Двое по очереди ставят королей в клетки доски 9х9 так чтобы
Двое по очереди ставят королей в клетки доски 9х9 так чтобы
Задача 8:
Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.
Решение:
В этой игре выигрывает первый, независимо от размеров стола! Первым ходом он кладет пятак так, чтобы центры монеты и стола совпали. После этого на каждый ход второго игрока начинающий отвечает симметрично относительно центра стола. Отметим, что при такой стратегии после каждого хода первого игрока позиция симметрична. Поэтому если возможен очередной ход второго игрока, то возможен и симметричный ему ответный ход первого. Следовательно, он побеждает.
Задача 9:
Двое по очереди ставят слонов в клетки шахматной доски так, чтобы слоны не били друг друга. (Цвет слонов значения не имеет). Проигрывает тот, кто не может сделать ход.
Решение:
Решение задачи легко провести, применяя осевую симметрию шахматной доски. За ось симметрии можно взять прямую, разделяющую четвертую и пятую горизонтали. Симметричные относительно нее поля имеют разный цвет, и, тем самым, слон, поставленный на одно из них, не препятствует ходу на другое. Итак, в этой игре выигрывает второй игрок.
Задача 10:
Имеется две кучки камней – по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.
Решение: В этой игре второй игрок побеждает при помощи симметричной стратегии: каждым своим ходом он должен брать столько же камней, сколько предыдущим ходом взял первый игрок, но из другой кучки. Таким образом, у второго игрока всегда есть ход.
Задача 11:
Двое по очереди ставят коней в клетки шахматной доски так, чтобы кони не били друг друга. Проигрывает тот, кто не может сделать ход.
Решение:
Выигрывает второй. Можно использовать и центральную, и осевую симметрию.
Задача 12:
Двое по очереди ставят королей в клетки доски 9 × 9 так, чтобы короли не били друг друга. Проигрывает тот, кто не может сделать ход.
Решение:
Выигрывает первый. Первый ход в центр доски, а затем – центральная симметрия.
Задача 13:
а) Двое по очереди ставят слонов в клетки шахматной доски. Очередным ходом надо побить хотя бы одну небитую клетку. Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не может сделать ход.
б) Та же игра, но с ладьями.
Решение:
В обоих пунктах выигрывает первый игрок. а) Осевая симметрия; б) Центральная симметрия. Решающим соображением является то, что если два симметричных поля не побиты, то поля, с которых оба они бьются, также не побиты.
Задача 14:
Дана клетчатая доска 10 × 10. За ход разрешается покрыть любые 2 соседние клетки доминошкой (прямоугольником 1 × 2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.
Решение:
Выигрывает второй. Центральная симметрия.
Задача 15:
В каждой клетке доски 11 × 11 стоит шашка. За ход разрешается снять с доски любое количество подряд идущих шашек либо из одного вертикального, либо из одного горизонтального ряда. Выигрывает снявший последнюю шашку.
Решение:
Выигрывает первый. Первым ходом он снимает центральную шашку, а потом играет центрально-симметрично.
Задача 16:
Имеются две кучки камней: в одной – 30, в другой – 20. За ход разрешается брать любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.
Решение:
Выигрывает первый. Первым ходом он уравнивает количество камней в кучках, после чего играет как в задаче 10.
Задача 17:
На окружности расставлено 20 точек. За ход разрешается соединить любые две из них отрезком, не пересекающим отрезков, проведенных ранее. Проигрывает тот, кто не может сделать ход.
Решение:
Выигрывает первый. Первым ходом он проводит хорду, по обе стороны от которой расположено по 9 вершин. После этого, на каждый ход второго он отвечает аналогичным ходом по другую сторону от этой хорды.
Задача 18:
У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается оторвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает тот, кто не может сделать хода.
Решение:
В обоих пунктах выигрывает второй игрок. Независимо от хода первого игрока, второй может после своего хода оставить две одинаковые по длине цепочки лепестков. Дальше – симметрия.
Задача 19:
Дан прямоугольный параллелепипед размерами а) 4 × 4 × 4; б) 4 × 4 × 3; в) 4 × 3 × 3, составленный из единичных кубиков. За ход разрешается проткнуть спицей любой ряд, если в нем есть хотя бы один непроткнутый кубик. Проигрывает тот, кто не может сделать ход.
Решение:
а) и б) – выигрывает второй. Центральная симметрия. в) Выигрывает первый. Первым ходом он протыкает ряд, состоящий из центральных кубиков четырех слоев 3 × 3. Дальше – центральная симметрия.
Задача 20:
Двое по очереди разламывают шоколадку 5 × 10. За ход разрешается сделать прямолинейный разлом любого из имеющихся кусков вдоль углубления. Выигрывает тот, кто первым отломит дольку 1 × 1.
Решение:
В этой игре проигрывает тот, кто отломит кусок ширины 1. Выигрывает первый игрок. Первым ходом он разламывает шоколадку на два куска 5 × 5. Дальше – симметрия.
Задача 21:
Двое по очереди ставят крестики и нолики в клетки доски 9 × 9. Начинающий ставит крестики, его соперник – нолики. В конце подсчитывается, сколько имеется строчек и столбцов, в которых крестиков больше, чем ноликов – это очки, набранные первым игроком. Количество строчек и столбцов, где ноликов больше – очки второго. Тот из игроков, кто наберет больше очков, побеждает.
Решение:
Выигрывает первый. Первым ходом он ставит крестик в центральную клетку. Затем после каждого хода второго игрока первый ставит крестик в центрально-симметричную клетку.
Двое по очереди ставят королей в клетки доски 9х9 так чтобы
Три ёжика делили три кусочка сыра массами 5 г, 8 г и 11 г. Лиса стала им помогать. Она может от любых двух кусочков одновременно отрезать и съесть по 1 г сыра. Сможет ли лиса оставить ёжикам равные кусочки сыра?
Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?
Двое по очереди ставят королей в клетки доски 9х9 так чтобы
Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.
В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.
В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.
Двое по очереди ставят королей в клетки доски 9х9 так чтобы
Руководитель Елена Анатольевна Чернышева
2004/2005 учебный год
Занятие 17 (9.04.2005)
1. Садовый участок имеет форму квадрата размером 12×12 м. В саду растут 15 яблонь. Докажите, что на участке можно выкопать квадратный бассейн размером 3×3 м, не вырубая при этом яблонь. (Размерами деревьев можно пренебречь).
Доказательство. Разобьём участок на 16 квадратов размером 3×3 м. Так как яблонь всего 15, то по крайней мере в одном квадрате яблонь не будет. На этом квадрате можно копать бассейн.
2. Сколько существует пятизначных чисел, в записи которых встречаются только чётные цифры?
Решение. 4 · 54 = 2500. В качестве первой цифры мы можем выбрать любую из четырёх, для каждого из этих вариантов в качестве второй цифры мы можем выбрать любую из пяти, для каждого из этих вариантов мы можем выбрать в качестве третьей цифры любую из пяти, и так далее.
3. В волейбольном турнире каждая команда сыграла с каждой. При этом 20% команд не выиграли ни одной игры. Сколько команд участвовало в турнире?
Решение. 5 команд. Количество участников должно быть кратно пяти, так как иначе 20% не будет являться целым числом. Если же было больше пяти команд, то по крайней мере две команды не выиграли ни одной игры. Но тогда они не могли сыграть друг с другом. (Для пяти команд нужно обязательно привести пример!)
4. Стёпа и Саша играют в такую игру: по очереди ставят слонов на шахматную доску 9×9 так, чтобы они не били друг друга. Начинает Саша. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?
Решение. Выигрывает Саша. Первым ходом она ставит слона в центральную клетку, после чего ходит симметрично относительно этой клетки. Сашин слон не может оказаться под боем Стёпиного слона, потому что слоны, стоящие симметрично относительно центральной клетки, находятся на рзных диагоналях (исключение составляют только клетки главных диагоналей, но после первого хода эти клетки уже находятся под боем). Сашин слон не может также оказатья под боем никакого ранее поставленного слона, потому что Стёпин слон, расположенный симметрично, не находится под боем. Таким образом, если Стёпа сумел сделать ход, то и Саша сумеет.
5. Из квадрата 9×9 вырезали центральную клетку и все угловые. Можно ли оставшуюся фигуру разрезать на фигурки вида ?
Решение:. Нет. Раскрасим клетки квадрата в шахматном порядке. Тогда каждая фигурка будет занимать две белых и две чёрных клетки. А оставшаяся фигура содержит 36 белых и 40 чёрных клеток.
6. Кузнечик прыгает по прямой, причём в первый раз он прыгнул на 1 м в какую-то сторону, во второй раз - на 2 м в какую-то сторону, в третий раз - на 3 м, и так далее. Докажите, что через 2005 прыжков он не сможет оказаться там, где начинал.
Доказательство. Покрасим все точки прямой, расстояние от которых до начальной составляет чётное число метров в синий цвет, а те, до которых нечётное число метров - в красный цвет. Начальная точка - синяя. Тогда после первого прыжка кузнечик окажется в красной точке, после второго - тоже в красной. После третьего прыжка - в синей точке, после четвёртого - тоже в синей. И так далее. Прыжки разобьются на группы по четыре, из них два первых прыжка - по красным точкам, а два последних - по синим. 2004 прыжка - это как раз 501 группа прыжков. Поэтому после 2004 прыжка он окажется в синей точке, а после 2005 - в красной.
Двое по очереди ставят королей в клетки доски 9х9 так чтобы
Есть вещи, которые спокойно можно объяснить дважды и трижды, не опасаясь, что тебя поймут.
Премудрая СоваДвое по очереди ставят на шахматную доску ладьи (за один одну ладью), чтобы они не били друг друга. (Кто какую ладью поставил, не учитывается. Нельзя ставить ладью даже под бой своей ладьи.) Кто не может поставить ладью, проигрывает. Кто выиграет при правильной первый или второй?
Ответ. Выиграет второй.
Указание. Исход игры от того, как ходят соперники.
Аня и Таня выписывают число, ставя цифры по очереди, начиная со старшего разряда. Начинает Аня. Может ли Таня добиться, чтобы число делилось
Ответ. Может.
Ладья стоит на поле a 1. За ход разрешено сдвинуть её на любое число количество клеток вправо или на любое число клеток вверх. Выигрывает тот, кто поставит ладью на поле h 8. У кого есть выигрышная стратегия?
Ответ. У второго.
Ответ Указание Решение Комментарий |
а) Двое играют, передвигая короля по шахматной доске. Допускаются ходы на одно поле влево, вниз или по диагонали влево-вниз. Выигрывает тот, кто ставит короля на При каких начальных положениях короля выигрывает начинающий, а при его партнёр?
Решение. Будем помечать знаком «–» позиции, проигрышные для начинающего, а — выигрышные. Очевидно, если король изначально находится на одном из b1 то начинающий выигрывает:
Рассмотрим Из них можно сделать ход только в выигрышные позиции, поэтому эти две позиции — проигрышные:
Клетки, из которых можно одним ходом попасть в проигрышную выигрышные:
Так можно заполнить всю доску:
б) Имеются две кучи камней. Двое играющих берут по очереди камни. Разрешено брать один камень из любой кучи или по одному камню из обеих куч. Выигрывает взявший последние камни. Исследуйте эту игру.Указание Решение |
а) Алёша Попович и Добрыня Никитич воюют девятиглавого змея. По очереди богатыри ходят к его пещере и отрубают 1, 2 или Как начавшему бой Алёше обрести славу победителя змея отрубить последнюю голову)?
б) А если змей двенадцатиглавый?
в) Двое по очереди берут из кучи 2 или тот, кто взял последний камень. При каком числе камней в куче начинающий может победить, как бы ни играл его партнёр?
Ответ. Начинающий может победить, если количество камней в куче не кратно трём.
В ряд расположены На самой правой клетке стоит белая фишка, на самой чёрная. Два игрока по очереди передвигают свою фишку на одно вперёд или назад. (Пропустить ход нельзя.) Проигравшим считают того, у кого нет хода. Кто выигрывает: начинающий или его партнёр?
Ответ. Выигрывает второй игрок.