Файл mpeg что это
Видеоизображение стандарта PAL или SECAM – это последовательность картинок, отображаемая с частотой 25 кадров в секунду. В одном цифровом кадре содержится 720х576 точек, то есть 414 тыс. 720 элементов (пикселей). Каждая точка может иметь один из 16,7 млн. цветов и занимать 3 байта в компьютере. Следовательно, один кадр занимает порядка 1,2 Мб. При стандартной частоте получаем цифру около 30 Мб в секунду, то есть хранение одного лишь часа видео (вместе со звуком) без компрессии обойдётся в 107 Гб. Выглядит устрашающе, но уже сейчас допустимо.
Но ведь прогресс видео не стоит на месте. Максимально возможное качество сейчас достигается в HDTV (ТВ высокой чёткости), этот формат подразумевает разрешение 1920х1080 точек, то есть, при прочих равных условиях, серия кадров, рассчитанных на одну секунду, уже займет 148 Мб (521 Гб в час).
Чтобы избежать подобных объемов хранимого видео и нерационального использования ресурсов компьютера, а также получить возможность распространения видеосюжетов, были созданы различные способы сжатия видео. Достигнутые за 15 лет наработки развития цифровой техники активно используются в повседневной жизни, в видеотрансляциях, бытовых устройствах (видеокамерах, DVD-плеерах) и в сети интернет. В зависимости от вида кодека, можно достичь разной степени сжатия и разного «веса» готового фильма.
Как происходит сжатие
В отличие от универсальных архиваторов (вроде WinRar или WinZip), сжатие видео происходит с некоторыми потерями, величина которых зависит от выбранного кодека. Это связано с тем, что алгоритмы обычных архиваторов видеоинформацию (равно как и звук) практически не сжимают. Современные алгоритмы сжатия прибегают к всестороннему логическому анализу видеоролика с целью извлечь повторяющиеся куски между кадрами и уменьшить размер конечного файла. При воспроизведении сжатая информация «раскрывается», и уже после этого демонстрируется пользователю. Раскрытие изображений, сжатых некоторыми кодеками, может потребовать большого времени от маломощного компьютера.
Для сжатия видео используют различные кодеки
Самые популярные кодеки
Сегодня самые распространенные кодеки – это семейство MPEG. Основу ему положило сжатие фотографий. Все мы знакомы с компактными картинками с расширением JPG, а многие даже смогут отличить сильно сжатую картинку (с кубической структурой) от качественной (на глаз, сравнимой с оригиналом). Анатомические особенности глаза человека позволяют, незаметно сжимать картинку в десять раз, используя кодер JPEG.
Максимальное качество
На приведенных примерах можно видеть, какие артефакты, так называемые кубики, возникают на фотографии сжатой неправильно (с большим коэффициентом сжатия) и их отсутствие на фото с правильным сжатием. Подобные потери качества при большом сжатии большинством кодеков, в том числе и JPEG, необратимы.
Очень популярный формат во всём мире, с основой, взятой от кодека JPG. Сжатие в нем производится сериями по три кадра. Это один из самых старых кодеков, так что, практически на любых, даже самых «слабых» машинах вы сможете просмотреть видео со стереозвуком в этом формате. Однако и качество изображения невысокое: оно сравнимо с привычным аналоговым форматом VHS. Картинка имеет разрешение 352х288 точек, да и качество ее оставляет желать лучшего. И хотя MPEG-1 не требователен к ресурсам, его судьба предрешена: с развитием ёмкости и скорости передачи данных в компьютерах и интернете формат будет постепенно забываться
Получить файлы MPEG-1 можно с помощью программы AVI2MPG. Для увеличения нажмите здесь.
Формат использует простую обработку кодированного аналогового видеосигнала по стандарту JPG (с разрешением 768х576 точек). Расшифровывается как Motion-JPEG (движущийся JPEG). На сегодняшний день этот формат практически не используется, т.к. качественно сжатые ролики занимают достаточно много места. В некоторых моделях устройств (например, фотокамерах с функцией видео) встречается упрощенный вариант M-JPEG с разрешением 320х240 точек.
Доминирующий формат на сегодня это MPEG-2 (с разрешением 720х576 точек). Все DVD-video диски работают именно в формате MPEG-2. Трансляции со спутников в несколько каналов на одной частоте, эфирная трансляция, в том числе ТВ высокой четкости, разнообразные плееры DVD, microMV-видеокамеры используют этот формат сжатия. И это не удивительно. После триумфального успеха MPEG-1, новый формат, обеспечивающий практически профессиональное качество картинки утверждался довольно долго, и получился очень удачным. MPEG-2 подходит для записи полуторачасового фильма отличного качества на стандартный диск DVD (4,7 Гб). Кроме того, в этом формате можно записывать на двойные DVD (9 Гб) фильмы повышенного качества с использованием нескольких разных дорожек звука (дубляж), разных форматов многоканального звучания, субтитров, разных углов обзора видеоматериала (несколько синхронных дорожек видео) и других цифровых новшеств. Среди них, например, присутствует произвольный мгновенный доступ к любой части видеоматериала на диске и отсутствие перемотки при достижении конца видеоматериала, что раньше являлось довольно большой проблемой.
MPEG-2 позволяет использовать разрешения вплоть до 1920х1080 пикселов (25 кадров в секунду, с полями и без полей, с прогрессивной разверткой) и поддерживает 6-канальный звук.
Особенности этого формата широко использует компания Sony в своем расширенном стандарте microMV, хотя поток информации там повышен до 12 Мбит/с (по сравнению с максимальным стандартом DVD 9,8 Мбит/с), а размер кассеты уменьшен (по сравнению с DV). И всё же стандарт DV отличается большей устойчивостью и большим распространением по всему миру.
Недавно появились камеры, которые пишут сразу на miniDVD диски в формате MPEG-2. Они имеют несколько важных достоинств - перезапись дисков до 1000 раз без потери качества, доступность материала и некоторые другие преимущества. Но очевиден и недостаток – ограниченный объем записанного материала (до 30 минут на 1 miniDVD диск). Хотя для любительских съемок это очень подходящий вариант: миниDVD диски прекрасно воспроизводятся на бытовых плеерах и ПК, а программы идущие с такими камерами позволяют проводить монтаж на любом компьютере, оснащенном DVD-приводом.
Общепринятые стандарты для формата MPEG
Развитием формата MPEG-2 является MPEG-4. Все мы уже давно привыкли к звуку MP3, а формат MPEG-4 сочетает отличный звук и максимальное уплотнение видеосигнала (до 30-40% лучше чем у предшественника). Разница заключается в том, что кодируется последовательность более чем из трех кадров (обычно до 250 кадров). Тем самым достигается большее сжатие и возможность смотреть в режиме реального времени качественное потоковое видео в интернет. Динамическое сжатие также эффективно использует ресурсы, и на обычный компакт-диск помещается 1,5 часа видео в достаточно хорошем качестве. Однако, в большинстве случаев, внимательный зритель сможет увидеть на хорошем экране разницу между изображением, закодированном в MPEG2 и MPEG4.
Некоторые параметры, которые можно настроить при кодировании видео в MPEG-4
Некоторые видеокамеры позволяют записывать в формате MPEG-4 видео на собственную карту памяти или работать как web-камера, передавая по USB кабелю видео со звуком в формате MPEG-4.
Кроме того, современные технологии позволяют даже воспроизводить цифровое телевидение (сжатое в формате MPEG-4 или MPEG-2) с помощью мобильных телефонов, используя GPRS.
На сегодня, MPEG-4 - это наиболее популярный формат распространения видео в интернете и на персональных компьютерах. Рациональное использование памяти при хорошем качестве видео дают о себе знать. Каждая последующая версия кодека MPEG-4 (на сегодня используются 3.хх, 4.хх и 5.хх версии) привносит всё новые и новые прогрессивные улучшения. Большое количество бытовых плееров, КПК и прочих устройств без проблем работают с этим форматом. MPEG-4 будет актуален еще, как минимум, лет десять, пока ему на смену не придёт что-то принципиально новое.
Это формат был разработан программистами компании Apple. Используется он в основном на компьютерах этой компании, хотя также распространен довольно сильно и в интернете. Стандарт MOV считается устаревшим, и позволяет хранить несжатое видео, и довольно популярен по сей день, так как воспроизводится практически на любом компьютере. Однако стоит заметить при его использовании неэффективное использование ресурсов ни по качеству изображения, ни по размеру итогового файла.
Windows Media Video предназначен для небольших файлов и плохих каналов передачи данных. Компания Microsoft активно внедряет этот переходной формат в массы. Для просмотра видео небольшого размера в интернете кодек приходится весьма кстати, а потому используется повсеместно, в том числе для прямых трансляций. Некоторые портативные устройства (например, КПК) также используют этот формат хранения сжатых медиа-данных.
Популярностью этот формат пользуется лишь потому, что его продвигает гигант Microsoft. Также Windows Media Video позиционируют для создания высококачественного видео для DVD (в формате Microsoft Windows Media Video High-Definition, или WMV HD), но со скоростью передачи данных, такой же, как и на стандартном DVD. Воспроизводить его можно с использованием плеера Windows Media 10 Series на компьютерах с ОС Microsoft Windows XP. Будущее этой новинки зависит исключительно от настойчивости Микрософт и количество денег, вкладываемых в эту лицензированную разработку.
Digital Video (DV)
По-настоящему качественное цифровое видео появилось с разработкой формата DV (а также с разновидностями DVCAM, DVCPRO, miniDV). Для полноценной работы с этим форматом требуется соединение DV-камеры с компьютером. И оно было найдено – это формат передачи данных IEEE-1394 (также имеющий названия i.Link или FireWire). С помощью порта IEEE-1394 можно копировать все, что отснято на видеокамеру в компьютер и обратно (если камера поддерживает такую возможность). Так как происходит передача цифрового сигнала в обе стороны, потери при переносе информации исключены.
Не вдаваясь в тонкости процесса кодирования, отметим, что благодаря новым методам преобразования, размер кадра в DV достигает 720x576 точек, звук - 48 кГц/стерео, а поток видео - 3,6 Мбайт/с. Таким образом, видео практически профессионального качества стало доступно каждому с цифровой камерой формата DV. Тем более на одну видеокассету подобного формата вмещается до 90 минут (LP режим) высококачественного материала.
Будущее этого формата практически безоблачно. И будет ещё долго радовать всех любителей и ценителей качественного домашнего видео, которое повсеместно используется на ТВ (документальные фильмы, прямые репортажи и пр.)
Что же дальше?
Реальными возможностями наращивания качества является улучшение «цифры». Уже не за горами практическое внедрение стандарта HDV (высококачественное DV) в массы, которое подразумевает увеличение четкости кадра и использует в своей основе все тот же формат DV.
Blue Ray диски уже готовы к массовому использованию, а основное их отличие от DVD – в объеме (на один Blue Ray диск вмещается до 25 Гб информации). Такой объем позволит увеличить объем готовых фалов, а значит, уменьшить степень сжатия и увеличить конечное качество. Видеокамеры с возможностью записи на подобные диски должны появиться в ближайшем будущем и станут очередной ступенькой в развитии прогресса цифровой видеотехники.
История семейства форматов MPEG, к которому собственно и принадлежит стремительно набирающий в последнее время популярность формат MPEG-4, началась в далеком 1988 году. Именно в этом году был основан комитет Moving Pictures Expert Group, что на русский переводится примерно как экспертная группы кинематографии (движущихся изображений), аббревиатура которого - MPEG известна теперь любому, кто имел дело с мультимедиа - компьютерами или с цифровым телевидением. В этом же году была начата разработка формата MPEG-1, который в окончательном виде был выпущен в 1993 году. Несмотря на все очевидные недостатки этого формата, MPEG-1 по-прежнему является одним из наиболее массовых форматов видеосжатия, лишь в последнее время, начиная постепенно сдавать позиции под натиском более новых и совершенных форматов видеокомпрессии, по большей части из этого же семейства.
Надо сказать, что практически все новаторские по тем временам разработки легшие в основу формата MPEG-1, в том или ином виде встречаются и более совершенных форматах данного ряда, поэтому, рассмотрев в подробностях первого представителя этого семейства форматов видеосжатия можно получить общее представление о том, как же работают алгоритмы MPEG.
Формат MPEG-1. Старый, но еще не побежденный.
Формат MPEG-1 начал разрабатываться в те трудно вообразимые времена, когда не было широкодоступных носителей большого объема, в то время, как видеоданные, даже и сжатые, занимали совершенно колоссальные для конца 80-х объемы - средней продолжительности фильм имел размер больше гигабайта. Если кто не помнит, то это была эпоха 286 и 386 процессоров, 4 Мб оперативной памяти и 250 Мб винчестер считались роскошью, а не убогостью, как сейчас, Windows была примочкой для DOS, а не наоборот, а в качестве легко переносимых носителей информации доминировали 5 дюймовые дискеты и только-только появившиеся 3,5" дискеты от фирмы SONY. В таких условиях необходимо было найти носитель, на который можно было бы записать гигабайт информации, при этом этот носитель должен был быть недорогим, иначе ни о какой массовости не могло быть и речи.
И такой носитель был найден. Как раз в эти годы впервые на платформе PC появился такой новый тип носителей информации как CD-ROM диски, которые смогли обеспечить необходимый объем информации. Правда, на один диск фильм в формате MPEG-1 все-таки не вмещался, но что мешало записать его на 2 CD, тем более, что новинка стоила очень недорого? Разумеется, первые CD-ROM проигрыватели были односкоростными, поэтому не стоит удивляться, что максимальная скорость пересылки потока данных (bitstream) в формате MPEG-1 ограничена 150 Кб/сек., что соответствует одной скорости CD-ROM.
Надо сказать, что возможности MPEG-1 не ограничены тем низким разрешением, которое вы все видели при просмотре VIDEO-CD. В самом формате была заложена возможность сжатия и воспроизведения видеоинформации с разрешением вплоть до 4095х4095 и частотой смены кадров до 60 Гц. Но из-за того, что поток передачи данных был ограничен 150 Кб/сек., то есть так называемый Constrained Parameters Bitstream (CPB) - зафиксированная ширина потока передачи данных, разработчики формата, а в дальнейшем и создатели кодеков на его основе, были вынуждены использовать разрешения кадра, оптимизированные под данный CPB. Наиболее широко распространенными являются два таких оптимизированных формата - это формат SIF 352х240, 30 кадров в секунду и урезанный формат PAL/SECAM 352х288, 25 кадров в секунду.
Ну вот, с разрешением определились, теперь можно и посмотреть, как это все сжимается.
Принципы Сжатия информации в MPEG-1.
В качестве примера рассмотрим урезанный формат PAL/SECAM, который более распространен, чем SIF, хотя оба эти формата за исключением разрешения и частоты смены кадров ничем друг от друга не отличаются.
Урезанная версия формата PAL/SECAM содержит 352 ppl (point per line - точек на линию), 288 lpf (line per frame - линий на кадр) и 25 fps (frame per second - кадров в секунду). Надо сказать, что полноценный стандарт PAL/SECAM имеет параметры в 4 раза большие, чем аналогичные у MPEG-1 (кроме fps). Поэтому принято говорить, что VIDEO-CD имеет четкость в четыре раза хуже, по сравнению с обычным видео.
Как видно из таблицы Сb и Cr практически всегда кодируются с меньшим разрешением, чем Y. Чем меньше разрешение цветовых плоскостей, тем грубее и неестественнее цветопередача в видеоролике. Разумеется, самым некачественным, но и самым компактным будет последний вариант.
- Кадры типа I - Intra frame. Ключевые кадры, которые сжимаются без изменений.
- Кадры типа P - Predirected frame. При кодировании этих кадров часть информации удаляется. При воспроизведении P кадра используется информация от предыдущих I или P кадров.
- Кадры типа В - Bidirectional frame. При кодировании этих кадров потери информации еще более значительны. При воспроизведении В кадра используется информация уже от двух предыдущих I или P кадров. Наличие В кадров в видеоролике - тот самый фактор, благодаря которому MPEG-1 имеет высокий коэффициент сжатия (но и не очень высокое качество).
При кодировании формируется цепочка кадров разных типов. Наиболее типичная последовательность может выглядеть следующим образом: IBBPBBPBBIBBPBBPBB. Соответственно очередь воспроизведения по номерам кадров будет выглядеть так: 1423765.
По окончании разбивки кадров на разные типы начинается процесс подготовки к кодированию.
С I кадрами процесс подготовки к кодированию происходит достаточно просто - кадр разбивается на блоки. В MPEG-1 блоки имеют размер 8х8 пикселов.
А вот для кадров типа P и B подготовка происходит гораздо сложнее. Для того, чтобы сильнее сжать кадры указанных типов используется алгоритм предсказания движения.
- Вектор движения текущего блока относительно предыдущих
- Разницу между текущим и предыдущими блоками, которая собственно и будет подвергаться дальнейшему кодированию.
Вся избыточная информация подлежит удалению, благодаря чему и достигается столь высокий коэффициент сжатия, невозможный при сжатии без потерь.
Но у алгоритма предсказания движения есть ограничения. Зачастую в фильмах бывают статические сцены, в которых движения нет или оно незначительно и возникают блоки или целые кадры, в которых невозможно использовать алгоритм предсказания движения. Думаю, вы замечали, что у видеороликов сжатых MPEG-1 качество сцен с небольшим количеством двигающихся объектов заметно выше, чем в сценах с интенсивным движением. Это объясняется тем, что в статических сценах P и B кадры, по сути, представляют собой копии I кадров, потерь практически нет, но и сжатие информации незначительно.
В случае же корректного срабатывания алгоритма предсказания движения, объемы кадров разного типа в байтах соотносятся друг с другом примерно следующим образом - I:P:B как 15:5:2. Как вы видите из данного соотношения, уменьшение объема видеоинформации налицо уже на стадии подготовки к кодированию.
- Discrete Cosine Transformation - DTC, дискретное преобразование косинусов, преобразование Фурье.
- Quantization - квантование. Перевод данных из непрерывной формы в прерывистую, дискретную.
- Преобразование полученных блоков данных в последовательность, то есть преобразование из матричной формы в линейную.
При кодировании блоки пикселов или вычисленная разница между блоками обрабатывается первым из преобразующим алгоритмов - DTC (дискретное преобразование косинусов). Обычно пиксела в блоке и сами блоки изображения каким-то образом связаны между собой - например однотонный фон, равномерный градиент освещения, повторяющийся узор и т.д. Такая связь называется корреляцией. Алгоритм DTC, используя коррелирующие эффекты, производит преобразование блоков в частотные фурье-компоненты. При этом часть информации теряется за счет выравнивания сильно выделяющихся участков, которые не подчиняются корреляции. После этой процедуры в действие вступает алгоритм Quantization - квантование, который формирует Quantization matrix. Quantization matrix - это матрица квантования, элементами которой являются преобразованные из непрерывной в дискретную форму данные, то есть числа, которые представляют собой значения амплитуды частотных фурье-компонентов. После формирования quantization matrix происходит разбивка частотных коэффициентов на конкретное число значений. Точность частотных коэффициентов фиксирована и составляет 8 бит. После квантования многие коэффициенты в матрице обнуляются. И в качестве завершающей стадии происходит преобразование матрицы в линейную форму.
Все эти преобразования касаются только изображения. Но кроме изображения в практически любом видеофрагменте присутствует так же и звук. Кодирование звука осуществляется отдельным звуковым кодером. По мере развития формата MPEG, звуковые кодеры неоднократно переделывались, становясь все эффективнее. К моменту окончательной стандартизации формата MPEG-1 было создано три звуковых кодера этого семейства - MPEG-1 Layer I, Layer II и Layer 3 (тот самый знаменитый MP3). Принципы кодирования всех этих кодеков основаны на психоакустической модели, которая становилась все более и более совершенной и достигла своего апофеоза для семейства MPEG-1 в алгоритмах Layer-3.
Про психоакустическую модель и принципы сжатия аудиоданных с потерями написано множество статей, в частности статья "Описание формата аудиосжатия MP3", которую вы можете прочитать на этом сайте, поэтому описание аудиокодеров можно опустить, упомянув, единственно о синхронизации аудио- и видеоданных и форматов аудиотреков.
Синхронизация аудио- и видеоданных осуществляется с помощью специально выделенного потока данных под названием System stream. Этот поток содержит встроенный таймер, который работает со скоростью 90 КГц и содержит 2 слоя - системный слой с таймером и служебной информацией для синхронизации кадров с аудиотреком и компрессионный слой с видео- и аудиопотоками.
Под служебной информацией понимаются несколько видов меток, наиболее важными из которых являются метки SCR (System Clock Reference) - инкремент увеличения временного счетчика кодека и PDS (Presentation Data Stamp) - метка начала воспроизведения видеокадра или аудиофрейма.
Ну вот рассказ о MPEG-1 практически подошел к концу, осталось лишь назвать некоторые параметры аудиотреков, которые используются в этом формате.
Качество аудиотреков в MPEG-1 может варьироваться в очень больших пределах - от высококачественных до безобразных. Окончательно все форматы сжатия аудиоданных были стандартизированы в 1992 году европейской комиссией по стандартам ISO.
В зависимости от используемого кодера и степени сжатия аудиоинформация видеоролика может быть представлена в следующем виде: моно, dual mono, стерео, интенсивное стерео (стереосигналы, чьи частоты превышают 2 КГц объединяются в моно), m/s стерео (один канал - сумма сигналов, другой - разница) и по частоте дискретизации могут быть: 48, 44.1и 32 КГц.
На этом хватит о MPEG-1, а в следующих главах речь пойдет о его более чем достойных и перспективных наследниках.
Группа специалистов международной организации по стандартизации (ISO) в 1998 г. приступила к разработке международных стандартов кодирования и сжатия видео- и аудиоинформации. Официальное наименование этой группе было дано совершенно невоспроизводимое - ISO/IECJTC1 SC29 WG11. Впоследствии она стала известна как «Экспертная группа по кинематографии» (Moving Picture Expert Group), а аббревиатура MPEG, образованная от английского варианта обиходного названия этой группы, давно уже используется как обозначение разработанных ею норм и стандартов.
В основу правил сжатия видеоданных была заложена идея поиска и устранения избыточной информации, не влияющей на конечное восприятие качества изображения. В первую очередь, был учтен «человеческий фактор» - психофизиологическая модель восприятия человеком видеоизображений (HVS - Human Visual Sense); в частности, тот факт, что градации яркости воспринимаются зрительным аппаратом человека значительно тоньше, чем градации цвета. Это означает, что цветовую информацию можно «загрубить» по сравнению с яркостной, при этом в субъективном восприятии качество изображения не ухудшится. То есть первоочередным направлением в построении алгоритмов всех стандартов MPEG становится отыскание и устранение информации, избыточной с точки зрения субъективного восприятия.
Семейство MPEG
Группа MPEG стандартизовала следующие стандарты сжатия и вспомогательные стандарты:
MPEG-1: Исходный стандарт видео и аудио компрессии. Позднее использовался как \\стандарт для Video CD; включает в себя Layer 2 формат аудио сжатия.
MPEG-2: Транспортные, видео и аудио стандарты для широковещательного телевидения. Используется в цифровом телевидении ATSC, DVB и ISDB, цифровых спутниковых ТВ службах, таких, как Dish Network, цифровом
кабельном телевидении, и (с небольшими изменениями) в DVD.
MPEG-3: Изначально разрабатывался для HDTV, но от него отказались, когда обнаружилось, что MPEG-2
(с расширениями) вполне достаточно для HDTV. (Не следует путать MPEG-3 с MP3, который на самом деле является MPEG-1 Layer 3.)
MPEG-4: Расширяет MPEG-1 для поддержки видео/аудио «объектов», 3D контента, сжатия с низким
битрейтом и DRM. В него включено несколько новых высокоэффективных видео
стандартов (альтернатив MPEG-2), таких, как:
MPEG-4 Part 2 (ASP) и
MPEG-4 Part 10 (или AVC, или H.264). MPEG-4 Part 10 используется в HD DVD и Blu-Ray дисках.
В дополнение к вышеупомянутым существуют стандарты, которые являются не усовершенствованием предыдущих
стандартов сжатия, а определяют различные языки описания:
MPEG-7: Стандарт индексации мультимедиа-содержимого.
MPEG-21: MPEG описывает стандарт как мультимедийная среда разработки.
Moving Picture Experts Group made MPEG
Формат MPEG-1 начал разрабатываться в конце 80-х когда была эпоха 286 и 386 процессоров, 4 Мб оперативной памяти и 250 Мб винчестер считались роскошью, а Windows была примочкой для DOS, а не наоборот, а в качестве легко переносимых носителей информации доминировали 5 дюймовые дискеты и только-только появившиеся 3,5» дискеты от фирмы SONY.
В те времена приличный фильм занимал пространство более гигабайта. В эти годы впервые на платформе PC появился такой новый тип носителей информации как CD-ROM диски, которые смогли обеспечить необходимый объем информации. Первые CD-ROM проигрыватели были односкоростными, максимальная скорость пересылки потока данных (bitstream) в формате MPEG-1 ограничена 150 Кб/сек., что соответствует одной скорости CD-ROM.
В самом формате MPEG-1 была заложена возможность сжатия и воспроизведения видеоинформации с разрешением вплоть до 4095х4095 и частотой смены кадров до 60 Гц. Но скорость пересылки потока была ограничена 150 Кб/сек., то есть так называемый Constrained Parameters Bitstream (CPB) - зафиксированная ширина потока передачи данных, разработчики формата, а в дальнейшем и создатели кодеков на его основе, были вынуждены использовать разрешения кадра, оптимизированные под данный CPB. Наиболее широко распространенными являются два таких оптимизированных формата - это формат SIF 352х240, 30 кадров в секунду и урезанный формат PAL/SECAM 352х288, 25 кадров в секунду.
Качество аудиотреков в MPEG-1 может варьироваться в очень больших пределах - от высококачественных до безобразных. Окончательно все форматы сжатия аудиоданных были стандартизированы в 1992 году европейской комиссией по стандартам ISO.
В зависимости от используемого кодера и степени сжатия аудиоинформация видеоролика может быть представлена в следующем виде: моно, dual mono, стерео, интенсивное стерео (стереосигналы, чьи частоты превышают 2 КГц объединяются в моно), m/s стерео (один канал - сумма сигналов, другой - разница) и по частоте дискретизации могут быть: 48, 44.1и 32 КГц.
MPEG-2
Стандарт MPEG-2 получил распространение в цифровых видеодисках DVD, системах компрессии видеоизображений, цифровом телевидении DVB. В случае использования в цифровом телевидении MPEG-2 активно применяется как стандарт, определяющий структуру транспортных потоков и способы передачи данных.
Стандарт содержит несколько подразделов (parts). Например, MPEG-2 part 1 определяет тип контейнера, например, может использоватся Transport Stream, который позволяет корректировать ошибки оборудования, принимающего сигнал. Part 2 — структуру компрессированного изображения (элементарный поток MPEG-2). Стандарт MPEG-2 намеренно не определяет способы компрессии изображения (звука), он лишь указывает, как должно быть оформлено сжатое изображение (звук). Стандарт не определяет, каким образом должен быть реализован кодер или декодер MPEG-2, он определяет только структуру данных. Это даёт возможность участникам рынка конкурировать друг с другом за создание более качественных устройств и алгоритмов.
Использование стандартов MPEG-2 требует уплаты лицензионных отчислений держателям патентов через MPEG Licensing Association. Тексты стандартов MPEG-2 распространяются свободно, но не бесплатно (см. сайт ISO).
Сжатие видео (упрощённо)
MPEG-2 используется для «общего сжатия движущихся изображений и звука» и определяет формат видеопотока, который может быть представлен как три типа кадра — независимо сжатые кадры (I-кадры), кадры, сжатые с использованием предсказания движения в одном направлении (P-кадры) и кадры, сжатые с использованием предсказания движения в двух направлениях (B-кадры). Соответствующие группы кадров от одного I-кадра до другого образуют GOP — Group Of Pictures — группу кадров.
Обычно используются потоки в 30 или 29,97 кадров в секунду.
Для сравнения: в MPEG1 предусматривалось только одно фиксированное значение - 8 бит на элемент. То есть в рамках стандарта MPEG2 имеется возможность гибкой настройки качества изображения в зависимости от пропускной способности сети или емкости носителя (вот почему на первых DVD можно было видеть разное по качеству изображение). Биты на элемент - это понятие, знакомое компьютерным «юзерам». В то же время, пользователи таких аппаратов, как DVD- или HD-рекордеры, использующих MPEG2-компрессию, знают, как можно самим задавать уровень качества записи (HQ, SP, LP и т.д.), меняя таким образом объем записанного материала. Эта гибкость, в частности, и сделала MPEG2 основой для приема/передачи цифрового телевидения по различным цифровым сетям.
В результате для фильмов, созданных в стандартах PAL и SECAM, поддерживается разрешение 720х576 при 25 кадрах в секунду при качестве, практически не уступающем вещательному. Собственно, MPEG-фильм нельзя отнести к какой-либо системе цветного телевидения, так как кадры в MPEG являются просто картинками и не имеют прямого отношения к исходной для фильма системе телевидения; речь может идти о соответствии размера и частоты следования кадров. В части аудио в MPEG2, по сравнению с MPEG1, добавлена поддержка многоканального звука(Dolby Digital 5.1, DTS и т.п.)
MPEG3
Прежде всего, не следует смешивать с широкоизвестным форматом компрессии звука МР3, о котором речь пойдет ниже. Стандарт MPEG3 первоначально разрабатывался для использования в системах телевидения высокой четкости (High Definition Television, HDTV) со скоростью потока данных 20-40 Мбит/с. Но еще в процессе разработки стало ясно, что параметры, требуемые для передачи HDTV, вполне обеспечиваются использованием стандарта MPEG2 при увеличенной скорости цифрового потока. Другими словами, острой нужды в существовании отдельного стандарта для HDTV нет. Таким образом, MPEG3, еще не родившись, стал фактически составной частью стандарта MPEG2 и отдельно теперь даже не упоминается.
MPEG4
В новом стандарте MPEG4, появившемся в самом конце 1999 г., предложен более широкий взгляд на медиа-реальность. Стандарт задает принципы работы с контентом (цифровым представлением медиа-данных) для трех областей: собственно интерактивного мультимедиа (включая продукты, распространяемые на оптических дисках и через Интернет), графических приложений (синтетического контента) и цифрового телевидения (DTV). Фактически данный стандарт задает правила организации среды, причем среды объектно ориентированной. Он имеет дело не просто с потоками и массивами медиа-данных, а с медиа-объектами (ключевое понятие стандарта). В MPEG4 определен двоичный язык описания объектов, классов и сцен BIFS, который разработчики характеризуют как «расширение С++». Помимо работы с аудио- и видеоданными, стандарт позволяет работать с естественными и синтезированными компьютером 2D- и 3D-объектами, производить привязку их взаимного расположения и синхронизацию друг относительно друга, а также указывает их интерактивное взаимодействие с пользователем. Картинка разделяется на составные элементы - медиа-обьекты, описывается структура этих объектов и их взаимосвязи, чтобы затем собрать их в единую видеозвуковую сцену. Результирующая сцена составляется из медиа-объектов, объединенных в иерархическую структуру:
а) неподвижные картинки (например, фон); б) видеообъекты (например, говорящий человек); в) аудиообъекты (голос, связанный с этим человеком); г) текст, связанный с этой сценой; д) синтетические объекты, которых не было изначально в описываемой сцене, но которые туда добавляются при демонстрации конечному пользователю (например, синтезируется говорящая голова); е) текст (например, связанный с головой), из которого в конце синтезируется голос.
Такой способ представления данных позволяет изменить результирующую сцену, обеспечивая высокий уровень интерактивности для конечного пользователя и предоставляя ему целый ряд возможностей, например: перемещать и помещать объекты в любое место сцены, трансформировать объекты, изменять их форму и геометрические размеры, собирать из отдельных объектов составной объект и производить над ним какие-либо операции, менять текстуру и цвет объекта, манипулировать им (заставить, к примеру, стол передвигаться в пространстве), менять точку наблюдения за всей сценой.
Особое внимание уделим довольно узкой области приложения стандарта MPEG4 - сжатию видеоматериалов, поскольку именно эта область, скорее всего, на практике хорошо известна значительному числу пользователей-зрителей по аббревиатуре MР4 (так условно обозначают фильмы, сжатые кодером по стандарту MPEG4). Алгоритм компрессии видео, в принципе, работает по той же схеме, что и в предыдущих стандартах, но есть несколько радикальных нововведений. В отличие от прежних стандартов, которые делили кадр на квадратные блоки вне зависимости от содержимого, новый кодер оперирует целыми объектами произвольной формы. К примеру, человек, двигающийся по комнате, будет восприниматься как отдельный объект, перемещающийся относительно другого неподвижного объекта - заднего плана. Также применен «интеллектуальный» способ расстановки ключевых кадров. Ключевые кадры не расставляются с заданной регулярностью, а выделяются кодером только в те моменты, в которые происходит смена сюжета. Естественно, разветвленные алгоритмы поиска и обработки объектов сложной формы, углубленного анализа последовательностей кадров требуют существенно больших вычислительных ресурсов для качественного восстановления (декомпрессии) изображения этого формата, нежели в случае MPEG1 и -2. К счастью, производительность современных процессоров позволяет обойти это препятствие. В результате усовершенствования эффективности компрессии видео в MPEG4 возросла настолько, что позволяет размещать полнометражный фильм длительностью полтора-два часа с весьма приличным качеством всего на одном стандартом компакт-диске (650 Мб)! Впрочем, не стоит питать иллюзий по поводу рекламируемого «DVD-качества» MPEG4-продукции. Следует помнить, что, сколь совершенным не является кодер, всегда существует ограничение на минимальный размер (поток) сжатого видео. Поэтому фильмы в MPEG4, размещенные даже на двух компакт-дисках (2х650 Мб), все-таки не дотягивают до качества DVD-видео в стандарте MPEG2.
MPEG 7
MPEG 7 и MPEG 21 – форматы будущего В октябре 1996 года группа MPEG приступила к разработке формата сжатия MPEG 7, призванным определить универсальные механизмы описания аудио и видео информации. Этот формат получил название Multimedia Content Description Interface. В отличие от предыдущих форматов сжатия семейства MPEG, MPEG 7 описывает информацию, представленную в любой форме (в том числе в аналоговой) и не зависит от среды передачи данных. Как и его предшественники, формат сжатия MPEG 7 генерирует масштабируемую информацию в рамках одного описания.
Формат сжатия MPEG 7 использует многоуровневую структуру описания аудио и видео информации.
На высшем уровне прописываются свойства файла, такие как название, имя создателя, дата создания и т.д. На следующем уровне описания формат сжатия MPEG 7 указывает особенности сжимаемой аудио или видео информации – цвет, текстура, тон или скорость. Одной из отличительных особенностей MPEG 7 является его способность к определению типа сжимаемой информации. Если это аудио или видео файл, то он сначала сжимается с помощью алгоритмов MPEG 1, MPEG 2, MPEG 4, а затем описывается при помощи MPEG 7.Такая гибкость в выборе методов сжатия значительно снижает объем информации и ускоряет процесс сжатия. Основное преимущество формата сжатия MPEG 7 над его предшественниками состоит в применении уникальных дескрипторов и схем описания, которые, помимо всего прочего, делают возможным автоматическое выделение информации как по общим, так и по семантическим признакам, связанным с восприятием информации человеком. Процедура занесения в каталог и поиска данных находятся вне сферы рассмотрения этого формата сжатия.
MPEG 21
Разработка формата сжатия MPEG 21 - это долговременный проект, который называется «Система мультимедийных средств» (Multimedia Framework). Над разработкой этого формата сжатия эксперты начали работать в июне 2000 г. На первых этапах планировалось провести расширение, унификацию и объединение форматов MPEG 4 и MPEG 7 в единую обобщающую структуру. Подразумевалось, что она будет обеспечивать глубокую поддержку управления правами и платежными системами, а также качеством предоставляемых услуг.
Звук в MPEG
Кодирование звука и музыки осуществляется отдельным аудиокодером. По мере развития стандарта MPEG звуковые кодеры также совершенствовались, становясь все эффективнее. В основе повышения эффективности - та же идея: сократить объем «второстепенной» для слушателя аудиоинформации. В результате в составе стандарта MPEG1 было создано семейство из трех звуковых кодеров, названных «слоями»: Layer I, Layer II, Layer III. Все они, подобно видеокодерам, построены на несовершенстве «человеческого фактора»: психоакустическая модель здесь эксплуатирует несовершенства слухового аппарата человека. По мнению ученых, в несжатом звуке передается много избыточной информации. Избыточной в том смысле, что человеческое ухо ее все равно не воспринимает. Большой эффект для сжатия дает, например, явление маскирования некоторых звуков. В частности, если сначала подать громкий звук на частоте 1000 Гц, то более тихий звук на частоте 1100 Гц уже не будет фиксироваться слухом. В модели используется и явление ослабления чувствительности человеческого уха на период в 5 мс - до и 100 мс - после возникновения сильного звука. Существуют похожие временные эффекты маскирования; известны и более сложные взаимодействия, когда временный эффект может выделить конкретную частоту или, наоборот, подавить. Психоакустическая модель - как свод правил - разбивает весь спектр на блоки, в которых уровень звука считается близким. Затем удаляет звуки, формально не воспринимаемые человеком в соответствии с описанными выше эффектами. Потом следует процедура «упаковки» методами, напоминающими по принципу компьютерные архиваторы (опять же - с устранением избыточности), и, наконец, формируется цифровой информационный поток. Идеология сжатия всех «слоев» сходна, разница - в методах и в математике.
Первый «слой» (Layer I) был рассчитан на поток скоростью 192 кбит/с на канал. Алгоритм его в целом похож на систему сжатия звука ATRAC, которая реализована на мини-дисках Sony. Разновидность Layer I используется и в устройствах записи цифровых компакт-кассет DCC. Разновидность Layer II, предназначенная для потоков до 128 кбит/с на канал, была разработана как компромисс между качеством звука, величиной потока и сложностью кодера. В нем были, в первую очередь, усовершенствованы гребенчатые фильтры. Этот «слой» весьма сходен с известным аудиостандартом MUSICAM. Наибольшее применение Layer II нашел в сетях цифрового радиовещания DAB (Digital Audio Broadcasting).
И, наконец, Layer III исходно был рассчитан на низкоскоростные сети с потоком до 64 кбит/с на канал. Благодаря усилиям до того малоизвестного немецкого института информационных технологий имени Фраунгофера (IIS Fraunhofer) в 1998 г. был сделан почти революционный прорыв. Усовершенствование математики в части алгоритма преобразования Фурье и механизмов упаковки спектральных коэффициентов позволило сохранить «CD-качество» звука при низкой скорости потока. Естественно, такое достижение потребовало больших вычислительных ресурсов, но производительности современных компьютеров к тому времени уже хватало и на это. В результате появился формат сжатия аудиоинформации МР3 (полное его название - MPEG Audio Layer III), который начал вполне самостоятельную жизнь. Тот же институт Фраунгофера выпустил первый аппаратный кодер, работающий в реальном времени. За этим шагом последовали другие (МР3-Pro). Сегодня миниатюрные МР3-плейеры и диктофоны с флэш-картами разных мастей знакомы многим. Любой пользователь Интернета знает о распространении сжатого звука через сеть, знает о серверах, «набитых» музыкой в формате МР3. Естественно, вслед за удачным решением массовому потребителю уже предложены форматы-конкуренты, в частности, WMA от Microsoft, ААС (как «продвинутый» Dolby Digital АС-3)… Здесь уместно упомянуть и технологию Meridian Lossless Packing (MLP), которая, напротив, используется в аудиофильских записях DVD-Audio - но это предмет, достойный отдельного разговора.
Программы, которые поддерживают MPEG расширение файла
Следующий список содержит программы, сгруппированные по 5 операционным системам, которые поддерживают MPEG файлы. MPEG файлы можно встретить на всех системных платформах, включая мобильные, но нет гарантии, что каждый из них будет должным образом поддерживать такие файлы.
Программы, обслуживающие файл MPEG
Как открыть файл MPEG?
Проблемы с доступом к MPEG могут быть вызваны разными причинами. К счастью, наиболее распространенные проблемы с файлами MPEG могут быть решены без глубоких знаний в области ИТ, а главное, за считанные минуты. Приведенный ниже список проведет вас через процесс решения возникшей проблемы.
Шаг 1. Скачайте и установите Windows Media Player
Основная и наиболее частая причина, препятствующая открытию пользователями файлов MPEG, заключается в том, что в системе пользователя не установлена программа, которая может обрабатывать файлы MPEG. Этот легкий. Выберите Windows Media Player или одну из рекомендованных программ (например, Winamp, iTunes, QuickTime Player) и загрузите ее из соответствующего источника и установите в своей системе. В верхней части страницы находится список всех программ, сгруппированных по поддерживаемым операционным системам. Одним из наиболее безопасных способов загрузки программного обеспечения является использование ссылок официальных дистрибьюторов. Посетите сайт Windows Media Player и загрузите установщик.
Шаг 2. Убедитесь, что у вас установлена последняя версия Windows Media Player
Вы по-прежнему не можете получить доступ к файлам MPEG, хотя Windows Media Player установлен в вашей системе? Убедитесь, что программное обеспечение обновлено. Иногда разработчики программного обеспечения вводят новые форматы вместо уже поддерживаемых вместе с новыми версиями своих приложений. Это может быть одной из причин, по которой MPEG файлы не совместимы с Windows Media Player. Самая последняя версия Windows Media Player обратно совместима и может работать с форматами файлов, поддерживаемыми более старыми версиями программного обеспечения.
Шаг 3. Настройте приложение по умолчанию для открытия MPEG файлов на Windows Media Player
После установки Windows Media Player (самой последней версии) убедитесь, что он установлен в качестве приложения по умолчанию для открытия MPEG файлов. Метод довольно прост и мало меняется в разных операционных системах.
Выбор приложения первого выбора в Windows
- Нажатие правой кнопки мыши на MPEG откроет меню, из которого вы должны выбрать опцию Открыть с помощью
- Нажмите Выбрать другое приложение и затем выберите опцию Еще приложения
- Последний шаг - выбрать опцию Найти другое приложение на этом. указать путь к папке, в которой установлен Windows Media Player. Теперь осталось только подтвердить свой выбор, выбрав Всегда использовать это приложение для открытия MPEG файлы и нажав ОК .
Выбор приложения первого выбора в Mac OS
Шаг 4. Убедитесь, что MPEG не неисправен
Вы внимательно следили за шагами, перечисленными в пунктах 1-3, но проблема все еще присутствует? Вы должны проверить, является ли файл правильным MPEG файлом. Проблемы с открытием файла могут возникнуть по разным причинам.
1. Убедитесь, что MPEG не заражен компьютерным вирусом
Если файл заражен, вредоносная программа, находящаяся в файле MPEG, препятствует попыткам открыть его. Рекомендуется как можно скорее сканировать систему на наличие вирусов и вредоносных программ или использовать онлайн-антивирусный сканер. MPEG файл инфицирован вредоносным ПО? Следуйте инструкциям антивирусного программного обеспечения.
2. Убедитесь, что структура файла MPEG не повреждена
3. Проверьте, есть ли у пользователя, вошедшего в систему, права администратора.
Существует вероятность того, что данный файл может быть доступен только пользователям с достаточными системными привилегиями. Выйдите из своей текущей учетной записи и войдите в учетную запись с достаточными правами доступа. Затем откройте файл MPEG Movie.
4. Убедитесь, что ваше устройство соответствует требованиям для возможности открытия Windows Media Player
Операционные системы могут иметь достаточно свободных ресурсов для запуска приложения, поддерживающего файлы MPEG. Закройте все работающие программы и попробуйте открыть файл MPEG.
5. Убедитесь, что ваша операционная система и драйверы обновлены
Последние версии программ и драйверов могут помочь вам решить проблемы с файлами MPEG Movie и обеспечить безопасность вашего устройства и операционной системы. Устаревшие драйверы или программное обеспечение могли привести к невозможности использования периферийного устройства, необходимого для обработки файлов MPEG.
Читайте также: