Для чего нужен радиатор на материнской плате
Привет Пикабу! Не все помнят времена, когда процессоры и видеокарты требовали в худшем случае простого радиатора, а про корпусные вентиляторы и системы водяного охлаждения никто и не слышал. Но все изменилось: современные процессоры и видеокарты могут потреблять под нагрузкой сотни ватт, так что уже никого не удивишь трехсекционными СВО, килограммовыми суперкулерами и парой-тройкой корпусных вертушек. Однако с прогрессом в области охлаждения ПК также прогрессировали и мифы, и сегодня мы о них поговорим.
Как всегда - текстовая версия под видео.
Миф №1. Чем производительнее охлаждение, тем ниже будет температура процессора.
Казалось бы, все верно: более крутое охлаждение способно отвести больше тепла от крышки процессора, значит его итоговая температура будет ниже. Однако тут ключевой момент — от крышки, а не от кристалла. А ведь между ними есть слой термоинтерфейса, да и зачастую сам кристалл достаточно толстый.
К чему это приводит? Да все к тому, что начиная с определенного тепловыделения процессора уже без разницы, чем вы его будете охлаждать: все упрется в временами не самый качественный термоинтерфейс под крышкой. За примерами ходить далеко не нужно: скальпирование Core i7-8700K и замена терможвачки под крышкой на жидкий металл снизит температуру под нагрузкой как минимум на десяток градусов. Более того — дополнительная шлифовка кристалла топового Core i9-9900K также способна убрать пару градусов.
Миф №2. Кулер нужно выбирать по TDP процессора
Многие производители кулеров и СВО пишут в характеристиках своего изделия, сколько ватт тепла оно может отвести. Аналогично, Intel и AMD пишут тепловыделение своих процессоров. Поэтому может показаться, что если вторая цифра меньше первой, то такое охлаждение вам подойдет.
Увы — тут есть сразу два заблуждения. Во-первых, реальное тепловыделение процессоров под нагрузкой и тем более разгоном зачастую куда выше, чем пишет производитель. Например, номинальный теплопакет Ryzen 9 3900X — 105 Вт, однако на деле он может потреблять почти в два раза больше, около 180-200 Вт. И если сотню ватт способны отвести даже не самые большие башни, то вот 200 Вт требует уже килограммовых суперкулеров или достаточно продвинутых СВО.
Intel тоже принимает в качестве значения TDP уровень энергопотребления при работе на базовой частоте.
Как же тогда узнать, подойдет вам определенный кулер или нет? Ответ прост — читайте его обзоры и смотрите, на каких тестовых системах его проверяют, после чего делайте логические выводы: к примеру, если кулер справился с Core i7-8700K, то и с более простым Core i5-8600K проблем не будет. И, с другой стороны, если с Ryzen 7 3800X у кулера проблемы, то брать его в пару к Ryzen 9 точно не стоит.
Миф №3. Для игровых ПК обязательно нужна СВО.
Как выглядит навороченный игровой компьютер? Правильно, масса вентиляторов с RGB подсветкой и обязательно система водяного охлаждения, куда же без нее. Однако на деле для подавляющего большинства ПК она просто не нужна.
Как итог — оставьте СВО для рабочих станций, где трудятся монструозные процессоры с парой-тройкой десятков ядер и тепловыделением под три сотни ватт. Собирая систему на домашних сокетах LGA1151 или AM4, переплачивать за водянку смысла нет.
Миф №4. Боксовые кулеры абсолютно не эффективны и их обязательно нужно менять.
В общем и целом, у большинства пользователей сложилось не самое лучшее впечатление о боксовых кулерах: дескать, они не эффективны и не справляются с процессорами, с которыми они идут в комплекте. Однако на деле это совсем не так.
Разумеется, небольшой алюминиевый радиатор с кусочком меди, не справится с Core i9 в разгоне. Но, к примеру, стоковый кулер вполне себе может удерживать температуры 6-ядерного Core i5-8400 в играх на уровне 60-75 градусов — и это при критичных температурах около сотни градусов. Еще лучше дела обстоят с боксовыми кулерами для Ryzen, которых существуют аж три версии.
Так, AMD Wraith Stealth, который поставляется с 4-ядерными Ryzen, вполне справляется с ними даже при небольшом разгоне процессора. А, например, AMD Wraith Prism, который поставляется вместе с Ryzen 7, вообще имеет 4 теплотрубки и показывает себя на уровне башенок за 1000-1500 рублей. Так что не стоит считать боксовые кулеры плохими — если вы не балуетесь разгоном и не нагружаете CPU чем-то сильнее игр, их возможностей вам вполне может хватить.
Миф №5. Жидкий металл всегда эффективнее термопасты
Жидкий металл отличается от термпопаст тем, что у него в разы выше коэффициент теплопроводности, из-за чего, в теории, температуры с ним должны быть ощутимо ниже. Однако на деле это далеко не всегда так. Например, если вы будете использовать вместо хорошей термопасты на крышке процессора жидкий металл, то вы снизите температуру… от силы на 2-3 градуса, а вот если под крышкой (то есть проведете скальпирование), то временами на 15-20 градусов.
Почему так? Все просто: площадь кристалла процессора на порядок меньше площади крышки, соответственно тепловой поток между крышкой и кристаллом оказывается огромным. Поэтому теплопроводности термопасты в этом случае не хватает, и выигрыш от перехода на жидкий металл становится ощутимым. А вот между крышкой процессора и подошвой кулера пятно контакта огромно, и тут уже хватает теплопроводности большинства термопаст, так что тратить жидкий металл тут не стоит.
Миф №6. Использование двух вентиляторов на одном радиаторе кулера существенно снизит температуру процессора.
В последнее время стали достаточно распространены процессорные кулеры с двумя и даже тремя вентиляторами, и, казалось бы, они должны эффективнее гонять воздух и тем самым лучше охлаждать ЦП. На деле все как обычно не так хорошо, как хотелось бы.
Миф №7. Расположение в корпусе блока питания никак не влияет на температуру его компонентов.
Большинство относительно дорогих корпусов не просто так имеют место под блок питания в нижней части корпуса — в таком случае его вентилятор захватывает холодный наружный воздух. В более простых корпусах блок питания вынужден брать теплый воздух внутри корпуса, что разумеется негативно повлияет на температуры внутри него.
А с учетом того, что обычно в простых сборках используют вместе с не самыми дорогими корпусами и не самые лучшие блоки питания — не нужно мешать последним нормально работать, стоит доплатить буквально несколько сотен рублей и взять корпус нижним расположением БП.
Миф №8. SSD не требуют радиаторов.
Небольшие M.2 накопители становятся все популярнее: они зачастую в разы быстрее обычных SATA SSD, а вот цены на них постоянно снижаются. Однако стоит понимать, что высокие скорости просто так не даются: производители таких накопителей используют мощные многоядерные контроллеры, теплопакет которых составляет единицы ватт.
Как итог, при работе они могут достаточно существенно греться и достигать критических температур, после чего наступает троттлинг и снижение производительности — в общем, все как у обычных процессоров или видеокарт. Так что если вы купили себе дорогой и быстрый Samsung 960 EVO — докупите к нему радиатор на AliExrpess, если такового нет на материнской плате, это позволит ему работать быстрее при большой нагрузке.
Мощные видеокарты всегда стоили дорого, а сейчас, с еще большим ослаблением рубля, цены точно не уменьшатся. Как итог, появляется желание сэкономить и взять видеокарту подешевле, и обычно в данном случае покупают референсные версии, которые максимально дешевые.
Однако зачастую быстро приходит понимание того факта, что охлаждение таких GPU или сильно шумит, или недостаточно эффективно и не позволяет толком разогнать видеокарту. Казалось бы, выхода тут нет: зачастую снизить шум можно только урезав видеокарте теплопакет, что снизит производительность, а для более-менее существенного разгона придется пускать вертушки на 100% оборотов, и играть в таком случае получится только в наушниках.
И не все знают, что выход из этой ситуации есть, и он достаточно прост — а именно можно отдельно купить кастомную систему охлаждения.
Она способная остудить даже горячую GTX 1080 Ti, причем стоит зачастую дешевле, чем разница между референсом и версией видеокарты от стороннего производителя с хорошим охлаждением.
Более того, в продаже встречаются и водоблоки для топовых RTX и AMD RX — такие решения не просто уберут все проблемы с нагревом, но и еще позволят неслабо разогнать видеокарту. В итоге, как видите, референская видеокарта — не приговор, ее почти всегда можно превратить в топовое решение за сравнительно небольшие деньги.
Как видите, мифов про охлаждение компонентов ПК хватает. Знаете какие-нибудь еще? Пишите об этом в комментариях.
На деле же эффективность системы питания не определяется сугубо числом фаз – здесь уместна аналогия с раками из классической сценки в исполнении Романа Карцева: "Ну очень большие, но по пять рублей" и "Ну очень маленькие, но по три рубля". Другими словами, система питания может обеспечивать заданную мощность и при использовании всего трех фаз. Выгода от использования нескольких фаз заключается в том, что при распределении нагрузки между бОльшим числом фаз удельная нагрузка на каждую уменьшается, и перегрева элементов не происходит.
реклама
Так или иначе, но подсистема питания современных плат начинает испытывать потребность в дополнительном охлаждении – силовые транзисторы (MOSFET) относятся к одним из самых горячих точек на материнской плате. Производители плат решают эту проблему по-разному: устанавливают маленькие радиаторы или предусматривают специальную систему охлаждения типа Abit OTES. Intel предлагает использовать процессорные кулеры с радиальным направлением воздуха: он хоть и горячий, но некоторое движение воздушным масс в окрестностях силовой подсистемы провоцирует :).
Кстати, мне доводилось видеть и ватерблоки для силовых транзисторов: истинные произведения технического миниатюризма :).
Наши коллеги на сайте Adrian's Rojak Pot решили модифицировать материнскую плату Abit NF7-S с целью установки радиаторов на MOSFET'ы. Разумеется, что для изготовления радиаторов пришлось часа четыре поработать ножовкой, чтобы из остатков процессорного радиатора.
. получить маленькие секции с двумя-тремя ребрами на каждом. После установки радиаторов при помощи термоклея Arctic Silver на транзисторы получилась следующая картина:
Все бы в этой истории закончилось благополучно, если бы автор модификации не решил продать материнскую плату. Разумеется, что ее при этом надо было привести к виду, максимально соответствующему внешности нового экземпляра. Для этого необходимо было отодрать радиаторы. Клей оказался настолько "цепким", что при удалении радиаторов пострадал транзистор, и его часть была "вырвана с мясом":
То, что компьютерные комплектующие греются во время работы, знают все, но почему именно — это для многих покрыто тайной. А ведь процессор размером меньше пластиковой карты может разогреваться не хуже сковородки на огне. Откуда же берется столько тепла?
Строительный кирпичик микроэлектроники
В основе практически всей схемотехники лежит фундаментальное изобретение — транзистор. Что же это за элемент? Для лучшего понимания проведем аналогию с окружающим миром. Все живое и неживое состоит из атомов. Это своеобразные кирпичики, из которых природа построила окружающий мир. Атомы объединяются в сложные молекулы, они в свою очередь формируют клетки. Далее идут ткани, органы и организмы.
Аналогичную параллель можно провести и в схемотехнике, только вместо атомов здесь транзисторы. Из них были созданы логические элементы (AND, OR, NOT и другие), с помощью которых люди научились оперировать «1» и «0». На базе логических элементов появились более сложные устройства — регистры, мультиплексоры, дешифраторы, АЛУ (арифметико-логическое устройство) и так далее. Следующим усложнением стали интегральные схемы (МИС — малые, СИС — средние, БИС — большие и СБИС — сверхбольшие).
Почему мы затрагиваем именно транзисторы? Вот вам интересный факт: в процессорах Ryzen Threadripper 3960X и 3970X «упакованы» целых 3,8 миллиарда транзисторов. Согласно данным с презентации Nvidia в новой GeForce RTX 3090 кристалл включает 28 миллиардов транзисторов!
Теперь представьте, что каждый из них выделяет небольшое количество тепла. В масштабах одного элемента это мизерное значение, но когда дело доходит до миллиардов, мы получаем температуры в 100 и больше градусов.
Ранее, когда число транзисторов не превышало миллиона, тепловыделение не было проблемой. Именно поэтому старые процессоры (Intel 8008, Intel 386) и видеокарты даже не комплектовались пассивным и, тем более, активным охлаждением. Однако в современных процессорах количество транзисторов неумолимо растет каждые 18 месяцев в два раза (если считать закон Мура действительным), поэтому от выделяющегося тепла никуда не деться. И его нужно отводить.
Как устроен транзистор
Транзисторы используются в микросхемах для управления электрическим током. Условно компонент можно сравнить со смесителем. Легким движением руки мы можем управлять напором воды и ее температурой. Аналогично и здесь: у транзистора есть три основных вывода: база, эмиттер и коллектор.
Для управления используется база, на которую подают небольшое напряжение и меняют выходные параметры на коллекторе. Насколько большими величинами можно управлять — все зависит от коэффициента усиления конкретного транзистора.
Если говорить о биполярных транзисторах, то в них используется три слоя проводника: PNP positive-negative-positive) или NPN (negative-positive-negative). Условно говоря, это два диода соединенные между собой конкретными сторонами.
Принцип работы транзистора достаточно простой. При подключении источника питания между коллектором и эмиттером электроны начинают скапливаться у коллектора. Однако ток не сможет идти, поскольку замыканию цепи мешает прослойка базы (обозначена красным на рисунке ниже).
При подключении небольшого напряжения между базой и эмиттером электроны начинают «насыщать» базу, и когда места не останется, оставшиеся электроны просачиваются к эмиттеру и цепь замыкается. Транзистор считается открытым.
Итог — изменениями небольшого тока база-эммитер можно усиливать и управлять током в коллектор-эммитер.
Естественно, работа в теории — это одно. На практике происходят вещи, которые и приводят к выделению тепла. Давайте рассмотрим их подробнее.
Переключения транзисторов
При работе затвор транзисторов открывается и закрывается миллиарды раз в секунду. Процесс напоминает зарядку очень маленького аккумулятора. Чтобы открыть затвор для протекания электронов, нужно зарядить этот мини-аккумулятор до определенной величины. Закрытие затвора выполняется путем «сброса» напряжения на землю.
Как раз в ходе этого сброса электрическая энергия превращается в тепловую. Естественно, чем больше переключений за единицу времени, тем горячее будет кристалл. Именно поэтому при разгоне с увеличением частоты до 6–8 ГГц оверклокеры используют жидкий азот. Транзисторы выделяют так много тепла от переключений, что другие способы их остудить просто неэффективны.
Мощность короткого замыкания
Большинство микросхем выполнены по технологии CMOS (К-МОП; комплементарная логика на транзисторах металл-оксид-полупроводник). Одна из особенностей этой технологии — ток никогда не попадает прямым путем на землю. Однако появляется другая проблема.
В логических элементах используются пары транзисторов, которые переключаются синхронно. Когда первый закрыт, второй открывается и наоборот. Это напоминает работу двухцветного светофора. Оба сигнала никогда не загораются одновременно и переключаются попарно.
Однако имеется небольшой промежуток времени в момент переключения обоих транзисторов. Именно в этот момент ток попадает на землю. Каким бы быстрым не было переключение, избавиться от переходного момента невозможно физически. Как и в предыдущем случае, количество тепловой энергии зависит от скорости переключения, но в данном варианте уже логических элементов.
Именно по этим причинам увеличение частоты процессора, видеокарты или ОЗУ приводит к наиболее ощутимому тепловыделению.
Ток утечки и ненулевое сопротивление сток-исток
Многие считают, что в выключенном состоянии техника не потребляет никакой мощности. Относительно транзисторов это не так, поскольку даже в выключенном состоянии небольшое количество тока будет протекать. Уменьшение размера транзисторов приводит к тому, что пропорционально уменьшается и изолятор, который не дает электронам двигаться.
Это одна из главных проблем микроэлектроники. Уже практически полностью освоен техпроцесс 5 нм, а компания TSMC, крупнейший производитель полупроводниковых изделий, планирует к 2021 запустить техпроцесс на 3 нм. Можно ли меньше — вопрос затруднительный, поскольку тогда в транзисторах становится все труднее управлять токами, следовательно, и обеспечить работу всей схемы.
Сюда же относится ненулевое сопротивление сток-исток. Проще говоря, у включенного транзистора также имеется небольшое тепловыделение. Как уже было сказано ранее, в масштабах нескольких миллиардов штук эти эффекты и дают температуры, с которыми вынуждены бороться пользователи.
Не стоит забывать и про небольшое сопротивление проводников, которые присутствуют на кристаллах. Они также вносят свой вклад в тепловыделение.
Зачем и как бороться с высокими температурами
Если не охлаждать транзисторы, то они просто выйдут из строя, перегорят. К счастью, спалить современные комплектующие проблематично. В процессорах предусмотрена соответствующая защита Thermal throttling, которая отключит чип при достижении определенной температуры. Видеокарты комплектуются 1–3 вентиляторами, поэтому нагреть их до критических значений будет непросто даже в стресс-тестах.
Еще один важный нюанс — высокие температуры неблагоприятно сказываются на сроке эксплуатации микроэлектроники. Однако каких-либо статистических данных об этом нет. На самом деле эффект ускоренного «старения» на фоне среднего срока службы процессора и видеокарты в 3–8 лет не оказывает ощутимого воздействия. Вы быстрее смените комплектующие на новые, чем они выйдут из строя по причине постоянной работы под высокими температурами.
Узнать о том, какая температура является нормальной для ваших комплектующих вы можете из нашего материала.
Как отводить тепло
Пассивное охлаждение. На чип устанавливается радиатор из материала с высокой теплопроводностью — алюминия или меди. Деталь рассеивает выделяемое тепло в окружающую среду. Плюс — бесшумность, но такое охлаждение не подходит для самых горячих комплектующих. Обычно радиаторы можно найти на чипсете и цепях питания материнских плат, а также планках ОЗУ. Однако выпускаются и «башни» для процессоров с невысоким TPD (выделяемая тепловая мощность).
Активное воздушное охлаждение. Совместно с радиаторами используется один или несколько вентиляторов, которые ускоряют рассеивание. Кулеры устанавливаются на большинство процессоров из среднего и топового сегмента, а также на видеокартах. Системы более эффективные по сравнению с предыдущими, но шумят и создают вибрации, а также требуют питания для вентиляторов.
Водяное охлаждение. В качестве теплоносителя используется специальная жидкость или вода, которая циркулирует по замкнутой системе. Для охлаждения самой жидкости используются все те же вентиляторы. Топовое охлаждение на рынке для самых горячих систем.
Экстремальное охлаждение. В эту категорию входят специальные башни, наполняемые жидким азотом или гелием. Используются только оверклокерами в экспериментах по разгону комплектующих. Жидкий азот имеет температуру в -195.8 градусов по Цельсию, поэтому отлично подходит для охлаждения при экстремальном разгоне.
Естественно, температуры зависят от компоновки комплектующих в системном блоке и числа вентиляторов, поэтому не стоит пытаться вместить высокопроизводительное железо в маленький «душный» корпус.
В предыдущей статье, посвященной вопросам охлаждения процессора, мы уже упоминали о том, что любой потребитель электрического тока в той или иной степени нагревается в процессе работы. Определить примерное количество выделяемой теплоты очень легко, достаточно определить суммарную электрическую мощность, потребляемую системным блоком. Потребление современных игровых систем, например, находится в диапазоне 500-1000 Вт. Несложно подсчитать, что компоненты таких компьютеров выделяют до 1 кДж тепловой энергии в секунду. Приближенные вычисления показывают, что при массе системного блока около 10 кг его нагрев на 1 °C происходит менее чем за пять секунд. Получается, что, для того чтобы нагреть весь системный блок до температуры отказа полупроводниковых элементов (85-90 °C), требуется всего пять-семь минут работы ПК. А с учетом неравномерности нагрева отказ системы на практике произойдет менее чем через минуту. Очевидно, что, для того чтобы не допустить перегрева системного блока и его отдельных элементов, необходимо правильно организовать их охлаждение.
Фактически задачу правильного охлаждения в системнике персонального компьютера можно условно разбить на два дополняющих друг друга этапа: охлаждение отдельных компонентов и организация отвода тепла из корпуса системного блока. Рассмотрим эти этапы по отдельности.
Отвод тепла из системного блока
Задача отвода излишков тепла из системного блока ПК не так тривиальна, как может показаться на первый взгляд. Для начала давайте вспомним устройство типового компьютерного корпуса типа tower с верхним расположением блока питания.
В типичном корпусе без дополнительных средств охлаждения вентилятор блока питания, работающий на вытяжку, создает разреженность внутри системного блока. Холодный "забортный" воздух входит через вентиляционные отверстия внизу лицевой панели, проходит, нагреваясь, через область расположения оперативной памяти и процессора и через блок питания выходит наружу.
На схеме хорошо видно, что крупногабаритная видеокарта, платы расширения, а также жесткие диски и устройства на 5,25" являются серьезными препятствиями для прохождения воздуха и из-за этого создаются устойчивые зоны горячего воздуха, что приводит к повышению температуры расположенных в них компонентов.
Установка дополнительных корпусных вентиляторов напротив центрального процессора и нагнетающего вентилятора на передней панели несколько уменьшит размеры "горячих зон", но полностью их не уберет, так как сам воздушный мешок никуда не денется и крупногабаритные устройства по-прежнему будут препятствовать прохождению воздуха. Воздух, как и текущая вода, всегда ищет кратчайший путь от входа к выходу, а образующиеся при его столкновении с препятствиями турбулентности не решают кардинально проблему охлаждения укромных уголков системного блока.
Тем не менее решить задачу правильного обдува достаточно просто. Шаг первый - установите корпусные вентиляторы так, чтобы в корпусе создавалась разреженная атмосфера. Суммарная мощность работающих на выдув вентиляторов должна быть больше тех, которые обеспечивают приток воздуха внутрь. Знаю, что многие знатоки сразу возразят: "Таким образом мой компьютер превратится в пылесос. " и т. п. Но ответ подобным "знатокам" один - пылесосьте почаще вокруг компьютера, тогда ему нечего будет затянуть в себя. Кроме того, никто не отменял необходимость регулярной чистки компьютерной начинки с помощью обычного пылесоса.
Шаг второй - обеспечьте приток воздуха в системный блок не только через штатные вентиляционные отверстия (в угоду красивому дизайну производители нередко делают их слишком мало), но и возле каждого тепловыделяющего объекта. Делается это достаточно просто. На задней панели снимаются заглушки под видеокартой и платами расширения, а на передней удаляются заглушки слотов для установки флоппи-дисковода и незанятых слотов на 5,25". Если вас беспокоит дизайн передней панели, то на место снятых можно купить декоративные сетчатые заглушки на свой вкус. Результат подобных манипуляций с корпусом представлен на нижеследующей схеме.
Автор статьи простым снятием заглушки под видеокартой снизил ее температуру на 21°С, чем был сам немало удивлен, так как планировал замену кулера на графическом процессоре, с общим бюджетом всего мероприятия около 20 у. е.
Разумеется, приведенная схема не является догмой. Большое разнообразие компьютерных корпусов, различная организация их штатного охлаждения, разное расположение вентиляционных отверстий и компонентов системного блока явно не могут соответствовать одному шаблону. На данном типовом примере просто показан общий принцип правильной организации воздушных потоков. Обеспечьте прохождение холодного воздуха мимо всех тепловыделяющих элементов, уделив особое внимание видеокарте и винчестерам, и этим вы на порядок увеличите стабильность и надежность системы в целом без дополнительных вложений в дорогие системы охлаждения.
При планировании вентиляции корпуса учтите еще один момент - всегда общее направление воздушных потоков должно помогать естественной воздушной конвекции. Теплый воздух поднимается вверх, поступая в системный блок снизу.
Охлаждение элементов материнской платы
Материнская плата является тем устройством, надлежащему охлаждению которого, как правило, уделяют достаточное внимание только ее производители. Рядовой же пользователь ПК по умолчанию предполагает, что разработчики предусмотрели все необходимые меры по ее тепловой защите. И радиаторы расставил там, где они нужны, и вон, смотрите, даже тепловые трубки проложены там, где надо. А значит, и беспокоиться совершенно не о чем. К сожалению, подобное отношение к охлаждению элементов материнки нередко приводит к преждевременному выходу ее из строя.
Прежде всего давайте разберемся, какие элементы материнской платы выделяют достаточно тепла, чтобы стоило озаботиться их принудительным охлаждением. "Горячих" элементов на материнке всего три:
- северный мост;
- южный мост;
- стабилизаторы напряжения.
Из всех перечисленных наименее проблемным является южный мост. Так как он отвечает за работу с медленными компонентами, то даже увеличение штатных частот при разгоне компьютера мало сказывается на его тепловыделении. Если все же тестовые утилиты показывают слишком высокую температуру, в большинстве случаев достаточно установки на южный мост небольшого радиатора. Так как крепежных отверстий в платах возле южного моста не бывает, радиатор устанавливается на термоклей.
Северный мост, в отличие от южного, является более мощным источником тепла. Практически все производители материнских плат устанавливают на него штатные радиаторы. В случае недостаточной скорости рассеивания тепла на этот радиатор следует закрепить малогабаритный кулер. Как правило, для его установки в материнках предусмотрены монтажные отверстия вокруг чипа моста. Если же этих отверстий нет, то установка вентилятора на радиатор производится с помощью обычного суперклея.
Охлаждаем все, что можно
Стабилизаторы напряжения подвержены перегреву не меньше северного моста. Располагается группа стабилизаторов, как правило, между процессором и блоком разъемов. В современных материнских платах на них нередко устанавливаются штатные радиаторы. В топовых материнках даже организуется единая система охлаждения для мостов и стабилизаторов на тепловых трубках. Однако для нормального охлаждения стабилизаторов хороший обдув гораздо важнее солидных радиаторов. Это необходимо учитывать при выборе кулера для центрального процессора. Если у вас установлен супермощный кулер с направлением воздушного потока параллельно материнской плате или же имеется система жидкостного охлаждения, вообще не создающая воздушных потоков, то стабилизаторы могут запросто перегреться даже при наличии хороших радиаторов на них.
Такой кулер отлично охлаждает только процессор
При использовании подобных систем охлаждения центрального процессора необходимо в обязательном порядке предпринимать дополнительные меры по охлаждению зоны расположения стабилизаторов напряжения. Если же ваш процессорный кулер направляет воздушный поток на материнскую плату, то в большинстве случаев этого будет достаточно для охлаждения стабилизаторов с радиаторами до нормальной температуры.
В том случае, если, на ваш взгляд, система охлаждения продумана правильно, все радиаторы и вентиляторы на месте, обдув нормальный, но мост или стабилизаторы все же перегреваются, поменяйте термопасту. Нередко причиной перегрева является плохой термоинтерфейс между тепловыделящими компонентами ПК и системами их охлаждения.
Охлаждение оперативной памяти
К вопросам охлаждения модулей оперативной памяти серьезные оверклокеры подходят с не меньшей ответственностью, чем к охлаждению процессора. Если для работы в штатных режимах в большинстве случаев достаточно правильной организации воздушных потоков в корпусе системного блока и установки простейших радиаторов для полного успокоения, то при разгоне качественное охлаждение - залог успеха.
Радиатор на планке оперативной памяти
Для более надежного охлаждения оперативки производители предлагают широкий спектр устройств различного типа. Самые недорогие - системы воздушного охлаждения, которые представляют собой комплект радиаторов, надеваемых на каждую планку памяти, и перекрывающий весь ряд планок блок вентиляторов. Такие системы имеют существенный недостаток - довольно большие габариты, из-за которых нередко невозможно или нежелательно их устанавливать рядом с крупным процессорным кулером.
Кулер отлично охлаждает память, но съедает половину воздуха у процессора
Лишены этого недостатка жидкостные системы охлаждения оперативной памяти. В таких системах к специальным радиаторам крепится контактная площадка, через которую прокачивается охлаждающая жидкость. Подобные жидкостные системы показывают максимальную эффективность, тем более что существуют системы, использующие в качестве теплоносителя жидкий азот.
Напомним, что столь радикальные меры по охлаждению оперативной памяти необходимы только при разгоне системы. Если же вы не собираетесь повышать штатные частоты, то вполне достаточно радиаторов на планках памяти и правильной организации воздушных потоков в корпусе ПК.
Охлаждение видеокарт
Современные видеокарты в подавляющем большинстве случаев являются устройствами, хорошо сбалансированными в отношении охлаждения их элементов. Штатные радиаторы и вентиляторы, устанавливаемые на модули графической памяти и на графический процессор, обеспечивают достаточное охлаждение этих элементов в штатных режимах. Тем не менее широкие ряды компьютерных энтузиастов предпринимают серьезные усилия по снижению температуры элементов видеокарт при их разгоне, так как в этом случае производительности штатных кулеров уже недостаточно. Ну и, конечно же, дополнительные меры по снижению рабочей температуры компонентов графических карт необходимо предпринимать, если замечена нестабильность их работы при серьезных нагрузках или тестовые программы показывают близкие к критическим данные с датчиков температуры.
Гибридная система охлаждения видеокарты
Основные шаги по повышению эффективности охлаждения видеокарт мало отличаются от описанных выше для других компонентов. В первую очередь необходимо проанализировать воздушные потоки в системном блоке и обеспечить стабильный приток холодного воздуха в область радиатора системы охлаждения видеокарты. Если с обдувом все в порядке, но температура чипа не снижается, то стоит задуматься о замене штатной системы охлаждения на более производительную. Ассортимент кулеров для видеокарт немногим уступает ассортименту процессорных - мощные радиаторы с двумя-тремя высокопроизводительными вентиляторами, системы жидкостного охлаждения, гибридные кулеры, сочетающие достоинства воздушного и жидкостного охлаждения в самых разнообразных вариантах. И, конечно же, для самых радикальных оверклокеров есть системы охлаждения, использующие в качестве теплоносителя (скорее хладоносителя) жидкий азот.
Охлаждение жестких дисков, оптических приводов и других устройств
Жесткие диски и прочие "медленные" устройства являются менее подверженными перегреву устройствами. Однако, если учесть, что зачастую они устанавливаются в места с недостаточной вентиляцией, случаи выхода из строя электроники жестких дисков из-за перегрева не так уж и редки. Поэтому необходимо все же правильно организовывать обдув контроллеров даже таких "медленных" устройств как с помощью правильной организации воздушных потоков внутри системного блока, так и с помощью специальных винчестерных кулеров, принудительно обдувающих непосредственно платы электроники. Такие кулера могут крепиться непосредственно на устройство, а могут представлять собой своеобразный карман формата 5,25" с системой принудительной вентиляции, внутрь которого уже устанавливаются жесткие диски на 3,5".
Вывод
Организация эффективного охлаждения элементов системного блока является одним из важных элементов обеспечения стабильности и долговечности работы всего ПК в целом. Одним из важнейших этапов этой работы является обеспечение эффективного отвода излишков тепла из корпуса. В подавляющем большинстве случаев этот этап окажется и единственным необходимым для тех, кого устраивает производительность работы своего компьютера в штатном режиме.
Для широкого же круга экстремалов, стремящихся выжать максимум возможного из имеющегося в их руках компьютерного "железа", существует большой спектр разнообразных высокопроизводительных систем охлаждения любого из элементов системного блока, короткий обзор которых мы постарались дать в этой статье.
Читайте также: