !
Правило 1: Заземлители должны быть достаточно толстыми
Стальные профили - одни из лучших заземлителей Стальные профили - одни из лучших заземлителейПосле того, как вы вкопаете трубу, уголок или другой заземлитель в почву, они начнут разрушаться под действием химических веществ и воды. Для того, чтобы заземление прослужило нужный срок - 30 лет , металл должен быть достаточно толстым . Вот что об этом говорит ГОСТ:
Таблица 54.1 - Минимальные размеры проложенных в земле заземляющих электродов из наиболее распространенных материалов с точки зрения коррозионной и механической стойкости
сталь оцинкованная: диаметр 16 мм или поперечное сечение 90 кв. мм ;
сталь нержавеющая: диаметр 16 мм или поперечное сечение 90 кв. мм;
медь : диаметр 12 мм или поперечное сечение 50 кв. мм .
Мы можете использовать арматуру, трубы, уголки, профиля любого сечения и вообще любой металлолом - главное, чтобы толщина каждого заземлителя была не меньше указанной выше.
Правило 2: Заземлители должны всегда быть во влажной почве
Лучший проводник тока - влажный чернозём Лучший проводник тока - влажный чернозёмЭлектрический ток, который, в случае аварии, передаёт заземление, протекает только по влажной почве . Поэтому, глубина погружения электродов должна быть такой, чтобы зимой или в сухие летние дни, хотя бы метр заземлителя был во влажной среде.
Согласно ГОСТ (Приложение D.1):
Мороз значительно увеличивает удельное сопротивление почвы, которое может достигать нескольких тысяч Ом в замороженном слое. Толщина этого замороженного слоя в некоторых областях может составить один метр и более .
Засуха также увеличивает удельное сопротивление почвы. Эффект засухи может наблюдаться в некоторых областях до глубины 2 м . Значения удельного сопротивления при таких условиях могут быть такого же порядка как и во время мороза.
А также, по пункту 542.2.4:
При выборе типа и глубины установки заземляющих электродов должны быть учтены возможности механического повреждения и минимизации воздействия высыхания или промерзания грунта.
Правило 3: Следите за хорошим контактом между заземлением и проводом!
Если у вас идеальное заземление, с десятком медных электродов, но место, где к нему присоединяется провод загрязнено или разболтано , толку от этого не будет. ГОСТ говорит нам следующее:
542.3.2 Соединение заземляющего проводника с заземлителем должно быть надежным и с соответствующими электрическими характеристиками. Соединение может быть выполнено с помощью сварки, опрессовки, соединительного зажима или другим механическим соединителем.
Провод должен иметь наконечник , притянутый к заземлению болтом . Не стоит закапывать это место в землю, лучше поставьте колодец заземления , внутри которого будет находиться соединительный зажим. Покройте зажим внутри и снаружи контактной проводящей смазкой : она не только улучшит контакт, но и защитит место соединения от коррозии.
Правило 4: Измерьте сопротивление заземления!
Замер сопротивления заземления специальным прибором Замер сопротивления заземления специальным приборомДля того, чтобы измерить сопротивление заземления , вы можете использовать специальный прибор , либо замерить его косвенно, используя токоизмерительные клещи по нашей методике . В любом случае, это сопротивление не должно быть больше 30 Ом при хорошей линии электропередачи и не больше 4 Ом при старой и изношенной (ПУЭ 7, 1.7.101).
Если это сопротивление будет выше , на корпусах приборов, в которых образовалась утечка тока, будет образовывать слишком большое напряжение , что опасно и весьма неприятно.
Правило 5: Соедините ваше заземление с нулём на вводе
Соединение земли с нулём на вводе в частный дом Соединение земли с нулём на вводе в частный дом1.7.145. . разделение PEN -проводника на PE- и N-проводники должно быть выполнено до вводного защитно-коммутационного аппарата.
Ноль в частном доме обязательно должен быть соединён с нулём - главное, чтобы место соединения находилось до вводного автомата , чтобы заземление в любом случае оставалось подключенным. Важно помнить, что наше, частное заземление - лишь часть общей системы электроснабжения, изолировать которую нежелательно, а иногда - опасно.
Заключение
Заземление - это несложно. Всё сводится к выбору правильного заземлителя нужной длины и толщины и к надёжному присоединению заземляющего устройства к шине заземления в щитке. Помните о правилах и не бойтесь сделать всё своими руками!
Читайте также: