Часть аппаратного обеспечения компьютера которая является исполнителем машинных инструкций
ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР (ЦП или центральное процессорное устройство ЦПУ) – главная часть аппаратного обеспечения компьютера и его вычислительный центр. По сути, он является исполнителем машинных инструкций и предназначен для выполнения сложных компьютерных программ. У ЦПУ есть несколько главных характеристик, но для обычного обывателя важны лишь две – тактовая частота и количество ядер. Первые массовые многоядерные процессоры для настольных ПК были выпущены в начале 2006 года и на данный момент почти полностью вытеснили одноядерные.
Для значительного ускорения вычислений, любой современный процессор оснащен встроенной памятью с очень быстрым доступом, которая предназначена для хранения данных, которые могут быть запрошены процессором с наибольшей вероятностью. Называется этот буфер кэшем и может быть первого (L1), второго (L2) или третьего (L3) уровня. Самой быстрой памятью и по сути, неотъемлемой частью процессора, является кэш первого уровня, объем которого совсем невелик и составляет 128 Кб (64x2). Большинство современных ЦПУ без кэша L1 функционировать не могут. Вторым по быстродействию следует L2-кэш и в объеме может достигать 1-12 Мб. Ну и самым медленным, но зато и самым внушительным по размеру (может быть более 24 Мб) является кэш третьего уровня и имеется далеко не у всех процессоров.
Еще одним немаловажным моментом является понятие процессорного разъема или гнезда процессора, называемого сокетом (Socket), в который этот самый процессор устанавливается. Различные поколения или семейства ЦПУ, как правило, устанавливаются в свои уникальные разъемы и этот факт необходимо учитывать при подборе связки материнская плата – процессор.
Из-за сложности и высокотехнологичности производства, высочайшим требованиям к качеству продукции, конкурентоспособных компаний выпускающих центральные процессоры не так уж и много, а для рынка настольных ПК так и всего две – Intel и AMD. Их давнее соперничество началось еще в начале 90-ых, правда за эти 20 лет доля продаваемых процессоров компанией AMD, всегда была значительно ниже доли Intel. Тем не менее, продукция Advanced Micro Devices всегда отличалась привлекательным соотношением производительность/цена при достаточно демократичной розничной стоимости своей продукции, что дает ей возможность достаточно уверенно удерживать свою долю рынка, равной около 19% от общемировой доли.
A-Series – новейшее четырехъядерное семейство процессоров, являющееся на данный момент последней разработкой компании AMD, поступившей в продажу. Отличительной чертой данной серии служит встроенная в ядро процессора, графическая видеокарта Radeon.
INTEL
Celeron – большое семейство низкобюджетных процессоров, предназначенное для использования в домашних и офисных компьютерах начального уровня.
PentiumDual-Core – устаревшее семейство бюджетных двухъядерных процессоров для недорогих домашних и офисных систем. Не смотря на то, что процессоры этой серии до сих пор повсеместно продаются, большинство пользователей в нынешнее время делает свой выбор в пользу более актуального и рентабельного Core i3.
Core i3 – новое поколение двухъядерных процессоров начального и среднего уровня цены и производительности. Призваны заменить морально устаревшие Pentium Dual-Core на архитектуре старого поколения Intel Core 2. Имеют встроенный графический процессор и встроенный контроллер памяти.
Core i5 – семейство процессоров среднего уровня цены и производительности. ЦПУ данной серии могут содержать 2 или 4 ядра и в большинстве своем встроенную графическую карту. Отличное решение для «игровых» и мультимедийных систем. Поддерживают технологию TurboBoost, которая заключается в автоматическом разгоне процессора под нагрузкой.
Core i7 – флагманская линейка процессоров от компании Intel. Устанавливаются в высокопроизводительные системы, предназначенные для решения задач любой сложности. Поддерживает Turbo Boost, с которой процессор автоматически увеличивает производительность тогда, когда это необходимо.
Таблица основных характеристик семейств процессоров для настольных ПК компаний Intel и AMD
Заканчивая эту тему, напоследок, давайте заглянем в прайс-лист любой компьютерной компании и попробуем разобраться в какой-нибудь позиции из каталога процессоров, применив только что полученные знания. Например, расшифруем запись вида:
«Процессор Socket 1155 Intel Core i5 G620 (2.6GHz, L3 3Mb) BOX».
Socket 1155 – процессор устанавливается в разъем типа LGA 1155
Intel Core i5 – процессор относится к семейству Core i5 и произведен компанией Intel
G620 – модель процессора
2.6GHz – тактовая частота процессора (чем она выше, тем процессор быстрее)
L3 3Mb – процессор имеет кэш третьего уровня, который равен 3 мегабайтам
BOX – означает, что процессор идет в комплекте с вентилятором и имеет фирменную трехлетнюю гарантию (OEM – без вентилятора и гарантия 1 год)
Процессор электронный блок либо интегральная схема исполняющая машинные инструкции, главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.
Новые вопросы в Информатика
Запропонуйте проєкт «Наша Smart-школа», у якому передбачте підключення різноманітних датчиків для автоматизації функціонування шко- ли. Намалюйте схем … у реалізації вашого проекту по школі. Роз- рахуйте орієнтовний кошторис реалізації такого проєкту, вико- риставши ціни на обладнання з інтернет-магазинів. сол перел
Помогите пожалуйста Упростите выражение и запишите результат по правилам Паскаля ((7 – x)*(x-7))/(14-2*x) – (-(y –(- t))div 6 )*(23 mod (3*2))*abs(-3 … )
Запишите числа в экспоненциальной форме с нормализованной мантиссой – правильной дробью, имеющей после запятой цифру отличную от нуля: 0,00000030510; … 1043003,510.
Плацкартний вагон має 52 місця, а купейний - 36. Кількість плацкартних та купейних вагонів у поїзді вводить користувач. Скільки пасажирів може перевез … ти поїзд?
реферат на тему імена та відкриття в історії інформатики ключове питання:до чого приводять відкриття
Помогите пожалуйста с информатикой. Среди 8 чисел, введенных с клавиатуры, вывести кратные 4. Нужна написанная программа. Написание фигни ради баллов … НЕ ПРОКАТИТ.
Запишите числа в естественной форме 0,0127*105; 10,506E-4.
1) В чем суть алгоритма записи чисел в развернутой форме? К чему это приводит?2)В чем суть алгоритма перевода десятичного числа в любую систему счисле … ния?пож пож побыстрее
Перевести из десятичной системы числа: 1) 173 в двоичную 2) 89 в шестнадцатиричную 3) 104 в восьмиричную 4) 79 в четырехричную 5) 28 в шестиричную
СРОЧНО ДАЮ 35 БАЛЛОВ! Напишите кратко (на страницу примерно) про нанороботов
Изучение любого языка высокого уровня обычно начинается с освоения основных команд и написания первых простейших программ. Но с ассемблером так сразу не получится. Это объясняется тем, что программы на ассемблере напрямую манипулируют устройствами компьютера, в первую очередь процессором и памятью. Языки высокого уровня скрывают от программиста все манипуляции с компьютерным «железом». Таким образом, чтобы научиться программировать на ассемблере, необходимо знать архитектуру компьютера.
1.1. Архитектура компьютера.
Успешное применение языка ассемблера невозможно без знания и понимания архитектуры компьютера и знания архитектуры конкретного процессора, для которого будет создаваться программа.
Архитектура компьютера – это логическая организация, структура и ресурсы компьютера, которые может использовать программист.
Архитектура компьютера включает в себя архитектуры отдельных устройств, входящих в компьютер. Хотя компьютер состоит из многих внешних и внутренних устройств, но реально программисту на ассемблере приходится работать только с тремя устройствами компьютерной системы: процессором, памятью и портами ввода-вывода. В сущности, эти три устройства определяют работу всего компьютера и работу всех внешних устройств подключенных к нему. Все эти три устройства соединены между собой при помощи трех основных шин: шиной данных (ШД), шиной адреса (ША) и шиной управления (ШУ) (рис. 1).
Рис. 1. Архитектура ЭВМ.
Процессор — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.
Оперативная память предназначена для загрузки программ и для временного хранения различных данных, необходимых для работы программ.
Порты ввода-вывода предназначены для взаимодействия с пользователем и другими устройствами.
Шина (bus) – это группа параллельных проводников, с помощью которых данные передаются от одного устройства к другому:
- Шина данных (data bus) используется для обмена команд и данных между процессором и оперативной памятью, а также между устройствами ввода-вывода и ОЗУ.
- Шина управления (control bus) используется для передачи специальных сигналов, которые синхронизируют работу всех устройств, подключенных к системной шине. Например, процессор должен знать, когда можно читать информацию с шины данных. Для этого используется специальный сигнал готовности шины данных.
- Шина адреса (address bus) используется для указания адреса ячейки памяти в ОЗУ, к которой в текущий момент происходит обращение со стороны процессора или устройства ввода-вывода (чтение или запись).
Все три шины вместе образуют системную шину или ее еще называют магистраль.
1.2. Системы счисления.
Слово "компьютер" (computer) с английского языка переводится как "вычислитель", т. е. машина для проведения вычислений. И это полностью соответствует действительности, т. к. на уровне "железа" компьютер выполняет только простейшие арифметические операции с числами, такие как сложение и умножение.
Сердцем компьютера является процессор, называемый часто центральным процессором (ЦП) или микропроцессором. Именно центральный процессор выполняет все вычисления.
Так исторически сложилось, что практически все цифровые микросхемы, в том числе компьютерные процессоры, работают только с двумя разрешенными уровнями напряжения. Один из этих уровней называется уровнем логической единицы (или единичным уровнем), а другой — уровнем логического нуля (или нулевым уровнем). Чаще всего логическому нулю соответствует низкий уровень напряжения (от 0 до 0,4 В), а логической единице — высокий уровень (от 2,4 до 5 В). Два уровня напряжения было выбрано исключительно из-за простоты реализации.
Таким образом, можно образно представлять, что в электронной цепи компьютера "бегают" только цепочки ноликов и единичек. За этими цепочками нулей и единичек закрепилось название машинные коды. Точно также можно представлять, что в память компьютера, а также на магнитные, оптические и прочие носители записываются нолики и единички, которые в совокупности составляют хранимую информацию.
То есть компьютер способен воспринимать только нолики и единички, а для нас (людей) эти нолики и единички представляются через устройства вывода (дисплеи, принтеры, звуковые колонки и пр.) в виде текста, графических изображений и звуков.
Так как компьютер способен воспринимать только два управляющих сигнала: 0 и 1, то и любая программа должна быть ему представлена только в двоичных кодах, т. е. в машинных кодах. В старые добрые времена операторы первых ЭВМ программировали напрямую в машинных кодах, переключая специально предусмотренные для этого тумблеры, или пробивали двоичные коды на перфолентах и перфокартах, которые затем считывала ЭВМ и выполняла операции согласно этим кодам.
Однако записывать и запоминать огромные двоичные цепочки, первым программистам было неудобно, поэтому они стали вместо двоичной системы использовать другие системы счисления, например десятичную, восьмеричную или шестнадцатеричную. Для сравнения: двоичное число 11001000 будет представлено в десятичном виде как 200, а в восьмеричной и шестнадцатеричной соответственно как 310 и С8.
Стоит еще раз отметить, что недвоичные системы счисления первые программисты стали использовать исключительно для личного удобства. Компьютер не способен воспринимать десятичные, шестнадцатеричные или восьмеричные числа, а только и только двоичные коды!
Таким образом, операторы первых ЭВМ стали составлять свои программы в более удобной системе счисления (восьмеричной, шестнадцатеричной или другой), а потом переводить их в двоичный машинный код. Наибольшее распространение у первых программистов из всех систем счисления получила шестнадцатеричная система счисления, которая до сих пор является основной в компьютерном мире. И все из-за того, что в отличие от других систем счисления перевод из шестнадцатеричной системы счисления в двоичную систему и обратно осуществляется очень легко — вместо каждой шестнадцатеричной цифры, подставляется соответствующее четырехзначное двоичное число.
Хотя шестнадцатеричная система облегчила работу с машинными кодами, но создавать программу в шестнадцатеричном виде все равно очень не просто. В итоге родился язык ассемблера, который давал возможность писать программы на более понятном человеку языке и в то же время позволял легко переводить их в машинный код.
Язык ассемблера прозвали низкоуровневым языком, потому что он максимально приближен к машинному языку, а значит к "железу" компьютера. После языка ассемблера стали появляться высокоуровневые языки, такие как Бейсик, Паскаль, Фортран, Си, С++ и пр. Они еще более понятны человеку, но преобразование в машинный код высокоуровневых программ значительно сложнее, из-за чего размер кода, как правило, получается большим и менее быстрым по сравнению с ассемблерными программами.
Если операторы первых ЭВМ переводили свои программы в машинный код вручную, то сейчас эту работу выполняют специальные программы— трансляторы (англ, translator — переводчик). Для языков высокого уровня транслятор принято называть компилятором (англ, compiler — составитель, собиратель). Для языка ассемблера обычно тоже не используется слово транслятор, а говорят просто: "ассемблер". Таким образом, ассемблером называют, как язык программирования, так и транслятор этого языка.
Соответственно процесс работы ассемблера называют ассемблированием. Процесс работы компилятора называют компилированием. Процесс обратный ассемблированию, т. е. преобразование машинного кода в программу на языке ассемблера называют дизассемблированием.
1.3. Биты и байты.
Цифра в двоичной арифметике называется разрядом (или точнее "двоичным разрядом") и может принимать значение ноль или единица. В компьютерном мире вместо разряда часто употребляют название бит.
Таким образом, минимальной единицей информации в компьютерной системе является бит, который может принимать только значение 0 или 1. Однако минимальным объемом данных, которым позволено оперировать любой компьютерной программе является не бит, а байт. Байт состоит из восьми бит. Если программе нужно изменить значение только одного бита, то она все равно должна считать целый байт, содержащий этот бит. Биты в байте нумеруются справа налево от 0 до 7, при этом нулевой бит принято называть младшим, а седьмой — старшим (рис. 2).
Так как в байте всего восемь бит, а бит может принимать только два значения, то простой арифметический подсчет показывает, что байт может принимать до 2 8 =256 различных значений. Поэтому в байте могут быть представлены целые числа в диапазоне от 0 до 255, или числа со знаком от -128 до +127.
Однако не только байтами может оперировать компьютерная программа, но и более крупными единицами данных— словами, двойными словами и учетверенными словами. Слово состоит из двух байт, при этом биты с 0 по 7 составляют младший байт в слове, а биты с 8 по 15— старший (рис. 3). Понятно, что слово может принимать до 2 16 =65536 различных значений.
Двойное слово, как следует из самого названия, состоит из двух слов или четырех байт, а значит из 32-х бит, а два двойных слова составляют учетверенное слово (64 бита).
Существует еще более крупная единица, которая называется параграф и представляет собой 16 смежных байт.
Внутреннее устройство компьютера
ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР (ЦП или центральное процессорное устройство ЦПУ) – главная часть аппаратного обеспечения компьютера и его вычислительный центр. По сути, он является исполнителем машинных инструкций и предназначен для выполнения сложных компьютерных программ. У ЦПУ есть несколько главных характеристик, но для обычного обывателя важны лишь две – тактовая частота и количество ядер. Процессор
устройство, которое формирует графический образ и выводить его на экран монитора. В эпоху зарождения настольных ПК графические адаптеры выполняли лишь функцию вывода на экран уже сформированного процессором изображения. Нынешнее же поколение графических карт занимается не только выводом изображения, но и самостоятельно формирует его. Современные видеоадаптеры могут быть встроенными (интегрированными) в системную плату компьютера или являться платой расширения, которая вставляется в специальный разъем для видеокарт PCI-Express (ранее таким разъемом был AGP, который сейчас устарел) на материнской плате. Первая группа адаптеров, как правило, используется в бюджетных решениях для работы с офисными приложениями, где речи не идет о формировании сложных трехмерных изображений и вообще требования к графической составляющей невелики. И хотя последнее время многие интегрированные решения уже позволяют пользователям смотреть видео высокой четкости (HD) и наслаждаться трехмерной (3D) графикой начального уровня, их возможности не идут ни в какое сравнение с возможностями видеокарт, которые выпускаются, как самостоятельные решения. Видеокарта
ЖЕСТКИЙ ДИСК (HDD) – устройство хранения данных, основанное на принципах магнитной записи. Основное устройство в вашем компьютере, на котором располагается вся информация, начиная с установленной операционной системы и заканчивая вашими личными файлами.
ОПТИЧЕСКИЙ ПРИВОД – устройство, предназначенное для считывания, записи и перезаписи информации с оптических носителей информации в виде пластикового диска
МАТЕРИНСКАЯ ПЛАТА (системная плата, мать, главная плата, материнка) – это сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера (центральный процессор, контроллер ОЗУ и собственно оперативная память, графический адаптер, контроллеры подключения жестких дисков и оптических приводов, контроллеры базовых интерфейсов ввода-вывода, звуковая и сетевая карта). Как правило, системная плата так же содержит разъёмы (слоты) для подключения дополнительных плат и устройств по шинам
Блок питания Блок питания (БП) – предназначен для снабжения узлов компьютера электрической энергией постоянного тока, а также преобразования сетевого напряжения до необходимых значений. В некоторой степени блок питания может выполнять функции стабилизации и защиты компонентов компьютера от незначительных скачков напряжений.
Читайте также: