Что передает информацию в компьютере
Оперативная память — предназначена для временного хранения информации, т. е. на момент, когда компьютер работает (после выключения компьютера информация удаляется из оперативной памяти).
Долговременная память (внешняя) — для долгого хранения информации (при выключении компьютера информация не удаляется).
Существует память отдельного человека и память человечества. Память человечества, в отличие от памяти человека, содержит все знания, которые накопили люди за время своего существования и которыми могут воспользоваться ныне живущие люди. Эти знания представлены в книгах, запечатлены в живописных полотнах, скульптурах и архитектурных произведениях великих мастеров.
Изобретённая в 1839 году фотография позволила сохранить для потомков лица людей, пейзажи, явления природы и другие зримые свидетельства прошедших времён.
В 1895 году в Париже был продемонстрирован первый в мире кинофильм. С той поры человечество получило возможность сохранять образы, воплощённые в движении (танец, жесты, пантомимы и т. д.).
Человек научился хранить и звуковую информацию. Вначале её сохранение обеспечивалось передачей «из уст в уста» (например, напевами), позднее — с помощью записи нот.
В середине прошлого столетия в Японии было налажено производство магнитофонов. До сих пор магнитофоны применяются для записи и воспроизведения звуковой информации.
Современный компьютер может хранить в своей памяти различные виды информации: текстовую, числовую, звуковую и видеоинформацию.
Информация хранится в разном виде: текста, рисунка, схемы, фотографии, звукозаписи, кино и видеозаписи и т. д.
В каждом случае применяются свои носители.
Носитель — это материальная среда, используемая для записи и хранения информации.
Бумажные носители
Бумага изобретена во II веке н. э. в Китае.
Информационный объём книги из 300 страниц по 2000 символов на странице составляет примерно 600 000 байтов, или 586 Кб.
Школьная библиотека из 5000 томов имеет информационный объём приблизительно 2861 Мб = 2,8 Гб.
На первых компьютерах использовали бумажные носители — перфоленту и перфокарту.
Магнитные носители
В XIX веке была изобретена магнитная запись (на стальной проволоке диаметром 1 мм).
В 1906 году был выдан патент на магнитный диск.
Ферромагнитная лента использовалась как носитель для ЭВМ первого и второго поколения. Её объём был 500 Кб. Появилась возможность записи звуковой и видеоинформации.
В начале 1960 -х годов в употребление входят магнитные диски.
Винчестер компьютера — это пакет магнитных дисков, надетых на общую ось.
Информационная ёмкость современных винчестеров измеряется в Гб.
Компакт-диск (англ. Compact Disc) — оптический носитель информации в виде пластикового диска с отверстием в центре, процесс записи и считывания информации с которого осуществляется при помощи лазера.
Передача информации
Мы постоянно участвуем в действиях, связанных с передачей информации. Люди передают друг другу просьбы, приказы, отчёты о проделанной работе, публикуют книги, научные статьи, рекламные объявления. Передача информации происходит при чтении книг, при просмотре телепередач.
В процессе передачи информации обязательно участвуют источник и приёмник информации: источник передаёт информацию, а приёмник её принимает.
Между ними действует канал передачи информации — информационный канал (канал связи).
Органы чувств человека являются биологическими информационными каналами.
Техническими информационными каналами являются телефон, радио, телевидение, компьютерные сети.
По характеру передачи информационный канал может быть односторонним или двусторонним.
Односторонний канал передаёт информацию только от источника к приёмнику.
Двусторонний канал передаёт информацию как от источника к приёмнику, так и в обратном направлении.
При переходе дороги на регулируемом перекрёстке ты (приёмник информации) воспринимаешь зелёный сигнал светофора (источника информации) как разрешение перейти дорогу. В этом случае информация передаётся в одну сторону, но бывают такие ситуации, когда происходит взаимный обмен информацией.
Играя в компьютерную игру, ты постоянно обмениваешься информацией с компьютером: воспринимаешь сюжет, правила и текущую ситуацию, анализируешь полученную информацию и передаёшь компьютеру с помощью клавиатуры или мыши некоторые управляющие команды.
В свою очередь, компьютер принимает и обрабатывает твои команды, отображая результат обработки на экране дисплея. Этот взаимный обмен информацией происходит на протяжении всей игры. В случае просмотра телепередачи всей семьёй источник информации один (телепередача), а приёмников несколько (члены семьи).
Для того чтобы передавать информацию на большие расстояния, человек использует различные средства связи.
Средства связи — способы передачи информации на расстояние. К традиционным средствам связи относятся сигнализация, почта, телеграф, телефон, радио, телевидение, Интернет.
Действия с информацией
Окружающий нас мир — мир информации. Информацию нам несут другие люди, всевозможные предметы и явления.
Когда ты слушаешь объяснения учителя, читаешь книгу, изучаешь схему метро, смотришь кинофильм, посещаешь музей и выставки, ты получаешь информацию.
Примеры получения информации в жизни
Важную информацию человек старается запомнить (сохранить), а если не надеется на свою память, то и записать, например в записную книжку.
Примеры хранения информации в жизни
- Лена записал номер телефона друга в тетрадь,
- Лена сохраняет изображение на компьютере.
- Петя записал номер телефона друга в тетрадь
- Костя запоминает правило
- сохраняет в своём мобильном телефоне номер телефона друга
- Вика фотографируется на фоне достопримечательностей на память
Люди обдумывают полученную информацию, делают определённые выводы. Другими словами, обрабатывают информацию. Поиск нужного слова в словаре, перевод текста с иностранного языка на русский, заполнение календаря погоды, раскрашивание контурных карт, вставка пропущенных букв в упражнении по русскому языку — это всё примеры обработки информации.
Примеры обработки информации в жизни
- Катя решает задачу из задачника,
- пятиклассник решает задачу из задачника,
- мальчик выбирает главное в параграфе,
- Лариса решает задачу из задачника,
- Лена выполняет перевод текста с английского на русский
- пятиклассник создаёт список контактов в телефоне
Потребность человека выразить, передать имеющуюся у него информацию привела к появлению речи, письменности, изобразительного и музыкального искусства.
Примеры передачи информации в жизни
- Лена публикует информацию в блоге
- Оля даёт списать домашнюю работу
- девочка рассказывает родителям, как прошёл день в школе
- девочка отправляет электронное письмо
Человек постоянно совершает действия, связанные с получением и передачей, хранением и обработкой информации.
Действия с информацией
- Чтение газеты,
- заучивание правил или стихотворения,
- решение математических задач,
- фотографирование,
- разговор по телефону,
- выполнение контрольной работы,
- разгадывание кроссворда,
- прослушивание музыкальной кассеты,
- просмотр телепередачи,
- работа на компьютере с клавиатурным тренажёром,
- чтение книги,
- выполнение домашнего задания по истории— это действия человека с информацией.
А вот приготовление обеда — это действия с продуктами питания. Но чтобы приготовить какое-то блюдо, необходимо иметь информацию о том, как это делается. Только тогда получается вкусно и полезно.
Таким образом, к действиям человека с информацией не будет относится:
- приготовление обеда,
- стирка,
- покраска стен,
- посадка дерева,
- толковый словарь,
- видеокассета,
- утренняя гимнастика.
Правильные действия человек может осуществлять, имея информацию о том, как это делается. В детстве люди учатся ходить и говорить, рисовать, писать и читать, есть и готовить пищу, убирать постель и мыть посуду, делать утреннюю гимнастику и чистить зубы, выполнять многие другие действия. Как всё это делается, ребёнку объясняют и показывают родители, воспитатели и учителя. Многому можно научиться, просто наблюдая, как это делают другие. Наблюдение — это тоже действие с информацией.
Когда мы наблюдаем, читаем, слушаем, мы узнаём что-то новое — получаем ___.
Информация может быть представлена в разных ___: ___, числовая, графическая, звуковая.
С информацией можно выполнять следующие ___: ___, хранить, передавать, получать.
Человек может получить ___ различными путями: с помощью органов ___, осязания, обоняния, вкуса, слуха, внутренних ощущений или в результате ___ (в уме). Чтобы получить ___, можно ___ за окружающим миром: задавать вопросы, экспериментировать. Часто эти действия продолжаются вместе.
Ответ:
Наука об информации и способах работы с ней — это информатика.
Когда мы наблюдаем, читаем, слушаем, мы узнаём что-то новое — получаем информацию.
Информация может быть представлена в разных видах: текстовая, числовая, графическая, звуковая.
С информацией можно выполнять следующие операции: обрабатывать, хранить, передавать, получать.
Человек может получить информацию различными путями: с помощью органов зрения, осязания, обоняния, вкуса, слуха, внутренних ощущений или в результате размышлений (в уме). Чтобы получить информацию, можно наблюдать за окружающим миром: задавать вопросы, экспериментировать. Часто эти действия продолжаются вместе.
Задание. Определи источник и приёмник информации, а также характер (односторонний, двусторонний) передачи информации. Используй слова: письмо, диспетчер, учитель, учебник, газета, мальчик и компьютер, пассажиры, ученики, мальчик, будильник, пешеходы и водители, билет, бабушка и внук, регулировщик, Таня и Лена, водители, знак, бабушка, школьник.
Ситуация: Таня и Лена разговаривают по телефону
Источник: ?
Приемник: ?
Характер передачи: ?
Ответ:
Ситуация: Таня и Лена разговаривают по телефону
Источник: Таня и Лена
Приемник: Таня и Лена
Характер передачи: двусторонняя.
Задание: Восстанови хронологическую последовательность.
Задание: Восстанови хронологическую последовательность событий.
Ответ:
1 — Изобретение фотографии.
2 — Первая запись звука с помощью фонографа.
3 — Демонстрация первого кинофильма.
4 — Изобретение магнитофона.
5 — Появление первых лазерных дисков.
Используемая литература
Л. Л. Босова. Информатика и ИКТ учебник для 5 класса. Москва Бином. Лаборатория знаний 2012.
Передача информации — физический процесс, посредством которого осуществляется перемещение информации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:
- Источник информации.
- Приёмник информации (получатель сигнала).
- Носитель информации.
- Среда передачи.
Передача информации - заблаговременно организованное техническое мероприятие, результатом которого становится воспроизведение информации, имеющейся в одном месте, условно называемом "источником информации", в другом месте, условно называемом "приёмником информации". Данное мероприятие предполагает предсказуемый срок получения указанного результата.
Для осуществления передачи информации необходимо наличие, с одной стороны, так называемого "запоминающего устройства", или "носителя", обладающего возможностью перемещения в пространстве и времени между "источником" и "приёмником". С другой стороны, необходимы заранее известные "источнику" и "приемнику" правила и способы нанесения и снятия информации с "носителя". С третьей стороны, "носитель" должен продолжать существовать как таковой к моменту прибытия в пункт назначения. (к моменту окончания снятия с него информации "приёмником")
В качестве "носителей" на современном этапе развития техники используются как вещественно-предметные, так и волново- полевые объекты физической природы. Носителями могут быть при определённых условиях и сами передаваемые "информационные" "объекты" (виртуальные носители).
Передача информации в повседневной практике осуществляется по описанной схеме как "вручную", так и с помощью различных автоматов. Современная вычислительная машина, или попросту говоря компьютер, способен открыть все свои безграничные возможности только в том случае, если он подключен к локальной компьютерной сети, которая связывает каналом обмена данными все компьютеры той или иной организации.
Проводные локальные сети являются фундаментальной основой любой компьютерной сети и способны превратить компьютер в чрезвычайно гибкий и универсальный инструмент, без которого попросту невозможен никакой современный бизнес.
Локальная сеть позволяет осуществлять сверхбыстрый обмен данными между вычислительными машинами, реализовать работу с любыми базами данных, осуществлять коллективный выход во всемирную сеть Интернет, работать с электронной почтой, проводить распечатку информации на бумажный носитель, используя при этом всего один единый принт-сервер и многое другое, что оптимизирует рабочий процесс, а значит и увеличивает эффективность бизнеса.
Однако беспроводные сети являются лишь дополнительным элементом локальной компьютерной сети, где основную работу выполняют магистральные кабели обмена данных. Основной причиной этого является феноменальная надежность проводных локальных сетей, которые используют все современные фирмы и организации, вне зависимости от их размеров и области занятости.
Сетевая тополо́гия (от греч. τόπος, - место) — способ описания конфигурации сети, схема расположения и соединения сетевых устройств.
- физической — описывает реальное расположение и связи между узлами сети.
- логической — описывает хождение сигнала в рамках физической топологии.
- информационной — описывает направление потоков информации, передаваемых по сети.
- управления обменом — это принцип передачи права на пользование сетью.
Существует множество способов соединения сетевых устройств. Выделяют следующие базовых топологии:
- Шина
- Линия
- Кольцо
- Звезда
- Полносвязная
- Дерево
- Двойное кольцо
- Ячеистая топология
- Решётка
- Fat Tree
Дополнительные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».
Топология типа общая ши́на, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.
Шина самой своей структурой допускает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать информацию только по очереди, — последовательно — потому что линия связи единственная. В противном случае пакеты передаваемой информации будут искажаться в результате взаимного наложения (т. е. произойдет конфликт, коллизия). Таким образом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно (т. е. последовательно, а не параллельно)).
В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, что увеличивает надежность «шины». (При отказе любого центра перестает функционировать вся управляемая им система). Добавление новых абонентов в «шину» достаточно простое и обычно возможно даже во время работы сети. В большинстве случаев при использовании «шины» нужно минимальное количество соединительного кабеля по сравнению с другой топологией. Правда, нужно учесть, что к каждому компьютеру (кроме двух крайних) подходят два кабеля, что не всегда удобно.
«Шине» не страшны отказы отдельных компьютеров, потому что все другие компьютеры сети продолжат нормально обмениваться информацией. Но так как используется только один общий кабель, — в случае его обрыва нарушается работа всей сети. Тем не менее может показаться, что «шине» обрыв кабеля не страшен, поскольку в этом случае остаются две полностью работоспособные «шины». Однако из-за особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств — терминаторов.
Без включения терминаторов в «шину» сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Таким образом, при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались физически соединенными между собой. Короткое замыкание в любой точке кабеля «шины» выводит из строя всю сеть. Хотя в целом надежность «шины» все же сравнительно высока, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом, поиск, тем не менее, неисправности в «шине» затруднен. В частности: любой отказ сетевого оборудования в «шине» очень трудно локализовать, потому что все сетевые адаптеры включены параллельно, и понять, который из них вышел из строя, не так-то просто.
При построении больших сетей возникает проблема ограничения на длину линии связи между узлами, — в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами — повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.
- Небольшое время установки сети;
- Дешевизна (требуется кабель меньшей длины и меньше сетевых устройств);
- Простота настройки;
- Выход из строя одной рабочей станции не отражается на работе всей сети.
- Неполадки в сети, такие как обрыв кабеля или выход из строя терминатора, полностью блокируют работу всей сети;
- Затрудненность выявления неисправностей;
- С добавлением новых рабочих станций падает общая производительность сети.
Кольцо́ — это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.
Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.
Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие — позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.
Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).
В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2—10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.
Последующий алгоритм работы таков — пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.
- Простота установки;
- Практически полное отсутствие дополнительного оборудования;
- Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.
- Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
- Сложность конфигурирования и настройки;
- Сложность поиска неисправностей.
- Необходимость иметь две сетевые платы, на каждой рабочей станции.
Наиболее широкое применение получила в волоконно-оптических сетях. Используется в стандартах FDDI, Token ring.
Звезда́ — базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано.
Рабочая станция, с которой необходимо передать данные, отсылает их на концентратор. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня — коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт — получателю. Одновременно может быть передано несколько пакетов. Сколько — зависит от коммутатора.
В центре сети содержится компьютер, который выступает в роли сервера.
В центре сети с данной топологией содержится не компьютер, а концентратор, или коммутатор, что выполняет ту же функцию, что и повторитель. Он возобновляет сигналы, которые поступают, и пересылает их в другие линии связи. Все пользователи в сети равноправны.
- выход из строя одной рабочей станции не отражается на работе всей сети в целом;
- хорошая масштабируемость сети;
- лёгкий поиск неисправностей и обрывов в сети;
- высокая производительность сети (при условии правильного проектирования);
- гибкие возможности администрирования.
- выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
- для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
- конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.
Одна из наиболее распространённых топологий, поскольку проста в обслуживании. В основном используется в сетях, где носителем выступает кабель витая пара UTP категории 3 или 5.
Код ОГЭ: 1.2.1 Процесс передачи информации, источник и приемник информации, сигнал, скорость передачи информации
- тот, кто предоставляет информацию (выступает ее источником);
- тот, кто принимает информацию и является ее получателем (таких может быть несколько);
- канал связи, по которому передается информация.
Общую схему передачи информации разработал основоположник цифровой связи (создатель теории информации) Клод Шеннон.
Источниками и приемниками информации могут быть живые существа или технические устройства. Каналами связи могут быть, например, электромагнитные, звуковые и световые волны.
Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными). Сигнал является дискретным, если его параметр может принимать только конечное число значений и существует лишь в конечное число моментов времени. В компьютерах используются сигналы, которые могут принимать только два дискретных значения — 0 и 1.
По способу передачи сигналов различают каналы проводной связи (например, кабельные) и каналы беспроводной связи (например, спутниковые).
По типу среды распространения каналы связи делятся на проводные, акустические, оптические, инфракрасные и радиоканалы. Например, один из современных каналов передачи информации — световод (оптоволокно) — позволяет передавать сигналы лазеров на расстояние более 100 км без усиления.
Основной характеристикой каналов передачи информации является их пропускная способность, или скорость передачи по каналу информации.
Скорость передачи информации отображает, как быстро передается информация от источника к получателю — безотносительно к тому, по каким каналам происходит передача.
Пропускная способность канала — максимальное количество переданной или полученной по этому каналу информации за единицу времени. Таким образом, пропускная способность канала — максимально возможная скорость передачи информации по этому каналу. Например, пропускная способность современных оптоволоконных каналов — более 100 Мбит/с, т. е. в миллиарды раз выше, чем у нервной системы человека при чтении текстов.
Пропускная способность канала измеряется в тех же единицах, что и скорость передачи информации.
В сетях передачи данных по одному каналу может одновременно происходить огромное количество процессов передачи информации (от многих источников ко многим получателям). При этом скорость передачи информации для каждой конкретной пары «источник — получатель» может быть разной, а пропускная способность канала — величина, как правило, постоянная.
Компьютеру, как и человеку, необходимы свои «глаза и уши», с помощью которых он мог бы воспринимать информацию извне. В настоящее время имеются разнообразные устройства, выполняющие эти функции в составе компьютера. Они называются устройствами ввода , так как обеспечивают ввод в компьютер данных в различных формах: чисел, текстов, изображений, звуков.
Устройства ввода преобразуют эту информацию из формы, понятной человеку, в цифровую форму, воспринимаемую компьютером.
Современные компьютеры могут обрабатывать числовую, текстовую, графическую, звуковую и видеоинформацию .
Клавиатура — компьютерное устройство, которое располагается перед экраном дисплея и служит для набора текстов и управления компьютером с помощью клавиш, находящихся на клавиатуре.
Клавиатура позволяет вводить в компьютер числовую и текстовую информацию , а также различные команды и данные.
Микрофон используется для ввода звуковой информации, подключается к входу звуковой карты.
Сканер — устройство для перевода графической информации в цифровую.
Сканер используется для оптического ввода в компьютер и преобразования в компьютерную форму изображений (фотографий, рисунков, чертежей).
Сканеры используются и для бесклавиатурного ввода текста. Всякую информацию сканер воспринимает как графическую. Если это был текст, который в другом случае пришлось бы набирать вновь, то после работы сканера специальная программа распознавания текста, позволяющая выделить в считанном изображении отдельные символы и сопоставить с ними соответствующие коды символов, преобразовывает его в пригодный для обработки текст.
Веб-камера — малоразмерная цифровая видео- или фотокамера, способная в реальном времени фиксировать видеоизображения, предназначенные для дальнейшей передачи по компьютерной сети.
Цифровые камеры позволяют получать видеоизображение и фотоснимки в цифровом (компьютерном) формате. Позволяют вводить в компьютер графическую информацию.
Читайте также: