Двойное оплодотворение у цветковых растений открыл
Двойное оплодотворение это сложный оплодотворение механизм цветения растений (покрытосеменные). Этот процесс предполагает присоединение самки гаметофит (мегагаметофит, также называемый зародышевый мешок) с двумя самцами гаметы (сперма). Это начинается, когда пыльца придерживается стигмы карпель, женская репродуктивная структура цветка. Затем пыльцевое зерно впитывает влагу и начинает прорастать, образуя пыльцевая трубка что простирается вниз к яичник через стиль. Затем кончик пыльцевой трубки входит в яичник и проходит через микропиле отверстие в семяпочке. Пыльцевая трубка продолжает выпуск двух сперматозоидов мегагаметофита.
В неоплодотворенной семяпочке 8 клеток, расположенных в виде 3 + 2 + 3 (сверху вниз), то есть 3 антиподальных клетки, 2 полярных центральных клетки, 2 синергид и 1 яйцеклетка. Один сперматозоид оплодотворяет яйцеклетку, а другой сперматозоид соединяется с двумя полярные ядра из большого центральная ячейка мегагаметофита. Гаплоидная сперма и гаплоидное яйцо объединяются, чтобы сформировать диплоид зигота, процесс, называемый сингамия, в то время как другая сперма и два гаплоидный полярные ядра крупной центральной клетки мегагаметофита образуют триплоид ядро (тройной сплав). Некоторые растения могут образовывать полиплоид ядра. Большая клетка гаметофита затем разовьется в эндосперм, богатая питательными веществами ткань, обеспечивающая питание развивающегося эмбриона. Завязь, окружающая семяпочки, превращается в плод, который защищает семена и может их рассеивать. [1]
Два материнских ядра центральной клетки (полярные ядра), которые вносят вклад в эндосперм, возникают в результате митоза из одного и того же единственного ядра. мейотический продукт, из которого выросло яйцо. Материнский вклад в генетическую конституцию триплоидного эндосперма вдвое больше, чем вклад эмбриона.
В исследовании, проведенном в 2008 г. Arabidopsis thaliana, миграция мужских ядер внутри женской гаметы в слиянии с женскими ядрами была впервые задокументирована с использованием in vivo визуализация. Некоторые из генов, участвующих в процессе миграции и слияния, также были определены. [2]
Свидетельства двойного оплодотворения в Gnetales, которые являются нецветущими семенными растениями. [3]
Содержание
Краткая история
Двойное оплодотворение было открыто более века назад Сергей Наващин и Гриньяр в Киев, [4] Российская империя, и Леон Гиньяр в Франция. Каждый сделал открытие независимо от другого. [5] Лилиум мартагон и Фритиллярия Tenella были использованы в первых наблюдениях двойного оплодотворения, которые были сделаны с использованием классической оптический микроскоп. Из-за ограничений светового микроскопа оставалось много безответных вопросов относительно процесса двойного оплодотворения. Однако с развитием электронный микроскоп, на многие вопросы были даны ответы. В частности, наблюдения, сделанные группой У. Дженсена, показали, что мужские гаметы не имеют никаких клеточные стенки и что плазматическая мембрана гамет находится близко к плазматической мембране клетки, которая окружает их внутри пыльцевого зерна. [6]
Двойное оплодотворение голосеменных растений
Двойное оплодотворение in vitro
Связанные структуры и функции
Мегагаметофит
Женский гаметофит, мегагаметофит, который участвует в двойном оплодотворении в покрытосеменные который является гаплоидным, называется зародышевым мешком. Это развивается в яйцеклетка, окруженная яичником у основания карпель. Мегагаметофит окружают (один или) два кожные покровы, которые образуют отверстие, называемое микропиле. Мегагаметофит, который обычно гаплоидный, происходит от (обычно диплоид) мегаспора материнская ячейка, также называемая мегаспороцит. Следующая последовательность событий варьируется в зависимости от конкретного вида, но у большинства видов происходят следующие события. Мегаспороцит подвергается мейотическому делению клеток, образуя четыре гаплоидных мегаспоры. Только одна из четырех образующихся мегаспор выживает. Эта мегаспора проходит три раунда митотического деления, в результате чего образуется семь клеток с восемью гаплоидными ядрами (центральная клетка имеет два ядра, называемые полярными ядрами). Нижний конец эмбрионального мешка состоит из гаплоидной яйцеклетки, расположенной в середине двух других гаплоидных клеток, называемых синергиды. Синергиды действуют в привлечении и направлении пыльцевой трубки к мегагаметофиту через микропиле. На верхнем конце мегагаметофита находятся три антиподальные клетки.
Микрогаметофит
Мужские гаметофиты или микрогаметофиты, участвующие в двойном оплодотворении, содержатся внутри пыльца зерна. Они развиваются внутри микроспорангии или мешочки с пыльцой, из пыльников тычинок. Каждый микроспорангий содержит диплоид микроспора материнские клетки или микроспороциты. Каждый микроспороцит подвергается мейозу, образуя четыре гаплоидных микроспоры, каждая из которых в конечном итоге может развиться в пыльцевое зерно. Микроспора подвергается митоз и цитокинез чтобы произвести две отдельные клетки, генеративную клетку и трубочную клетку. Эти две клетки помимо стенки спор составляют незрелое пыльцевое зерно. По мере созревания мужского гаметофита генеративная клетка переходит в трубочную клетку, а генеративная клетка подвергается митозу, производя две сперматозоиды. Как только пыльцевые зерна созреют, пыльники взломать, выпуская пыльцу. Пыльца попадает в пестик другого цветка, ветром или животными-опылителями, и отложился на рыльце. По мере прорастания пыльцевых зерен трубчатая ячейка производит пыльцевую трубку, которая удлиняется и простирается вниз по длине плодолистика до яичника, где его сперматозоиды высвобождаются в мегагаметофит. Отсюда происходит двойное оплодотворение. [18]
Суть двойного оплодотворения у цветковых растений заключается в том, что в нём участвуют два спермия. Один из них оплодотворяет яйцеклетку, и образуется зигота. Второй спермий сливается с центральной клеткой, из которой развивается запасающая ткань (эндосперм).
Мужской гаметофит (пыльцевое зерно) образуется в пыльцевых камерах пыльников тычинки из микроспоры. Пыльцевое зерно состоит из двух гаплоидных клеток: вегетативной и генеративной, покрытых оболочкой.
Образование женского гаметофита (зародышевого мешка) происходит в завязи пестика в семязачатке из мегаспоры. В состав зародышевого мешка входит семь клеток: гаплоидная яйцеклетка, центральная диплоидная клетка и пять вспомогательных гаплоидных клеток.
При попадании пыльцевого зерна на рыльце пестика начинается деление вегетативной клетки и образуется пыльцевая трубка. Пыльцевая трубка прорастает через столбик пестика и проникает в семязачаток через пыльцевход.
Генеративная клетка пыльцевого зерна делится и образует два спермия. По пыльцевой трубке спермии проникают в семязачаток. Один спермий сливается с яйцеклеткой и образует диплоидную зиготу. Второй спермий сливается с центральной клеткой и образует триплоидную клетку.
Зигота делится, и развивается в зародыш нового растения. Из триплоидной клетки формируется эндосперм. Стенки семязачатка становятся семенной кожурой. Таким образом, семязачаток становится семенем.
тип полового процесса, свойственный только цветковым растениям. Открыто в 1898 С. Г. Навашиным у лилейных. Д. о. заключается в том, что при формировании семени оплодотворяется не только яйцеклетка, но и центр, ядро зародышевого мешка. Из зиготы развивается зародыш семени, из центр, клетки с оплодотворённым центр. ядром — питательная ткань — вторичный триплоидный эндосперм. Д. о. осуществляется спермиями из одной и той же пыльцевой трубки, содержимое к-рой изливается в зародышевый мешок в синергиду или в щель между яйцеклеткой и центр, ядром. Спермий продвигается к яйцеклетке всегда через синергиду, к-рая после оплодотворения разрушается. Д. о.— общее свойство всех цветковых растений, кроме апомик-тичных видов или форм (см. АПОМИКСИС). Биол. значение Д. о. не вполне ясно. Несомненное его преимущество — очень быстрое (опережающее развитие зародыша) образование питат. ткани, к-рое происходит только после оплодотворения. Семяпочки цветковых, не обременённые запасанием питат. ткани впрок, развиваются гораздо быстрее, чем у голосеменных. Д. о. ускоряет весь процесс формирования семяпочки и семени.
Смотреть что такое "ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ" в других словарях:
ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ — свойственно только цветковым растениям. При двойном оплодотворении один из спермиев сливается с яйцеклеткой, а второй с центральной клеткой зародышевого мешка. Из оплодотворенной яйцеклетки развивается зародыш, из центральной клетки вторичный… … Большой Энциклопедический словарь
двойное оплодотворение — Тип полового процесса, характерный для цветковых растений: один из спермиев оплодотворяет яйцеклетку, а другой (из той же пыльцевой трубки) оплодотворяет центральное ядро зародышевого мешка, в результате первого процесса образуется диплоидная… … Справочник технического переводчика
Двойное оплодотворение — половой процесс у покрытосеменных растений, при котором оплодотворяются как яйцеклетка, так и центральная клетка зародышевого мешка (См. Зародышевый мешок). Д. о. открыл русский учёный С. Г. Навашин в 1898 на 2 видах растений лилии… … Большая советская энциклопедия
двойное оплодотворение — свойственно только цветковым растениям. При двойном оплодотворении один из спермиев сливается с яйцеклеткой, а второй с центральной клеткой зародышевого мешка. Из оплодотворённой яйцеклетки развивается зародыш, из центральной клетки вторичный… … Энциклопедический словарь
двойное оплодотворение — double fertilization двойное оплодотворение. Тип полового процесса, характерный для цветковых растений: один из спермиев оплодотворяет яйцеклетку, а другой (из той же пыльцевой трубки
) оплодотворяет центральное ядро… … Молекулярная биология и генетика. Толковый словарь.
ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ — свойственно только цветковым р ниям. При Д. о. один из спермиев сливается с яйцеклеткой, а второй с центр. клеткой зародышевого мешка. Из оплодотворённой яйцеклетки развивается зародыш, из центр. клетки вторичный эндосперм семени, содержащий… … Естествознание. Энциклопедический словарь
двойное оплодотворение — процесс оплодотворения, происходящий у покрытосеменных растений, в котором принимают участие оба образующихся спермия. Один из них сливается с яйцеклеткой, второй – с центральной диплоидной клеткой зародышевого мешка. Открыто С. Г. Навашиным в… … Анатомия и морфология растений
ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ — половой процесс у покрытосеменных, заключающийся в слиянии одной мужской гаметы пыльценой трубки (спермия) с яйцеклеткой зародышевого мешка, а второй мужской гаметы с вторичным ядром зародышевого мешка … Словарь ботанических терминов
двойное оплодотворение по навашину — ЭМБРИОЛОГИЯ РАСТЕНИЙ ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ ПО НАВАШИНУ – слияние яйцеклетки и спермия с образованием зиготы (2п) и одновременное слияние другого спермия и двойного ядра с образованием первичного ядра эндосперма (3п). Характерная особенность всех … Общая эмбриология: Терминологический словарь
ОПЛОДОТВОРЕНИЕ — сингамия, слияние мужской половой клетки (сперматозоид, спермий) с женской (яйцо, яйцеклетка), приводящее к образованию зиготы, края даёт начало новому организму. Уживотных О. предшествует осеменение. В процессе О. осуществляются активация яйца,… … Биологический энциклопедический словарь
У покрытосеменных, цветковых растений уникальный процесс оплодотворения. Именно уникальный. Ни один другой живой организм не проходит через процесс, который биологи называют «Двойное Оплодотворение«.
На женском гаметофите в семязачатке развивается мегаспора — женская половая клетка, которая формируется в завязи пестика.
Спорогенная клетка (2n) сначала делится митозом. Образуются мегаспороциты (2n). Затем они делятся мейозом, образуются гаплоидные (1n) клетки — мегаспоры. У большинства видов 3 из этих клеток редуцируются и остается одна мегаспора.
Она развивается и ее ядро 3 раза делится митозом. Образуются 8 гаплоидных ядра, которые находятся в цитоплазме одной клетки. 6 ядер смещаются к краям семязачатка, 2 ядра остаются в центре клетки.
- Два слившихся ядра образуют центральное ядро,
- остающиеся на полюсах ядра превращаются в клетки:
— антиподы (1n),
— яйцеклетку (1n),
— синергиды (1n) - формируется женский гаметофит, или зародышевый мешок
Мужские половые клетки — микроспоры.
В состав пыльцевого зерна входят 2 клетки:
- вегетативная клетка, которая в будущем формирует пыльцевую трубку и
- генеративная клетка, которая в будущем митозом образует 2 спермия.
Опыление — процесс переноса пыльцы с пыльников тычинок цветка на рыльце пестика
Пыльцевой зерно попадает на рыльце пестика, образующаяся пыльцевая трубка начинает прорастать внутрь столбика, стремясь к завязи. Когда пыльцевая трубка достигает зародышевого мешка, генеративная клетка образует 2 спермия. Один из спермиев оплодотворяет яйцеклетку, образуется зародыш. Второй спермий сливается с двумя ядрами в середине, образуя триплойдную клетку (3n) — эндосперм. Это и есть двойное оплодотворение.
Процесс двойного оплодотворения был открыт С.Г. Навашиным в 1898 г
Последовательность этапов этого процесса можно свести к схеме:
(такой вопрос часто встречается в части B ЕГЭ)
- после оплодотворения семязачаток превращается в семя
- завязь превращается в плод,
- из зиготы — зародыш семени
- из покровов семязачатка формируется семенная кожура.
Значение двойного оплодотворения
В семенах очень быстро (опережая развитие зародыша) образуются питательные ткани с запасом высокоэнергетических питательных веществ только после оплодотворения. У цветковых растений при развитии семязачатков не тратится время на создание питательных веществ, как у голосеменных растений, поэтому развиваются они гораздо быстрее. Таким образом, благодаря двойному оплодотворению ускоряется процесс формирования и семяпочки, и яйцеклетки, и семени
У голосеменных в оплодотворении участвует один спермий и эндосперм возникает до оплодотворения в результате деления мегаспоры, т.е. он гаплоидный и первичный.
Среди цветковых растений широко распространен апомиксис — образование зародыша без оплодотворения ( без участия мужской гаметы). У животных есть аналогичный процесс — партеногенез. Зародыш может развиваться из любых клеток зародышевого мешка: яйцеклетки, центрального ядра, синергид или антипод. Из остальных частей семязачатка образуются другие части семени.
Двудомные растения опыляются извне. Соответственно, это либо опыление животными (насекомыми, в основном), либо ветром.
Для привлечения насекомых растения используют яркую окраску цветка и аромат, пыльца крупная, липкая; ветроопыляемые растения обычно имеют невзрачные цветки, которые высоко поднимаются над землей и мелкую сухую пыльцу.
Видеоурок способствует формированию представлений о способах опыления цветковых растений, выявляет приспособления к различным способам опыления. Основная цель урока – рассмотреть особенности двойного оплодотворения и его преимущества. В ходе видеоурока подробно рассказывается о процессах микроспорогенеза и макроспорогенеза, их сущности.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.
Получите невероятные возможности
Конспект урока "Двойное оплодотворение покрытосеменных растений"
Размножение – это одно из обязательных свойств любого живого организма. Оно заключается в увеличении числа особей.
Различают бесполое и половое размножение растений.
Бесполое размножение подразделяют на спорообразование и вегетативное.
Половое размножение происходит при помощи особых половых клеток –гамет.
При бесполом размножении быстро увеличивается численность вида, все потомки имеют абсолютно такой же генотип, что и родительская особь. А также не происходит увеличения генетического разнообразия, которое может оказаться очень полезным при изменении условий существования вида.
По этой причине большинство живых организмов на Земле размножаются половым путём.
Сущность полового размножения заключается в слиянии генетической информации родителей, благодаря чему генетическое разнообразие в потомстве увеличивается.
У покрытосеменных растений половое размножение связано с цветком.
Важные части цветка – это пестик и тычинка. С их участием происходят сложные процессы полового размножения –опыление и оплодотворение.
Но сперва в будущем цветке начинают образовываться половые клетки.
В жизненном цикле цветковых растений наблюдается смена поколений.
У растений выделяют диплоидное поколение – бесполое, или спорофит, и гаплоидное поколение – половое, или гаметофит.
Гаметы образуются в результате митоза, а споры – в результате мейоза. И гаметы, и споры образуются в цветке, поэтому цветок является органом и бесполого, и полового размножения.
Пыльцевое зерно является спорой (микроспорой), а не мужской гаметой, так как в нем самом развиваются мужские гаметы.
У цветковых растений мужские гаметофиты столь малы, что помещаются внутри оболочки пыльцевого зерна и состоят всего лишь из нескольких клеток.
Женский гаметофит цветковых (зародышевый мешок) помещается внутри семяпочки и состоит в наиболее распространённом случае из 7 клеток (содержит 8 – либо 7 после слияния двух ядер в центральной клетке и образования вторичного ядра).
Посмотрим, как образуется мужской гаметофит.
Итак, Микроспорогенез
В субэпидермальной ткани молодого пыльника обособляется специальная спорогенная ткань, называемая археспорием. Каждая первичная археспориальная клетка после ряда делений становится материнской клеткой пыльцы (микроспороцитом), которая проходит все фазы мейоза.
В результате двух мейотических делений возникают четыре гаплоидные микроспоры. Последние лежат четвёрками и называются клеточными тетрадами.
При созревании клеточные тетрады распадаются на отдельные микроспоры с образованием внутренней (интина) и наружной (экзина) оболочек. Наружная оболочка, как правило, грубая, поверхность её либо гладкая, либо шероховатая, приспособленная для переноса пыльцы и прилипания её к рыльцу пестика.
Этим заканчивается микроспорогенез, вслед за образованием одноядерной микроспоры начинается микрогаметогенез.
Первое митотическое деление микроспоры приводит к образованию вегетативной и генеративной клеток. В дальнейшем вегетативная клетка и её ядро не делятся. В ней накапливаются запасные питательные вещества, которые в последующем обеспечивают деление генеративной клетки и рост пыльцевой трубки в столбике пестика.
Генеративная клетка, содержащая меньшее количество цитоплазмы, вновь делится. Это деление может осуществляться ещё в пыльцевом зерне или в процессе его прорастания в пыльцевой трубке. В результате образуются две мужские половые клетки, которые, в отличие от сперматозоидов животных, называются спермиоклетками, или спермиями.
Таким образом, из одной споры (микроспоры) с гаплоидным набором хромосом в результате двух митотических делений образуются три ядра: два из них – спермии и одно – вегетативное. При образовании пыльцевой трубки это вегетативное ядро переходит в пыльцевую трубку.
Процесс деления генеративной клетки и образование спермиев в пыльцевой трубке были впервые подробно изучены российским и советским цитологом и эмбриологом растений Сергеем Гавриловичем Навашиным в 1910 г. на лилейных растениях.
После образования гамет пыльник созревает, и пыльца высыпается. Она несёт только генетическую информацию.
Посмотрим, как происходит мегаспорогенез и мегагаметогенез цветковых.
У покрытосеменных растений женский гаметофит – это зародышевый мешок, который закладывается и развивается внутри семяпочки.
Развитию женского гаметофита у высших покрытосеменных растений предшествует мегаспорогенез.
В субэпидермальном слое молодой семяпочки обособляется археспориальная клетка, чаще она только одна. Клетка археспория растёт, превращаясь в материнскую клетку мегаспоры.
В результате двух делений мейоза материнской клетки мегаспоры образуется тетрада мегаспор. Каждая из клеток тетрады по числу хромосом является гаплоидной. Однако только одна из них продолжает развиваться, остальные три дегенерируют, судьба этих клеток напоминает судьбу редукционных телец при созревании яйцеклеток у животных.
На следующем этапе осуществляется мегагаметогенез. Оставшаяся функционировать мегаспора продолжает расти и затем её ядро претерпевает ряд делений. При этом сама клетка не делится, а делится только ядро.
У разных систематических групп растений число делений ядра мегаспоры может варьировать от одного до трёх. У большинства растений (70 % видов покрытосеменных) этих делений, как правило, в результате возникает восемь наследственно одинаковых ядер, вовремя этих делений ядра занимают полярное положение, четыре из них оказываются лежащими ближе к микропиле (место проникновения спермиев), а четыре других – в противоположном конце зародышевого мешка, называемого халазальным. Дальше эти ядра обособляются в самостоятельные клетки, имеющие значительные количества цитоплазмы.
В дальнейшем от каждой из двух полярных четвёрки ядер к центру отходит по одному ядру, которые сливаются, образуя вторичное (центральное) ядро зародышевого мешка. Затем цитоплазма обособляется вокруг ядер гаметофита, который из ядерной стадии развития переходит в клеточную. Три ядра, оставшиеся вблизи халазального полюса, преобразуются в три клетки (антиподы), которые питают гаметофит. Три ядра вблизи микропиле отделяются клеточными перегородками, образуя отдельные клетки: крупную центральную яйцеклетку и две боковые клетки синергиды. Вся цитоплазма, расположенная между антиподами с одной стороны и клетками яйцевого комплекса с другой (яйцеклетка и две синергиды), называется центральной клеткой. В ней находится диплоидное вторичное (центральное) ядро.
На этом этапе женский гаметофит уже полностью сформирован и состоит из шести гаплоидных клеток (одной яйцеклетки, двух синергид и трёх антипод) и одной диплоидной (центральной). Его строение внешне напоминает мешочек, поэтому женский гаметофит покрытосеменных называется зародышевым мешком.
Пылинка попадает на рыльце пестика, и происходит опыление.
Опыление – это перенос пыльцевых зёрен на рыльце пестика, у голосеменных пыльцевые зерна при опылении попадают непосредственно на семязачаток.
Имеется два основных типа опыления: самоопыление (автогамия) (когда растение опыляется собственной пыльцой) и перекрёстное опыление (аллогамия).
При самоопылении исключён обмен генетической информацией, поскольку пыльцевые зерна попадают на рыльце пестика либо с одной из тычинок этого же цветка, либо с другого цветка, расположенного на том же растении. Это приводит к появлению чистых линий гомозиготных популяций в пределах одного вида, неспособных обмениваться мутировавшими генами, поэтому процессы видообразования в этих популяциях идут самостоятельно.
Перекрёстное опыление – это перенос пыльцы одного растения на рыльце другого. Этот тип опыления встречается более часто, чем самоопыление, между разными особями одного вида происходит обмен аллелями, что приводит к увеличению доли гетерозиготных организмов.
Безусловно, перекрёстное самоопыление имеет большие преимущества по сравнению с самоопылением, поскольку возникшие мутации свободно распространяются в пределах популяции.
Способы опыления у перекрёстноопыляемых цветковых растений весьма разнообразны. Их можно разделить на две группы. Первая: перенос пыльцы осуществляется главным образом насекомыми, а также некоторыми позвоночными (птицами и летучими мышами). Соответственно, различают энтомофилию, орнитофилию и зоофилию. Растения, опыляемые животными, обычно имеют яркоокрашенные крупные цветки. Мелкие цветки, как правило, собраны в соцветия, что зрительно их увеличивает. Для привлечения опылителей служит нектар или большое количество пыльцы, которую опылители охотно поедают.
Вторая группа: пыльца переносится абиотическими факторами – ветром и реже водой, в связи с чем различают анемофилию и гидрофилию.
После попадания пыльцы на рыльце начинается прорастание пыльцевого зерна.
Экзина мужского гаметофита прорывается в области борозды или поры прорастания, и начинает формироваться пыльцевая трубка, которая растёт, проникает в рыльце, через столбик движется по направлению к завязи, где находится семязачаток.
Трубка растёт на кончике. В растущую пыльцевую трубку из пыльцевого зерна перемещается ядро клетки-трубки, а также спермин.
Обычно развитие пыльцевой трубки происходит при уже сформированных семязачатках в завязи. Достигнув завязи, пыльцевая трубка через микропиле проникает внутрь одного из находящихся там семязачатков.
Там пыльцевая трубка направляется к яйцевому аппарату, проникает в одну из синергид и освобождает спермин. Один из спермиев сливается с яйцеклеткой, в результате чего образуется зигота.
Другой спермий сливается с полярными ядрами центральной клетки, образуя триплоидное ядро (с тройным набором хромосом). Зигота даёт начало зародышу, а из триплоидной центральной клетки образуется ткань эндосперма.
Таким образом оплодотворение, при котором одна мужская гамета сливается с яйцеклеткой, а вторая ― с вторичным ядром, называется двойным оплодотворением.
Механизм оплодотворения цветковых –двойное оплодотворение, открыто отечественным учёным Сергеем Гавриловичем Навашиным в 1898 году.
Таким образом, оплодотворённый семязачаток развивается в семя, из зиготы возникает зародыш, из триплоидной центральной клетки – эндосперм, а из внешней части семязачатка (интегументов) образуется семенная кожура, из стенок завязи цветка – стенки плода.
Эндосперм цветковых полностью отличается от первичного эндосперма голосеменных. У них первичный эндосперм представляет собой гаплоидную вегетативную ткань женского гаметофита, где накапливаются питательные вещества семени.
Эндосперм у покрытосеменных происходит из триплоидной центральной клетки, в образовании которой участвуют вторичное ядро женского гаметофита и ядро спермия.
У одних цветковых (например, злаков) эндосперм сильно разрастается и занимает большую часть семени, оттесняя на периферию маленький зародыш.
У других (к пример у бобовых) весь эндосперм поглощается зародышем и используется его семядолями, которые становятся самыми большими структурами зрелого семени.
Читайте также: