Две бригады должны были закончить уборку урожая за 12 дней после 8 дне
Алгоритм решения задач на совместную работу.
- Принимаем всю работу, которую необходимо выполнить за 1.
Находим производительность труда каждого рабочего в отдельности, т.е. , где t – время, за которое этот рабочий может выполнить всю работу, работая отдельно. - Находим ту часть всей работы, которую выполняет каждый рабочий отдельно за то время, которое он работал.
- Составляем уравнение, приравнивая объем всей работы к сумме слагаемых, каждое из которых есть часть всей работы, выполненная отдельно каждым из рабочих.
Один комбайнер может убрать урожай пшеницы с участка на 24 ч быстрее, чем другой. При совместной работе они закончат уборку урожая за 35 часов. Сколько времени потребуется каждому комбайнеру, чтобы одному убрать урожай?
1. Принимаем площадь участка, с которого необходимо собрать урожай, за 1.
2. Пусть х – время, необходимое первому комбайнеру для уборки всего урожая, у - время, необходимое второму
комбайнеру для уборки всего урожая. Тогда– производительность первого комбайнера, – производительность второго комбайнера.
3. 35 – часть участка, с которого может убрать урожай первый комбайнер за 35 часов работы, 35 – часть участка, с которого может убрать урожай второй комбайнер за 35 часов работы.
4.Составим систему уравнений:
у = 60, х = 84
Ответ: для уборки всего урожая первому комбайнеру потребуется 84 часа, второму – 60 часов.
Две бригады, работая совместно, могут выполнить некоторое задание за 3 ч 36 мин. Сколько времени затратит на выполнение этого задания каждая бригада, работая в отдельности, если известно, что первой бригаде требуется для этого на 3 часа больше времени, чем второй.
Мастер и ученик должны были выполнить некоторое задание. После четырех дней совместной работы ученик был переведен в другой цех, и, чтобы закончить выполнение задания, мастеру пришлось еще 2 дня работать одному. За сколько дней мог бы выполнить каждый из них это задание, если известно, что мастеру для этого требуется на 3 дня меньше, чем ученику?
Алгоритм решения задач, в которых используется формула двузначного числа.
- Вводится обозначение:
х – цифра десятков
у – цифра единиц - Искомое двузначное число 10х + у
- Составить систему уравнений
Двузначное число в четыре раза больше суммы его цифр. Если к этому числу прибавить произведение его цифр, то получится 32. Найдите это двузначное число.
Х – цифра десятков. У – цифра единиц. 10х + у – искомое число.
2х 2 + 12х – 32 =0
х1 =-8 (посторонний корень) х2 =2, тогда у =4.
Задача №2.
Двузначное число в трое больше суммы его цифр. Если из этого числа вычесть произведение его цифр, то получится 13. Найдите это двузначное число. (27).
Задача №3.
Двузначное число в шесть раз больше суммы его цифр. Если это число сложить с произведением его цифр, то получится 74. Найдите это число.(54).
Задача №4.
Сумма квадратов цифр двузначного числа равна 13. Если от этого числа отнять 9, то получим число, записанное теми же цифрами, но в обратном порядке. Найти число.(32).
Задача №5.
Произведение цифр двузначного числа в три раза меньше самого числа. Если к искомому числу прибавить 18, то получится число, написанное теми же цифрами, но в обратном порядке. Найти это число.
Алгоритм решения задач на смеси.
х – масса первого раствора, у – масса второго раствора, (х + у ) – масса полученной смеси.
Найти содержание растворенного вещества в растворах, т.е.
а % от х, в % от у, с % от (х+у)
Составить систему уравнений.
Задача №1
Смешали 30% -ный раствор соляной кислоты с 10% -ным и получили 600г 15% -ого раствора. Сколько граммов каждого раствора было взято?
Введем обозначение. Пусть взяли х г первого раствора, у г – второго раствора, тогда масса третьего раствора – (х+у).
Определим количество растворенного вещества в первом, втором, третьем растворах, т.е. найдем 30% от х, 10% от у, 15% от 600.
Составим систему уравнений:
0,3х + 60 – 0,1х = 90
0,2х = 30
х = 30:0,2
х = 150, у = 600 – 150 = 450
Ответ: взяли 150 г первого раствора и 450 г второго раствора.
Задача №2
Имеется лом стали двух сортов с содержанием никеля 5% и 40%. Сколько нужно взять металла каждого их этих сортов, чтобы получить 140 т стали с содержанием 30% никеля?
Задача №3
Смешали 10% -ный и 25% -ный растворы соли и получили 3 кг 20% -ного раствора. Какое количество каждого раствора в килограммах было использовано?
Литература:
1. В.С. Крамор. Повторяем и систематизируем школьный курс алгебры и начал анализа. “ Просвещение”.
2. М.Б.Миндюк, Н.Г. Миндюк. Разноуровневые дидактические материалы по алгебре. 9 класс. “Генжер”.
3. М.И. Сканави. Сборник задач по математике для поступающих во втузы. “ Высшая школа”.
Две бригады должны были закончить уборку урожая за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада закончила оставшуюся часть работы за 7 дней. На сколько дней вторая бригада убрала бы весь урожай быстрее первой, если бы каждая бригада работала отдельно?
Пусть \( x \) производительность первой бригады, а \( y \) производительность второй бригады
Тогда из условия (всю работу примем за 1)
8 дней работая вместе \( 8*(x+y)=A_ \) , они сделали \( A_=\frac \) от всей работы
Значит осталось сделать \( \frac \) работы
Теперь отвечаем на вопрос задачи
\( t=21 \) — за 21 день убрала бы весь урожай 2 бригада, работая одна
Соответственно за 28 дней убрала бы весь урожай первая бригада, работая одна
Две бригады должны были закончить уборку урожая за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада закончила оставшуюся часть работы за 7 дней. На сколько дней вторая бригада убрала бы весь урожай быстрее первой, если бы каждая бригада работала отдельно?
Решение:
х – производительность первой бригады
y – производительность второй бригады
За 12 дней вместе они должны были закончить всю уборку урожая, обозначим как 1:
Тогда их общая производительность за один день:
8 дней они работали вместе, и убрали:
часть поля
Останется убрать:
часть поля
Которую уберёт за 7 дней вторая бригада:
Вторая бригада с такой производительностью в день, убрала бы поле за 21 день.
Найдём производительность первой бригады:
Первая бригада с такой производительностью в день, убрала бы поле за 28 дней.
Вторая бригада уберёт урожай быстрее первой бригады на:
Примем весь урожай за единицу.
По плану нужно было выполнять в день 1:12=1/12 часть работы
После 8 дней совместной работы убрано было
8*1/12=8/12=2/3 и осталось убрать 1 -2/3=1/3 часть всей работы.
Вторая бригада закончила 1/3 часть работы за 7 дней.
Следовательно, каждый день она выполняла (1/3):7=1/21 часть работы.
Всю работу вторая бригада могла бы выполнить за 1:1/21= 21 день.
Первая выполнила бы всю работу за х дней с производительностью 1/х работы в день.
Разделив всю работу на сумму производительностей каждой бригады получим количество дней, за которую она могла быть выполнена, т.е. 12 дней.
1:(1/21+1/х)=12
12*(1/21+1/х)=1
12/21+12/х=1
9х=252
х=28 ( дней)
Ответ: Первая бригада могла бы выполнить работу за 28 дней ,
вторая — за 21 день .
Читайте также: