Если стальной сердечник трансформатора заменить на алюминиевый то как изменятся эдс
4. Что будет, если уменьшить (увеличить) число витков первичной и вторичной обмоток трансформатора?
На вторичной - если уменьшить число витков - уменьшиться напряжение на вторичной обмотке (прямо пропорционально числу витков) Ничего страшного при этом произойти не может - Нагрузка на первичную уменьшиться - работать трансформатор будет в более мягком режиме.
На вторичной увеличить число витков - напряжение на вторичной увеличиться прямо пропорционально увеличению числа витков. Если нагружать большим током вторичную обмотку - увеличивается нагрузка на первичную обмотку - это может привести к перегоранию первичной обмотки. Однако если ток нагрузки на вторичную незначителен, но никаких проблемм не будет (можность трансформатора не должна увелчиваться. То есть если трансформатор выдавал 10 вольт и 10 ампер на вторичнй обмотке (10*10=100Ватт) , то если мы увеличили число витков в дап раза, то напряжение будет 20 вольт, и если мы будем нагружать вторичную обмотку током 5 Ампер, то мощность трансформатора останется та же ( 20 Вольт*5 Ампер=100Ватт) - при этом никаких проблемм не будет.
Увеличиваем количество витков на ПЕРВИЧНОЙ обмотке - Если наприяжение на первичную обмотку мы подаем то же, то на вторичной обмотке будет напряжение меньше. Но можно увеличивая число витков на первичной обмотке подавать большее напряжение на первичную обмотку. Если это сделанно проямо пропорционально, то напряжение на вторичной обмотке не измениться.
Уменьшение количества витков на ПЕРВИЧНОЙ обмотке - позволяет использовать трансформатор с меньшим напряжением на первичной обмотке. Но при этом нужно помнить, что ток на первичной обмотке увеличить нельзя, а значит с уменьшением количества витков на первичной и пропорциональным уменьшением напряжением на первичной обмотке хотя мы и получаем все тоже напряжение на вторичной, ток нагрузки на вторичную должен быть уменьшен.
Значительно уменьшать количество витков на первичной обмотке и при этом оставлять то же напряжение на первичную обмотку нельзя!
Если уменьшать число витков первичной обмотки при том же питающем напряжении, сначала возрастут потери в сердечнике - ему придется намагничиваться до большей величины, затем сердечник просто не сможет передать нужную мощность во вторичную обмотку, а потом просто не сможет оказать должного сопротивления (точнее, его магнитное поле не сможет индуцировать нужную ЭДС) изменениям переменного тока в первичной обмотке и она сгорит. А во вторичной, если при этом не менять число витков первичной - будет меняться выходное напряжение. Если менять числа витков согласованно, то напряжение сначала меняться не будет, но - смотри о первичной обмотке.
Сергей ИвлевС первичной обмоткой лучше не шутить, сгорит все к чертям. А со вторичной делай эксперименты хоть сколько угодно, прямая пропорция напряжения от числа витков. ))))))))
Екатерина ВолхонскаяЕсли уменьшить-сетевой может выйти из строя, ток возрастет.
Александр ЭкгардтМощности обмоток равны, напруга больше там, где больше витков. Вот и думай сам дальше.
Надежда МакутинаI=U/R при уменьшении витков увеличивается ток, что приводит к перегреву обмотки и перегоранию так как диаметр провода рассчитывается исходя из заданных параметров и, соответственно, сечения набора железа транса.
Изменится ли коэффициент трансформации, если: а) сердечник заменить медным? алюминиевым?
Остальные ответы
А. Коэффициент трансформации не изменится, но вся мощность будет уходить на нагрев этих сердечников, как короткозамкнутый вторичный виток. Индуктивное сопротивление первичной обмотки будет меньше, и она может тоже перегреться и сгореть.
Б. Изменится в 2 раза.
Изменится ли соотношение между напряжениями на зажимах первичной и вторичной обмоток трансформатора, если железный сердечник вынуть или если вместо него вставить медный?
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Если стальной сердечник трансформатора заменить на алюминиевый то как изменятся эдс
_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение
JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!
Добавлено: Ср янв 07, 2009 19:10:55 Света писал(а): Может он говорил, что мотал аллюминиевым проводом?Полюбому, именно это он и имел ввиду
Я вот сейчас буду делать себе мини сварочник вот с такими параметрами:
Высота тора - 10,5 См
Внешний диаметр - 17 См
Внутренний - около 10 См.
Сечение сердечника около 35 См2 (сердечник еще не до конца набрал).
Первичку скорее всего буду мотать медным проводом D = 1,75мм витков 200 - 230
Вторичку - медным проводом (наверное) D = 4,5 мм (16 мм2) витков 40 - 50.
Мотать буду равномерно по всему тору в один слой первичку, и сверху равномерно намотаю вторичку.
Тор набираю из пластин (от силового трансформатора на 160 Ква), которые вставляю по кругу в кольцо диаметром 17 см, свареное из стальной полосы.
Последний раз редактировалось SeregaT Ср янв 07, 2009 19:20:21, всего редактировалось 1 раз.
Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
Добавлено: Ср янв 07, 2009 19:19:50 Неее. именно на алюминии,я ещё переспросил-"а греться не будет ,ну что сердечник монолитный" а он говорит что на Ал. не греется.(я вот и сам чота думаю,чел этот вроде грамотный в технике).:^/Продуктовая линейка компании KLS на складе Компэл пополнилась модульными соединителями типа RJ. Ассортимент представлен неэкранированными соединителями RJ11, RJ12 и RJ45 для построения базовых информационных сетей, а также экранированными RJ45 с трансформатором для реализации систем передачи данных межу узлами ЛВС.
Добавлено: Ср янв 07, 2009 20:57:52 Наверное, он делал трансформатор с низкой индуктивностью. А не греется- есть фишка такая: Есть метод: Если намотать трансформатор такой, то он при включении в сеть без нагрузки перегорит, но если его включить с нагрузкой, причём, чем выше, тем лучше, тогда он греться не будет. А если воткнуть без нагрузки- он перегреется и перегарит. Вточности наоборот традиционным стальным трансформаторам!Защита от статического электричества необходима каждому современному устройству. Компания STMicroelectronics представляет решения, соответствующие стандарту IEC61000-4-2, а также специальное приложение PROTECTION FINDER, которое поможет легкого и эффективно подобрать необходимые компоненты. Рассмотрим практические примеры защиты от ESD, отраслевые стандарты и ряд ключевых параметров важных при проектировании электростатической защиты устройств.
Что изменится в трансформаторе, если его железный сердечник заменить алюминиевым?
Что изменится в трансформаторе, если его железный сердечник заменить алюминиевым?
Ответы
Ответ разместил: pn89290448853
Have you got any sheep on your farm?
Ответ разместил: zhenya4534
Have you got any sheep on your farm?
Ответ разместил: Korolev776
Похожие вопросы
Другие предметы, 17.04.2019 01:30, inna3005
Другие предметы, 17.04.2019 03:10, Franni
Другие предметы, 17.04.2019 05:10, acherevachanna
Другие предметы, 16.04.2019 23:40, askardaurenuly
Знаешь правильный ответ?
Что изменится в трансформаторе, если его железный сердечник заменить алюминиевым.
Вопросы по предметам
Алгебра, 19.09.2021 12:49
Физика, 19.09.2021 12:49
Литература, 19.09.2021 12:49
Английский язык, 19.09.2021 12:49
Математика, 19.09.2021 12:48
Українська мова, 19.09.2021 12:48
История, 19.09.2021 12:48
История, 19.09.2021 12:48
Математика, 19.09.2021 12:47
Математика, 19.09.2021 12:47
Математика
Литература
Русский язык
Английский язык
Другие предметы
Обществознание
Окружающий мир
Українська мова
Информатика
Українська література
Қазақ тiлi
Беларуская мова
Французский язык
Немецкий язык
Психология
Больше предметов
Вопросов на сайте - 18254239
Мгновенный доступ к ответу
в нашем приложении
Будь умнее, скачай сейчас!
Ваш вопрос
Слишком короткий вопрос
Неверный логин или пароль
Восстановление пароля
Новый пароль отправлен на почту
Задайте свой вопрос эксперту
Ваш вопрос слишком короток
Вопрос отправлен эксперту. Вы получите ответ на почту.
1.как изменится магнитный поток в катушке, если стальной сердечник заменить медным таких же размеров/медь-диамагнетик/ ответь объясните 2.относительная магнитная проницаемость равна 175 .что это значит?
Магнитный поток уменьшится в МЮ (магнитная прониц. стали) раз
2. магн. проницаемость показывает во сколько раз увеличится магнитный поток или индукция магн поля. в среде, где распространяется магн. поле
Ответ разместил: Гость
1)давления на стол 1806 кг./м3
Ответ разместил: Гость
Простите, но я вас не понимаю.
Ответ разместил: Гость
Другие вопросы по Физике
Физика, 07.03.2019 13:00, Вова200711
1. на полу стоит мальчик массой 40 кг. какое давление он производит на пол, если общая площадь подошв его ботинок, соприкасающихся с полом, равна 250 см² ? 2. расчитайте давление воды на наибольшей глубине азовского
моря, равной 14 м. 3. с какой силой давит воздух на поверхность стола, длина которого 1,2 м, ширина 60 см, если атмосферное давление равно 760 мм рт. ст.? 4. определите силу давления керосина на дно бака площадью 4,5 дм², если
бак наполнен до высоты 25 см. 5. манометр, установленный на высоте 1,2 м от дна резервуара с нефтью, показывает давление 2 н/см². какова высота нефти в резервуаре? 6.сообщающиеся сосуды наполнены водой. на сколько
повысится уровень в левой трубке, если в правую налить керосина столько, что он образует столб высотой 30 см?
Физика, 09.03.2019 16:00, Викa2003648219
Автомобиль 2 часа двигался со скоростью 15 метров в секунду. а затем проехал ещё 72 км сос коростью 20 м. с.какова его средняя скорость на всём пути. предполагаемый ответ 60 км/ч
Физика, 03.03.2019 12:03, Дима22222222
Положите одну на другую сухие стеклянные пластинки и легонько прижмите их друг к другу. после этого разъедините их. легко ли они разъединяются?
Физика, 12.03.2019 07:07, Lounges
На расстоянии a=16см от центра равномерного заряженной сферы r=11мм напряженность электрического поля e=77в/м. определить потенциал сферы и поверхностную плотность заряда на сфере
Физика, 12.03.2019 18:00, TimomamkeepTimka
Скорость автомобиля за 2 секунды при торможении уменьшилась со 108 до 36км/ч. определите ускорение автомобиля и расстояние, которое он пройдет за этот промежуток времени.
Физика, 13.03.2019 20:10, emilimalaya
Скаким ускорением движется трогающийся с места автомобиль , если он набирает скорость 54 км/ч за 30 с?
Устройство и принцип работы трансформаторов
Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.
Что такое индукция
Если по проводу пустить электрический ток, то возникнет магнитное поле.
Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического.
Кстати, среди ремонтников очень популярен магнит, который намагничивает и размагничивает отвертки. Таким отвертками удобно пользоваться, поскольку маленькие болтики и винтики останутся на отвертке и не упадут в случае неосторожного движения.
А индуктивность — это способность материала накапливать магнитное поле, когда по этому материалу течет электрический ток.
Чем больше материал может создать магнитное поле, тем выше его индуктивность.
Магнитное поле можно увеличить, если сделать катушку.
Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.
Это и есть катушка индуктивности.
Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.
Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.
Изменение магнитного поля создает электрическое поле.
Увеличение индуктивности сердечником
А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.
Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.
Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.
Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.
Взаимоиндукция и принцип передачи тока
Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.
Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.
При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.
Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.
А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.
Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго.
Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.
И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.
Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.
Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.
Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.
Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.
Устройство трансформатора
А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.
Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.
Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.
Классический трансформатор
Разберем устройство классического трансформатора.
Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.
Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).
На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.
Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.
Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоиде.
Трансформаторы могут быть источниками фазовых искажений. Они изменяют сигналы по фазе из-за индуктивности, как показано на графике выше.
На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником.
Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.
Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.
Кстати, если вы думаете, что у трансформатора нет сторон, как у диодов или транзисторов, то вы ошибаетесь. У трансформатора тоже есть начало обмотки и конец обмотки. На принципиальных схемах обозначение начала обмотки обозначается точкой и цифрами.
Зачем это надо? Дело в том, что магнитная индукция имеет свое направление, и на этом заложен весь принцип работы схемы. Если подключить обмотку не так, как показано на схеме, то вся схема перестанет работать как изначально задумывалось. Еще как пример можно привести трёхфазные электродвигатели. У них и вовсе для правильной работы важно знать начало и конец обмотки.
Коэффициент трансформации
У трансформаторов есть такое понятие, как коэффициент трансформации. Это отношение его входных и выходных характеристик (отношение количества витков первичной обмотки к вторичной).
Например, если трансформатор понижающий, с 220 В до 12 В, то его коэффициент больше единицы, то есть К<1. А если понижающий, то наоборот К>1. У разделительного коэффициент равен 1.
От чего зависит мощность трансформатора
При расчете учитываются следующие параметры:
- Размеры магнитопровода (сердечника);
- Количество витков;
- Сечение провода;
- Количество обмоток;
- Частота работы.
И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.
Типы классических трансформаторов
Классические трансформаторы по типу магнитопровода и расположению катушек разделяются на три основных вида:
Броневые чаще всего состоят из Е-пластин (или Ш, как многие называют), которые изолируются друг от друга лаком. В этом типе катушки заключены внутри сердечника как под броней. Поэтому они так и называются.
А еще сердечник может быть ленточным, но расположение катушек от этого не меняется.
Однако в плане эффективности преобразования мощности — это не самый лучший вариант. Магнитный поток получается неравномерным. Да и броневой трансформатор более уязвим к наводкам и помехам извне. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто, а сборка магнитопровода не составляет особого труда.
Такие трансформаторы чаще всего применяются в мелкогабаритной бытовой технике. Например, их можно часто встретить в мощных звуковых колонках от компьютеров.
Стержневые отличаются особенностями расположения катушек и конструкцией магнитопровода. Такой тип трансформаторов еще называют П-образным. Это связано с тем, что конструктивно сердечник такого трансформатора ленточный, и он собирается из узкой ленты электротехнической стали. И чтобы установить катушки в сердечник, его делают из двух форм в виде буквы П.
После установки двух катушек на первую часть сердечника, вторая часть замыкает ее при окончательной сборке.
Этот тип противоположность броневому. У такого трансформатора обмотки находятся снаружи, а у броневого наоборот, внутри.
Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключаются в том, что сердечник имеет форму тора. Он замкнут, и поместить катушки в сердечник так просто как в стержневых и броневых не получится.
Можно и разъединить трансформаторное железо на две полукруглые части (как П-образный трансформатор), но обмотку не получится намотать. Она будет не такая плотная и ровная.
Поэтому наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.
Режимы работы трансформаторов
Есть три основных режима:
1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке.
2. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку.
3. Режим короткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя.
Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.
Импульсные трансформаторы
У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.
Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.
Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.
Отличия импульсных трансформаторов от классических
Тезисно можно выделить несколько различий:
- Частота работы;
- Состав сердечника;
- Размеры;
- Схема работы;
- Стоимость.
А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.
Почему сердечник не делают сплошным
Сердечники (магнитопроводы) делают из железных пластин потому, что во время работы появляются токи Фуко. Их называют еще вихревыми токами. Эти токи появляются от наводок обмоток в сердечнике. В итоге сердечник может перегреться, и даже расплавить катушки.
Поэтому, для трансформаторов низкой частоты делают сердечники из изолированных друг от друга пластин.
Пластины могут быть покрыты лаком, или изолированы бумагой между собой. Это уменьшает короткие замыкания в пластинах.
А можно ли сделать сердечник сплошным? Да, так можно сделать. И у импульсных трансформаторов сердечники сделаны из ферромагнитного порошка, у которого частицы друг от друга изолированы. Он называется ферродиэлектрическим сердечником. Но это возможно только на высоких частотах, на которых работает импульсный трансформатор.
Что делает трансформатор
У трансформатора много полезных и важных функций:
- Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.
- Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.
- Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.
- Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).
Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
- Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.
Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.
- Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.
Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
- Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.
Вопросы об устройстве трансформатора
-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.
-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.
-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор, который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.
-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Её сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.
-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и не простой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы.
Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети.
Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор.
Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя или блока питания.
-Что будет, если включить трансформатор без сердечника?
Так как трансформатор рассчитывался изначально с сердечником, то и преобразовать полностью напряжение он не сможет. То есть, на вторичке что-то будет, но явно не те параметры. Да и если подключите нагрузку к обмоткам без сердечника, они быстро нагреются и сгорят.
Неисправности трансформаторов
К основным неисправностям трансформаторов можно отнести:
- Коррозия и наличие ржавчины на сердечнике;
- Перегрев и нарушение изоляции;
- Межвитковое короткое замыкание;
- Деформация корпуса, обмоток и сердечника
- Попадание воды в обмотку.
Как проверить на целостность
Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки.
Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.
Так же вы можете найти паспорт на свой трансформатор. В нем указываются сопротивления обмоток, и их параметры, которые нужно будет проверить мультиметром.
Безопасная проверка работы трансформатора
Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.
Трансформаторы много где используются. Их конструкция разная и для каждой задачи она по-своему уникальна.
Интересные факты про трансформаторы
Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.
Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.
Читайте также: