Доски выделенные для каждого класса решено поставить вплотную друг к другу
Как сделать ?
К выделенным словам подберите несколько однородных членов.
Во втором и третьем предложениях последний однородный член при-
соедините союзом и. Расставьте знаки препинания. • Используя данные
предложения, расскажите о субботниках в вашей школе.
1. В школьн..м саду учащиеся обр..зали сухие
сучья на фруктовых деревьях:−−
2. Девочки составляли коллекц..и ж..лтых−−осенних
листьев для украшения класса. 3. По-
сле дружной работы ребята разговари-
вали −−. 4. Ребята взяли сумки−− и пошли домой.
ГДЗ учебник по математике 5 класс Бунимович. 24. Деление с остатком. Номер №390
а) Моток ленты длиной 10 м надо разрезать на куски по 45 см. Сколько таких кусков получится и сколько ленты останется?
б) Стулья шириной 60 см надо установить вдоль стены, длина которой 7 м. Сколько стульев поместится вдоль стены?
Решение а
10 м = 1000 см
1000 : 45 = 22 (ост. 10 ), значит получится 22 куска и 10 см ткани останется.
Ответ: 22 куска и 10 см
Решение б
7 м = 700 см
700 : 60 = 11 (ост. 40 ), значит 11 стульев уместится вдоль стены.
Ответ: 11 стульев
21. Задачи
А) ,
Б) ,
В) ,
Г) ,
Д) ,
Е) .
Ответ: а); б) 4; в) 1; г) 42; д) 4; е) .
А) ,
Б) ,
В) ,
Г) ,
Д) ,
Е) .
Ответ: а) ; б) ; в) ; г) ; д) ; е) .
3. Решить уравнения (nÎ¥):
А) ,
Б) ,
В) ,
Г) ,
Д) ,
Е) .
Ответ: а) 8; б) 4; в) 10; г) 8; д) 5; е) 4.
4. Найти все n΢, удовлетворяющие условию:
А) ,
Б) ,
В) ,
Г) ,
Д) ,
Е) .
Ответ: а) ; б) ; в) ; г) ; д) ; е) .
5. Доказать справедливость равенств:
А) ,
Б) ,
В) ,
Г) ,
Д) ,
Е) .
6. Разложить по формуле бинома Ньютона и упростить:
А) ,
Б) ,
В) ,
Г) .
Ответ: а) ;
Б) ; в) ;
Г) .
7. Найти средние члены разложения:
А) ,
Б) .
Ответ: а) и ; б) .
8. Решите уравнения:
А) б) в)
Ответ: а) 4; б) 5; в) 9.
9. У одного человека есть 7 книг по математике, а у другого – 9 книг. а) Сколькими способами они могут обменять книгу одного на книгу другого? б) То же самое, но меняются две книги одного на две книги другого.
Ответ: а) ; б) .
10. Несколько человек садятся за круглый стол. Будем считать, что два способа рассадки совпадают, если каждый человек имеет одних и тех же соседей в обоих случаях. а) Сколькими различными способами можно посадить четырех человек? б) семь человек? в) Во скольких случаях два данных человека из семи оказываются соседями? г) Во скольких случаях данный человек (из семи) имеет двух данных соседей?
Решение: а) Отношение соседства сохраняется при циклических перестановках и при симметричном отражении. В случае четырех человек мы имеем 2×4=8 преобразований, сохраняющих отношение соседства. Т. к. общее число перестановок 4 человек равно 4!=24, то имеем 24/8=3 различных способа рассадки.
Б) Если за столом сидят 7 человек, то имеем 7!/14=360 способов, вообще, а в случае n человек (n–1)!/2 способов.
В) Число способов, при которых 2 данных человека сидят рядом, вдвое больше числа способов посадить 6 человек (в силу возможности поменять этих людей местами). Значит оно равно .
Г) Находится аналогичным образом: .
11. Сколькими способами можно посадить за круглый стол 5 мужчин и 5 женщин так, чтобы никакие два лица одного пола не сидели рядом? Если они садятся не за круглый стол, а за карусель и способы, переходящие друг в друга при вращении карусели, считаются совпадающими.
Ответ:, .
12. Из колоды, содержащей 52 карты, вынули 10 карт. Во скольких случаях среди этих карт окажется хотя бы один туз? Во скольких случаях ровно один туз? Во скольких случаях не менее двух тузов? Ровно два туза?
Ответ:, , , .
13. В купе ж/д вагона имеется два противоположных дивана по 5 мест в каждом. Из 10 пассажиров четверо желают сидеть лицом к паровозу, а трое – спиной, остальным безразлично как сидеть. Сколькими способами могут разместиться пассажиры?
Решение: Сначала выберем, кто из трех пассажиров, кому безразлично как сидеть, сядет лицом к паровозу. Этот выбор можно сделать 3 способами. На каждом диване можно пересаживать пассажиров 5! Способами. Всего получаем способов.
14. У мамы 2 одинаковых яблока и 3 одинаковых груши. Каждый день в течение пяти дней подряд она выдает по одному фрукту. а) Сколькими способами это можно сделать? б) Если яблок m, а груш n. в) 2 яблок,3 груши, 4 апельсина.
Ответ: а) ; б) , в) .
15. У отца есть 5 различных апельсинов, которые он выдает своим 8 сыновьям так, что каждый получает либо один апельсин, либо ничего. Сколькими способами можно это сделать? Решите эту задачу при условии, что число апельсинов, получаемых каждым сыном, неограниченно.
Ответ: ; .
16. Из группы, состоящей из 7 мужчин и 4 женщин. Надо выбрать 6 человек так, чтобы среди них было не меньше 2 женщин. Сколькими способами можно это сделать?
Ответ: .
17. Найти сумму всех трёхзначных чисел, которые можно написать с помощью цифр 1, 2, 3, 4. А если никакая цифра не должна появляться дважды в записи каждого числа?
Решение: Всего таких чисел , в них цифр, каждая из 4 цифр употребляется раза – в каждом из трёх разрядов раз, поэтому сумма цифр первого разряда даст 16 (1+2+3+4)=160, второго –1600 и третьего –16000. Сумма равна 17760.
Если цифры не повторяются, то таких чисел , в них 72 цифры, каждая из 4 цифр употребляется в каждом из 3 разрядов 6 раз, поэтому сумма 6(1+2+3+4)(1+10+100)=6660.
18. Сколько различных четырехзначных чисел, делящихся на 4, можно составить из цифр 1,2, 3, 4, 5, если каждая цифра может встречаться в записи числа несколько раз? А если каждая цифра встречается лишь один раз?
Решение: Число должно оканчиваться: 12, 24, 32, 44, 52; первые же две цифры могут быть произвольными. Всего получаем чисел. Во втором случае число должно оканчиваться на одну из четырёх комбинаций: 12, 32, 52, 24; первые же две цифры могут быть выбраны из оставшихся трёх способами. Всего получаем 24 числа.
19. Компания из 7 юношей и 10 девушек танцует парами. а) Если в каком-либо танце участвуют все юноши, то сколько имеется вариантов участия девушек в этом танце? Сколько имеется вариантов, если учитывать лишь то, какие девушки остались неприглашенными? б) Решить те же вопросы, если относительно двух девушек можно с уверенностью утверждать, что они будут приглашены на танец.
Ответ: а) , . б) , .
20. Рота состоит из 3 офицеров, 6 сержантов, 60 рядовых. Сколькими способами можно выделить из них отряд, состоящий из одного офицера, двух сержантов и 20 рядовых? Решить эту задачу, при условии, что в отряд должны войти командир роты и старший из сержантов.
Ответ: ; .
21. На школьном вечере присутствуют 12 девушек и 15 юношей. Сколькими способами можно выбрать из них 4 пары для танца?
Ответ: .
22. Сколькими способами можно расставить 20 книг в книжном шкафу с 5 полками, если каждая полка может вместить все 20 книг?
Ответ: Добавим к 20 книгам 4 одинаковых разделительных предмета и рассмотрим все перестановки полученных объектов. Их число равно .
23. Сколькими способами можно надеть 5 различных колец на пальцы одной руки, исключая большой палец?
Ответ: Точно так же как предыдущей задаче .
24. 30 человек голосуют по 5 предложениям. Сколькими способами могут распределиться голоса, если каждый голосует за одно предложение и учитывается лишь число голосов, полученных за каждое предложение?
Решение: Так как учитывается лишь число голосов, поданных за каждое предложение, то надо распределить 30 одинаковых «предметов» по 5 «ящикам». Для этого добавим 4 одинаковых разделительных предмета и рассмотрим все перестановки полученных объектов. Их число равно . Каждой перестановке соответствует своё распределение голосов.
25. Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневый переплеты. Сколькими способами он может это сделать, если в каждый цвет должны быть переплетены хотя бы одна книга?
Решение: 12 книг можно переплести в переплеты трёх цветов способами. Из них в случаях книги будут переплетены в не более чем два цвета, а в трех случаях – в один цвет. По формуле включений и исключений в случаях книги будут переплетены в переплеты всех цветов.
26. Сколькими способами можно выбрать 12 человек из 17, если данные двое человек из этих 17 не могут быть выбраны вместе?
Ответ: .
27. Хор состоит из 10 участников. Сколькими способами можно в течение трех дней выбирать по 6 участников, так, чтобы каждый день были различные составы хора?
Ответ: .
28. Человек имеет 6 друзей и в течение 20 дней приглашает к себе 3 из них так, что компания ни разу не повторяется. Сколькими способами можно это сделать?
Ответ: Так как , то каждый способ выбора компании будет использован ровно один раз. Число перестановок этих способов равно 20!
29. Для премии по математической олимпиаде выбраны 3 экземпляра одной книги, 2 экземпляра другой и 1 экземпляр третьей книги. Сколькими способами могут быть вручены премии, если в олимпиаде участвовало 20 человек и никому не дают две книги сразу? Если никому не дают двух экземпляров одной и той же книги, но могут быть вручены две или три различные книги?
Решение: Сначала выберем призеров, а потом распределим между ними книги. В результате по принципу умножения получаем способов. Во втором случае сначала выберем, кто получил первую книгу, потом, кто получил вторую, и, наконец, кому достанется третья книга. Всего получаем способов распределения премий.
30. Сколькими способами можно выбрать из 16 лошадей шестерку для запряжки так, чтобы вошли 3 лошади из шестерки ABCA'B'C', но ни одна из пар AA', BB', CC'?
Решение: Выберем по одной лошади из каждой пары AA', BB', CC' (8 способов выбора), трех лошадей из остальных 10 ( способов) и выберем порядок запрягания лошадей (6! способов). Всего способов.
31. Сколькими способами можно переставить буквы в слове «фатеция» так, чтобы не менялся порядок гласных букв?
Решение: Выпишем сначала гласные в данном порядке. Тогда для буквы «ф» имеем 5 мест. После того как они выписаны, имеем 6 мест для буквы «ц» и, наконец, 7 мест для буквы «м». Всего способов.
32. Сколькими способами можно переставить буквы в слове «параллелизм» так, чтобы не менялся порядок гласных букв?
Ответ: (следует учесть, что буква «л» входит в слово трижды.
33. Сколькими способами можно переставить буквы слова «Юпитер» так, чтобы гласные шли в алфавитном порядке?
Ответ: .
34. Сколькими способами можно переставить буквы слова «пастух» так, чтобы между двумя гласными были две согласные?
Ответ: Сначала фиксируем порядок гласных (2 способа), затем поставим между этими гласными 2 согласные ( способов). Первую из оставшихся согласных букв можно поставить до или после обеих гласных (два способа), а для второй имеем уже три места. Всего получаем способа.
35. Сколькими способами можно распределить 3n предметов между тремя людьми так, чтобы каждый получил n предметов?
Ответ: Расставим предметы в некотором порядке и отдадим первому человеку первые n предметов, второму – вторые n предметов и последнему – оставшиеся предметы. Поскольку порядок элементов в группах не играет роли, получаем .
36. Сколькими способами можно разложить 10 книг на 5 бандеролей по 2 книги в каждой (порядок бандеролей не принимается во внимание)?
Ответ: .
37. Сколькими способами можно раздать 18 различных предметов 5 участникам так, чтобы четверо из них получили по 4 предмета, а пятый – два предмета. Если трое получают по 4 предмета, а двое – по 3 предмета?
Решение: Располагаем участников раздела в некотором порядке. После этого располагаем всеми способами 18 предметов по порядку и делим на 4 группы по 4 предмета и 1 группу в 2 предмета. Группу в 2 предмета отдаём одному из 5 участников раздела, а остальные группы даём остальным (первую группу – первому, вторую – второму и т. д.) Так как порядок элементов в группах не играет роли, получаем способов раздела. Во втором случае точно так же получаем способов.
38. Сколькими способами можно раздать 27 книг лицам A, B и C так, чтобы A и B вместе получили вдвое больше книг, чем C?
Решение: Сначала выберем 9 книг для C. Это можно сделать способами. Оставшиеся 18 книг можно разделить между A и B 218 способами. Всего имеем способов раздела.
39. Сколькими способами можно выбрать из чисел от 1 до 100 три числа так, чтобы их сумма делилась на 3?
Решение: Возможны следующие случаи: на 3 делятся все три слагаемых, одно слагаемое и ни одного из слагаемых. В первом случае слагаемые можно выбрать способами. Во втором случае одно слагаемое дает в остатке 1, а другое – 2. Так как чисел от 1 до 100, дающих в остатке 1, имеется 34, а чисел, делящихся на 3, а также дающих в остатке 2, имеется по 33, то во втором случае имеем способов. Если все три слагаемых не делятся на 3, то они дают либо остатки 1, 1 и 1, либо 2, 2 и 2. Соответственно получаем или способов. Всего имеем способа.
40. Сколькими способами можно выбрать из 3n последовательных целых чисел три числа так, чтобы их сумма делилась на 3?
Ответ: .
41. На плоскости проведены 4 прямые линии, из которых никакие две не являются параллельными и никакие 3 не проходят через одну точку. Сколько получится треугольников?
42. На плоскости задано n точек, из которых p лежат на одной прямой, а кроме них никакие 3 точки не лежат на одной прямой. Сколько существует треугольников, вершинами которых являются эти точки?
Решение: Если бы никакие три из n точек лежат на одной прямой, то было бы треугольников с вершинами в этих точках. Но p точек лежат на одной прямой, и поэтому треугольников надо отбросить. Остается треугольников.
43. На прямой взяты p точек, а на другой прямой – ещё q точек. Сколько существует треугольников, вершинами которых являются эти точки?
Ответ: Можно взять две вершины на одной прямой, а третью – на другой. Поэтому получаем треугольников.
44. Каждая сторона квадрата разбита на n частей. Сколько можно построить треугольников, вершинами которых являются точки деления?
Решение: Треугольники могут быть двух видов: либо все три вершины лежат на разных сторонах квадрата, либо две вершины лежат на одной стороне квадрата, а третья – на какой-либо другой. В первом случае надо выбрать три стороны квадрата из четырех (), а потом на каждой из трех сторон по одной точке из n–1. Всего имеем способов выбора. Во втором случае надо выбрать сторону, где лежат две вершины (4 способа выбора) и две точки из n–1 ( способов), после чего выбрать одну из трёх оставшихся сторон (три способа) и точку на ней ( способов). Всего во втором случае имеем способов выбора. Итого получим способов.
45. Переплётчик должен переплести 12 различных книг в красный, зеленый и коричневый переплеты. Сколькими способами он может это сделать, если в каждый цвет должна быть переплетена хотя бы одна книга?
Решение: 12 книг можно переплести в переплеты 3 цветов 312 способами. Из них в случаях книги будут переплетены в не более чем два цвета, а в 3 случаях – в один цвет. По формуле включений и исключений получаем, что случаях книги будут переплетены всех трех цветов.
46. На столе лежат 20 билетов. Какова вероятность того, что 3 наудачу взятых билета имеют номер не больше 5?
Ответ: .
47. В одной урне 3 белых и 5 черных шаров, в другой – 9 белых и 4 черных. Из каждой урны взяли по три шара. Какова вероятность того, что шары будут одного цвета?
Ответ: .
48. Восемь различных книг случайных образом расставляют на полке. Найти вероятность того, что три определенные книги окажутся рядом?
Ответ: .
49. Зенитная батарея, состоящая из 3 орудий, производит залп по группе, состоящей из 7 самолетам. Каждое из орудий выбирает себе цель наудачу независимо от остальных. Найти вероятность того, что все орудия выстрелят по одному и тому же самолетам.
Ответ: .
50. Для уменьшения общего количества игр 12 команд случайным образом разбиты на две равные подгруппы. Определить вероятность того, что две наиболее сильные команды окажутся в разных подгруппах.
Ответ: .
51. Для уменьшения общего количества игр 2n команд случайным образом разбиты на две равные подгруппы. Определить вероятность того, что две наиболее сильные команды окажутся: а) в разных подгруппах; б) в одной подгруппе.
Ответ: а) , б) .
52. Зенитная батарея, состоящая из k орудий, производит залп по группе, состоящей из l самолетов (k£l). Каждое орудие выбирает себе цель случайно и независимо от других. Найти вероятность того, все k орудий выстрелят по одной и той же цели.
Ответ: .
53. Из множества чисел последовательно выбирается два числа. Какова вероятность, что второе число больше первого, если выбор осуществляется: а) без возвращения; б) с возвращением?
Ответ: а) , б) .
54. Из множества чисел последовательно выбирается три числа. Какова вероятность того, что второе число будет заключаться между первым и третьим, если выбор осуществляется: а) без возвращения; б) с возвращением?
Ответ: а) , б) .
55. На бочонках лото написаны числа от 1 до N. Из этих N бочонков одновременно случайно выбираются два. Найти вероятность того, что: а) на обоих бочонках написаны числа, меньше чем k (2<k<N); б) на одном из бочонков написано число, большее чем k, а на другом – меньшее чем k.
Ответ: а) , б) .
56. N человек случайным образом рассаживаются за круглым столом (N>2). Найти вероятность того, что два фиксированных лица А и В окажутся рядом.
Ответ: .
57. N человек случайным образом рассаживаются за прямоугольным столом вдоль одной из его сторон (N>2). Найти вероятность того, что два определенных лица А и В окажутся рядом.
Ответ: .
58. Урна содержит шары с номерами 1, 2, . , n. Из нее k (k£n) раз вынимается шар и каждый раз возвращается обратно. Найти вероятность того, что номера вынутых шаров образуют строго возрастающую последовательность.
Ответ: .
59. n различных предметов случайным образом распределяются среди m человек (m<n), причем таким образом, что каждый может получить любое число предметов из числа имеющихся. Какова вероятность того, что определенное лицо не получит ни одного предмета?
Ответ: .
60. В урне имеются n белых, m черных и l красных шаров. Из нее извлекаются с возвращением наудачу по одному шару. Найти вероятность того, что белый шар будет извлечен раньше черного.
Ответ: Так как в условии задачи наличие или отсутствие красных шаров роли не играет, то искомая вероятность равна вероятности вынуть первым белый шар из урны, в которой имеется n белых и m черных шаров, т. е. равна .
61. В урне имеются n белых и m черных шаров. Два игрока последовательно достают по одному шару, возвращая каждый раз извлеченный шар. Игра продолжается до тех пор, пока кто-нибудь из них не достанет белый шар. Определить вероятность того, что первым вытащит белый шар игрок, начинающий игру.
Решение: Первый игрок выиграет, если он сразу достанет белый шар, либо если он достанет черный шар (в этом случае вероятность равна ), второй игрок тоже черный шар, а затем он со второй попытки достанет белый шар (в этом случае вероятность равна ) и т. д. В результате, используя принцип умножения, получим
По формуле суммы бесконечно убывающей геометрической прогрессии находим
.
62. Для проверки собранной схемы последовательно послано три одиночных импульса. Вероятности прохождения каждого из них не зависят от того, прошли остальные или нет, и соответственно равны 0,9, 0,8 и 0,7. Определить вероятность того, что пройдут ровно два посланных импульса.
63. Происходит воздушный бой между двумя самолетами: истребителем и бомбардировщиком. Стрельбу начинает истребитель: он дает по бомбардировщику один выстрел и сбивает его с вероятностью p1. Если бомбардировщик этим выстрелом не сбит, он стреляет по истребителю и сбивает его с вероятностью p2. Если истребитель не сбит, он еще раз стреляет по бомбардировщику и сбивает его с вероятностью p3. Найти вероятность того, что будет сбит хотя бы один самолет.
Ответ. .
64. Техническое устройство, состоящее из трех узлов, работало в течение некоторого времени t. За это время первый узел оказывается исправным с вероятностью p1, второй – с вероятностью p2 и третий – с вероятностью p3. Наладчик, вызванный для осмотра устройства, обнаруживает и устраняет неисправность каждого узла, если она имеется, с вероятностью p, а с вероятностью q=1–p объявляет узел исправным. Найти вероятность того, что после осмотра наладчиком хотя бы один узел устройства будет неисправным.
Ответ. .
65. Имеется m радиолокационных станций, каждая из которых за один цикл обзора обнаруживает объект с вероятностью p (независимо от других циклов и от других станций). За определенное время каждая станция успевает сделать n циклов. Найти вероятность того, что: а) объект будет обнаружен хотя бы одной станцией; б) объект будет обнаружен каждой из станций.
Ответ. а) ; б) .
66. Ведется стрельба по самолету, уязвимыми агрегатами которого являются два двигателя и кабина пилота. Для того чтобы поразить самолет (вывести его из строя), достаточно поразить оба двигателя или кабину пилота. Найти вероятность того, что самолет будет поражен, если вероятность поражения первого двигателя равна p1, второго – p2 и кабины пилота – p3.
Ответ. .
67. Имеется группа из k космических объектов, каждый из которых независимо от других обнаруживается радиолокационной станцией с вероятностью p. За группой объектов ведут наблюдение независимо друг от друга m радиолокационных станций. Найти вероятность того, что не все объекты, входящие в группу, будут обнаружены.
Ответ. .
Доски выделенные для каждого класса решено поставить вплотную друг к другу
Под графом мы будем понимать множество точек ( вершин ), некоторые из которых соединены отрезками ( ребрами ).
Степень вершины графа — это количество выходящих из нее (или, что то же самое, входящих в нее) ребер (еще говорят: количество ребер, инцидентных данной вершине). Вершина графа называется четной , если ее степень четна, и нечетной в противном случае.
Некоторая часть вершин данного графа называется компонентой связности , если из любой ее вершины можно «дойти» до любой другой, двигаясь по ребрам.
В некоторых случаях на ребрах графа выбирается «направление движения» (например, когда на автомобильной дороге вводится одностороннее движение). При этом получается ориентированный граф . (Если направление движения по ребрам не определено, то граф называется неориентированным ). В ориентированном графе различают положительную и отрицательную степень каждой вершины (то есть количество ребер, соответственно, входящих и выходящих из нее). Две вершины могут быть соединены и несколькими ребрами, направления движения по которым противоположны («дорога с двусторонним движением»). Изменяется понятие компоненты связности: теперь каждый «маршрут» от одной вершины до другой должен учитывать направление движения по ребрам.
Задачи
Решение.Построим граф, вершинами которого являются планеты Солнечной системы, а ребрами — существующие маршруты рейсовых ракет. Изобразив такой граф на рисунке, нетрудно заметить, что он состоит из двух компонент связности (на нашем рисунке они выделены разными цветами). Земля и Марс оказываются в разных компонентах связности, поэтому долететь от Земли до Марса на рейсоых ракетах нельзя. 2. Доска имеет форму двойного креста, который получается, если из квадрата 4×4 убрать угловые клетки. Можно ли обойти ее ходом шахматного коня и вернуться на исходную клетку, побывав на всех клетках ровно по одному разу?
Ответ. На рисунке указано одно из возможных решений (клетки пронумерованы в том порядке, в котором их обходит конь).
3. Можно ли, сделав несколько ходов конями из исходного положения (верхний рисунок), расположить их так, как показано на нижнем рисунке? (Выходить за пределы поля 3×3 не разрешается.)
Решение. Пронумеруем клетки поля 3×3, как показано на рисунке слева. Построим граф, вершинами которого являются эти клетки. Две клетки соединим ребром графа, если из одной в другую можно попасть за один ход коня. Расположим вершины графа так, как показано на рисунке справа, и проведем все ребра. Отметим на этом рисунке начальное и конечное местоположение коней. Для того, чтобы осуществить требуемую перестановку коней, нужно по крайней мере, чтобы, например, один из черных коней «перепрыгнул» через одного из белых. Но кони ходят по очереди, и ни в какой момент времени на одной клетке не могут оказаться два коня сразу. Поэтому осуществить такое «перепрыгивание» невозможно. Стало быть, невозможно и переставить коней требуемым образом.4. В стране Цифра есть 9 городов с названиями 1, 2, 3, 4, 5, 6, 7, 8, 9. Путешественник обнаружил, что два города соединены авиалинией в том и только в том случае, если двузначное число, образованное названиями городов, делится на 3. Можно ли долететь по воздуху из города 1 в город 9?
Построим граф, вершинами которого являются города, а ребрами — существующие авиалинии. Вспомним признак делимости на 3: натуральное число делится нацело на 3 тогда и только тогда, когда сумма его цифр делится на 3. Заметим, что если название города делится на 3, то он соединен авиалиниями только с городами, названия которых тоже делятся на 3. Наоборот, те города, названия которых не делятся на 3, не могут быть соединены авиалиниями с городами, названия которых делятся на 3. Поэтому города 3, 6 и 9 образуют одну компненту связности графа, в которую никакие другие города не входят. Это означает, что из города 1 в город 9 добраться по воздуху нельзя.
Упражнение: А какие еще компоненты связности есть в этом графе?
5. В государстве 100 городов. Из каждого города выходит 4 дороги. Сколько всего дорог в государстве? Решение. Обойдем по очереди все города, считая дороги, входящие из них. Всего таким способом мы насчитаем 400 дорог. Но каждая дорога выходит из двух городов, значит, каждую дорогу мы посчитали два раза. Поэтому на самом деле дорог в государстве в два раза меньше, чем мы насчитали, то есть 200.Теорема 1. Количество ребер в любом графе равно половине суммы степеней его вершин.
Докажите эту теорему самостоятельно по аналогии с задачей 5.
6. В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединен ровно с пятью другими?
Подсказка: попытайтесь посчитать количество телефонных проводов.
При решении всех последующих задач мы будем пользоваться этой теоремой. Любое решение следует начинать с выбора вершин и ребер графа. Попробуйте решить эти задачи самостоятельно, не ссылаясь на теорему, а заново проводя ее доказательство в каждом конкретном случае.
8. В классе 30 человек. Может ли быть так, что 9 человек имеют по 3 друга, 11 — по 4 друга, а 10 — по 5 друзей?
Доски выделенные для каждого класса решено поставить вплотную друг к другу
Задания
Четыре металлических бруска (A, B, C и D) положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент равны 80 °С, 50 °С, 30 °С, 10 °С. Какой из брусков имеет температуру 80 °С? В ответе укажите букву, обозначающую нужный брусок.
Передача энергии происходит от более нагретого тела к менее нагретому. Температуру 80 °С имеет брусок А, потому что только он отдает теплоту всем другим брускам.
Доски выделенные для каждого класса решено поставить вплотную друг к другу
Шесть металлических брусков (А, B, C, D, E, F) положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент составляют 100 °С, 80 °С, 60 °С, 40 °С, 20 °С, 10 °С. Какой из брусков имеет температуру 10 °С?
Теплопередача идёт от более нагретого тела к менее нагретому. Направление стрелок показывает, что ta > tb, ta > tc, tb > tc, tb > td, td > tf, tf > te или, объединяя, ta > tb > tc > td > tf > te.
Доски выделенные для каждого класса решено поставить вплотную друг к другу
Задача 1:
В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?
Решение:
Обозначим первое из этих чисел через a. Получим
Задача 2:
В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.
Решение:
Задача 3:
Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.
Решение:
Задача 4:
В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.
Решение:
Постройте миллион клеток с номерами от 0 до 999999 и рассадите там людей, поместив каждого ленинградца в клетку, номер которой равен количеству волос на его голове.
Задача 5:
В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.
Решение:
Задача 6:
В стране Курляндии m футбольных команд (по 11 футболистов в каждой). Все футболисты собрались в аэропорту для поездки в другую страну на ответственный матч. Самолет сделал 10 рейсов, перевозя каждый раз по m пассажиров. Еще один футболист прилетел к месту предстоящего матча на вертолете. Докажите, что хотя бы одна команда была целиком доставлена в другую страну.
Решение:
Так как перевезено всего 10m + 1 футболистов, то, рассадив их по клеткам-командам, получаем, что в какой-то клетке сидит 11 футболистов.
Задача 7:
Дано 8 различных натуральных чисел, не больших 15. Докажите, что среди их положительных попарных разностей есть три одинаковых.
Решение:
Задача 8:
Докажите, что в любой компании из 5 человек есть двое, имеющие одинаковое число знакомых в этой компании.
Решение:
Вариантов числа знакомых всего 5: от 0 до 4. Осталось заметить, что если у кого-то 4 знакомых, то ни у кого не может быть 0 знакомых.
Задача 9:
Несколько футбольных команд проводят турнир в один круг. Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.
Решение:
Пусть всего команд n. Тогда вариантов числа команд, с которыми сыграла данная команда n: от 0 до n – 1. Осталось заметить, что если одна команда сыграла со всеми n – 1-й, то никакая другая команда не могла ни с кем не сыграть.
Задача 10:
а) Какое наибольшее число полей на доске 8 × 8 можно закрасить в черный цвет так, чтобы в любом уголке вида из трех полей было по крайней мере одно незакрашенное поле?
б) Какое наименьшее число полей на доске 8 × 8 можно закрасить в черный цвет так, чтобы в каждом уголке вида было по крайней мере одно черное поле?
Решение:
а) Разбейте доску на 16 квадратиков 2 × 2 – это клетки; кроликами, конечно, будут черные поля.
Задача 11:
10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.
Решение:
Задача 12:
Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?
Решение:
Ответ: 16 королей. Разобьём доску на 16 квадратиков, в каждом может быть не более одного короля.
Задача 14:
Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.
Решение:
Каждый из меньших треугольников не может накрывать более одной вершины большого треугольника.
Задача 15:
В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.
Решение:
Разобьем наш квадрат на 25 квадратов со стороной 20 см. По обобщенному принципу Дирихле, в какой-то из них попадет по крайней мере три точки из 51 брошенной.
Задача 16:
Пятеро молодых рабочих получили на всех зарплату – 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.
Решение:
Задача 17:
В бригаде 7 человек и их суммарный возраст – 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не меньше 142 лет.
Решение:
Покрасим всю сушу в синий цвет, а все точки, диаметрально противоположные суше – в красный. Тогда обязательно есть точка, которая покрашена в оба цвета. В ней и надо рыть туннель.
Задача 19:
Докажите, что среди степеней двойки есть две, разность которых делится на 1987.
Решение:
Рассмотрите 1988 степеней и их остатки по модулю 1987.
Задача 20:
Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.
Решение:
Квадраты при делении на 100 могут давать лишь 51 остаток, так как остатки x и 100 – x при возведении в квадрат дают один и тот же остаток.
Задача 21:
Докажите, что среди чисел, записываемых только единицами, есть число, которое делится на 1987.
Решение:
Задача 22:
Докажите, что существует степень тройки, оканчивающаяся на 001.
Решение:
Если 3 m и 3 n – степени тройки, дающие один и тот же остаток при делении на 1000, то 3 m – 3 n = 3 n (3 m – n – 1) делится на 1000 (мы считаем для определенности, что m > n).
Задача 23:
В клетках таблицы 3 × 3 расставлены числа – 1, 0, 1. Докажите, что какие-то две из 8 сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.
Решение:
Эти суммы могут принимать лишь 7 разных значений: от – 3 до 3.
Задача 24:
Сто человек сидят за круглым столом, причем более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.
Решение:
Задача 25:
15 мальчиков собрали 100 орехов. Докажите, что какие-то два из них собрали одинаковое число орехов.
Решение:
Если это не так, то, очевидно, что мальчики собрали не менее, чем 0 + 1 + 2 + … + 14 = 105 орехов – противоречие.
Задача 26:
Цифры 1, 2, …, 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.
Решение:
Произведение чисел во всех группах равно 9! = 362880, а 71³ = 357911.
Задача 27:
В таблице 10 × 10 расставлены целые числа, причем любые два числа в соседних клетках отличаются не более, чем на 5. Докажите, что среди этих чисел есть два равных.
Решение:
Поскольку от любой клетки до любой другой можно добраться, не более 19 раз сдвинувшись в соседнюю клетку, то все числа находятся между числами a и a + 95, где a – минимальное из всех расставленных чисел. Значит, среди этих чисел не более 96 различных.
Задача 28:
Докажите, что среди любых 6 человек есть либо трое попарно знакомых, либо трое попарно незнакомых.
Решение:
У данного человека среди остальных пяти есть либо не менее трех знакомых, либо не менее трех незнакомых ему. Разберем, например, первый случай. Среди этих трех людей есть либо двое знакомых – тогда они вместе с выбранным нами исходно человеком образуют нужную тройку, либо они все трое попарно незнакомы.
Задача 29:
На клетчатой плоскости дано 5 произвольных узлов сетки. Докажите, что середина одного из отрезков, соединяющих какие-то две из этих точек, также является узлом сетки.
Решение:
Рассмотрите координаты этих точек и их остатки при делении на 2.
Задача 30:
На складе имеется по 200 сапог 41, 42 и 43 размеров, причем среди этих 600 сапог 300 левых и 300 правых. Докажите, что из них можно составить не менее 100 годных пар обуви.
Решение:
В каждом размере каких-то сапог меньше: правых или левых. Выпишем эти типы сапог по размерам. Какой-то тип, например, левый, повторится по крайней мере дважды, например, в 41 и 42 размерах. Но так как количество левых сапог в этих размерах суммарно не меньше 100 (почему?), то мы имеем не менее 100 годных пар обуви в этих размерах.
Задача 31:
В алфавите языка племени Ни-Бум-Бум 22 согласных и 11 гласных, причем словом в этом языке называется произвольное буквосочетание, в котором нет двух согласных подряд и ни одна буква не использована дважды. Алфавит разбили на 6 непустых групп. Докажите, что из всех букв одной из групп можно составить слово.
Решение:
Докажите, что в одной из групп разность между числом согласных и числом гласных не больше 1.
Задача 32:
Докажите, что среди любых 10 целых чисел найдется несколько, сумма которых делится на 10.
Решение:
Рассмотрите 10 сумм: x 1 , x 1 + x 2 , …, x 1 + x 2 + … + x 10 и их остатки при делении на 10.
Задача 33:
Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.
Решение:
Разбейте числа от 1 до 20 на 10 наборов, в каждом из которых в любой паре чисел одно делится на другое: 11, 13, 15, 17, 19, 1,2,4,8,16, 3,6,12, 5,10,20, 7,14, 9,18.
Задача 34:
11 пионеров занимаются в пяти кружках дома культуры. Докажите, что найдутся два пионера А и В такие, что все кружки, которые посещает А, посещает и В.
Решение:
Занумеруем кружки числами от 1 до 5 и вместо каждого пионера будем рассматривать тот набор кружков – подмножество множества 1,2,3,4,5 – который состоит из посещаемых им кружков. Осталось разбить 32 подмножества указанного множества на 10 наборов так, чтобы в каждом из наборов из любых двух множеств этого набора одно содержалось в другом. В качестве таких наборов рассмотрим следующие: , , , , , , , , , .
Ответы на олимпиаду Учи.ру по Математике для 7-8 классов (ОСНОВНОЙ тур с 2 по 15 февраля 2021 года)
3. Квадраты и пути
Нарисуй пути от цветных квадратов к белым так, чтобы к каждому белому квадрату подходили пути всех 3 цветов. Пути не должны пересекаться. Чтобы отрезать путь нажми на него. Клетки по краям позволяют продолжить рисовать фигуру на противоположной стороне.
4. Стеклянный куб
Соединяя точки, нарисуй, как выглядит верёвка, если смотреть на куб с разных сторон.
5. Мешок с кофе
На складе есть мешок с 50 кг кофе и гиря массой 8 кг. Для кофейни нужно ровно 22 кг. Взвесь это количество за минимальное число пересыпаний.
6. Аквариум
Аквариумы поставлены друг на друга. В каждый из них ты можешь наливать воду. Заполни аквариумы водой. Числа указывают, сколько всего литров воды должно быть в данном ряду.
Ответы на олимпиаду Учи.ру по Математике для 2 класса (ОСНОВНОЙ тур с 2 по 15 февраля 2021 года)
Собери фигуру из четырёх кубиков, как на образце. Кубики можно переворачивать, нажимая на стрелки, и убирать, перетаскивая на белое поле слева.
Белки и орехи
Белки делят орехи. выдели любое количество орехов больше 0, но строго меньше половины от оставшихся. Проигрывает тот, кто не может сделать ход.
Подробное решение задания тут
Звери в заповеднике
Раскрась все пустые квадраты так, чтобы одинаковые звери нашли друг к другу путь. Дорожки разных зверей не должны пересекаться.
Дороги и развилки
Поменяй завриков местами и нажми на кнопку “Поехали!”, чтобы они оказались в своих домах. Номер машинки подсказывает, к какому дому она должна приехать. Стрелка повернётся в другую сторону после того, как машина проедет её.
Неравенства
Внимательно посмотри на схему неравенства и перетащи нужные карточки в правильные места.
Сейф с ирисками
Чтобы открыть сейф и достать ириски, введи недостающие цифры. Каждое число на фиолетовом круге равно сумме соседних чисел на белом круге.
Подробный разбор решения здесь
Воздушный змей
Переставь все цветные детали так, чтобы получить заданную фигуру.
Имена
Составь имена Ася, Тася и Стася. Имена нельзя составлять по диагонали. У каждого имени свой цвет.
Общие друзья
Расположи завриков на схеме. Линии указывают, кто с кем знаком. Олег – общий друг Маши и Гриши. Архип дружит только с Олегом. Катя дружит только с Юлей.
Читайте также: