Бетонные работы в стесненных условиях
Технология бетонных работ.
Подготовительные и опалубочные работы.
Прежде всего, необходимо сделать заказ бетона на заводе или сделать его самостоятельно. Выбирайте из известных заводов производителей или бетоно-растворных узлов (минизавод), посоветуйтесь со строителями, узнайте о качестве бетона, способах доставки, цене. Делая заказ, укажите марку, морозостойкость, водонепроницаемость, подвижность бетона, фракции мелкого и крупного заполнителя (зависит от назначения конструкции, типа армирования и способа бетонирования), объем и время доставки. Пред началом монтажа опалубки, все крупногабаритные грузы должны быть убраны с места монтажа, необходимо очистить площадку от мусора и ненужных стройматериалов.
Опалубка по виду монтажа делится на съемную (которую можно использовать после бетонирования повторно) и несъемную (остается частью конструкции и повторное использование которой невозможно).
Перед началом опалубочных работ необходимо определится с видом опалубки, которую будете применять. Виды опалубки:
Дерево. Наиболее применяемый в частном строительстве вид опалубки, изготавливается из хвойных и реже лиственных пород деревьев, толщиной от 20мм. Применяют для всех видов конструкций.
Фанера. Применяют 12слойную фанеру для изготовления колонн, стен, лестниц. Также имеет широкое распространение в коттеджном строительстве.
Древесностружечные плиты. Толщиной 20мм, применяют также как и фанеру.
Металл. Применяют как прокатный металл, так и листовой (в виде несъемной и съемной опалубки). В частном домостроении применяют реже, из-за дороговизны материала.
Синтетические материалы. Номенклатура с каждым годом увеличивается, но наиболее применяемые - это пенопласт, стеклотекстолит.
При строительстве коттеджа или частного дома самым применяемым видом опалубки является деревянная самодельная опалубка. Такая опалубка состоит из 3 частей:
Щитовая часть опалубки
1. Щитовая часть. Часть, которая примыкает непосредственно к бетону и является плоскостью формирования конструкции.
2. Крепежные, распорные элементы. Удерживают опалубку от деформаций под воздействием веса бетона.
3. Поддерживающие стойки. При бетонировании балок, перекрытий необходимый элемент временного крепления конструкции.
Стойки и раскосы опалубки
Щитовую часть делают из доски толщиной не менее 2-2.5см, ширина доски 150-200мм, из нее набирают требуемую поверхность и скрепляют поперечными брусковыми балками (сшивная планка), с шагом 0,5-1 метр, в зависимости от геометрических характеристик конструкции. Доску обычно подбирают исходя из размеров конструкции, но при этом необходимо учитывать вес такой доски, ее должен быть в состоянии поднять и перенести рабочий. Опалубку монтируют согласно опалубочным чертежам, по осям и отметкам, указанным в проекте.
Бетон при твердении давит на поверхность опалубки своим весом, чтобы сохранить устойчивость щитов используют специальные элементы. В виде распорных и стяжечных элементов используют болты, арматуру, деревянные балочки, стяжки с шагом от 1,5 до 3м, в зависимости от вида и размеров конструкции.
Стойки выполняют из бруса сечением, определяемым расчетом, с уширением сверху. При расстановке стоек для перекрытий можно использовать шахматный порядок с шагом 1-2м. Понятное дело, что чем больше стоек, тем лучше и уменьшится вероятность неровности плоскостей перекрытия или балки.
Важные моменты монтажа опалубки:
Перед бетонированием необходимо проверить жесткость и прочность опалубки, вертикальные и горизонтальные уровни.
По внутренему периметру опалубки необходимо закрепить полиэтиленовую пленку, чтобы поверхность бетона была гладкой и цементное молоко осталось в бетоне. Оно необходимо в цементе в виде связующего и его потеря может привести к уменьшению прочности бетона.
Предельный допустимый срок доставки смеси от завода до площадки:
при 20 градусах Цельсия — 45 минут
10-19 градусах Цельсия — 60 минут
5-9 градусов Цельсия — 90 минут
Подача бетонной смеси в стесненных условиях
Целесообразность применения той или другой бетоно-укладочной машины зависит от конкретных условий производства работ, их объемов и сроков, конструктивных характеристик возводимых монолитных конструкций.
Подачу бетонной смеси с помощью кранов целесообразно применять при средней интенсивности бетонных работ до 20 м3 в смену. Кран одновременно также используется на производстве арматурных и опалубочных работ.
Автомобильные и стреловые самоходные краны на пнев-моколесном ходу с телескопическими стрелами используются при небольших объемах рассредоточенных бетонных и железобетонных работ внутри цехов одноэтажных промышленных зданий и при производстве работ вне цехов.
Стреловые краны на гусеничном ходу и башенные краны, как правило, используются для подачи бетонной смеси при возведении пристраиваемых зданий и сооружений на территории реконструируемого предприятия. В отдельных случаях их применяют для подачи бетонной смеси внутрь действующих цехов, насыщенных технологическим оборудованием, через предварительно устраиваемые проемы в ограждающих конструкциях (рис. 8.2).
Эффективно использование мостовых кранов при бетонировании фундаментов под оборудование, возводимых внутри реконструируемого цеха, для подачи бетонной смеси. При этом трудоемкость и себестоимость подачи бетонной смеси ниже, чем при применении стреловых кранов. При использовании мостовых кранов для подачи бетонной смеси следует учитывать:
возможность их использования в случаях, когда они не заняты работами в действующем цехе;
необходимость предохранения оборудования цехов, их территории от загрязнения жидкими материалами, которые могут вытекать из бадей или бункеров во время их переноса над оборудованием цеха. Для этого перед началом движения мостового крана бадьи и бункера должны быть очищены от прилипших к ним частиц бетонной смеси, а у выпускных отверстий должны прикрепляться чехлы из брезента, резинотканевого материала для предохранения от вытекания бетонной смеси.
Для бетонирования мелких конструкций при усилении колонн бетонная смесь должна подаваться в контейнерах малого объема (40—50 л). Контейнеры заполняются из перегрузочных бункеров, автобетономешалок и из бетоносмесительных установок; затем с помощью электрокаров или автопогрузчиков их устанавливают на платформу, перемещаемую мостовым краном к месту бетонирования. Из контейнеров бетонная смесь перегружается в бетонируемую конструкцию с помощью автопогрузчиков или электрокаров, а также лебедок и блоков, закрепленных на фермах (балках) покрытия.
Если бетонируемая конструкция, расположена в пролете, не оснащенном мостовым краном, но рядом с пролетом, имеющим мостовой кран, бетонную смесь из бункера с помощью мостового крана разгружают в приемное устройство бетоноукладчика или ленточного конвейера, расположенного в зоне действия мостового крана. Бетоноукладчик передает смесь в соседний пролет.
При способе Г бетонную смесь, доставленную автосамосвалами, с помощью эстакады и перегрузочного устройства (рис. 8.5) перегружают в емкости для внутрицехового транспортирования. При наличии мостового крана в цехе бункера транспортируют к месту укладки. При его отсутствии бетонную смесь загружают в более мелкие емкости, соответствующие грузоподъемности имеющихся автопогрузчиков, электрокаров и других средств (способ Д).
При реконструкции многоэтажных зданий, когда средствами вертикального транспорта являются подъемники, а потребность в бетонной смеси мала, смесь можно подавать к месту укладки в ручных тележках, загружаемых из раздаточного устройства с перегрузочной эстакадой. Место перегрузки и раздачи располагают вне здания вблизи от подъемника. Тележки устанавливают на платформу подъемника и поднимают на этажи (способ Е).
При объемах работ от нескольких сот кубических метров и более бетонную смесь можно подавать с помощью бетононасосов. При этом необходимо обеспечить их безостановочную трехсменную работу (способ Ж).
В условиях реконструкции обычно применяют бетоно-насосы производительностью 10, 20 и 40 м3/ч с диаметрами бетоноводов соответственно 125, 150 и 283 мм. Бетононасосы загружаются с эстакады или размещаются в котловане.
- избегать использования бетонных смесей со щебнем из мягких пород, используя по возможности щебень с менее остроугольной формой;
- избегать поворотов бетоновода под углом 90°, в особенности в вертикальной плоскости;
- при расстоянии транспортирования бетонной смеси автосамосвалами более 3 км смесь перед загрузкой в бетононасос должна дополнительно перемешиваться;
- бетонная смесь должна быть с В/Ц 0,45—0,65 и осадкой конуса 4—10 см; расход цемента — не менее 270 кг/м 3;
- положительное влияние на работу бетононасосов оказывает применение пластифицирующих добавок;
- необходимо строго соблюдать режим пуска и остановки бетононасоса.
Транспортирование бетонной смеси по трубам обеспечивает ее подачу в густоармированные конструкции, исключает дополнительные перегрузки по горизонтали и вертикали в стесненных и труднодоступных местах, существенно сокращает трудозатраты на разравнивание при укладке в конструкцию. Кроме того, при транспортировании не образуется цементное молоко и исключено воздействие атмосферных условий на бетонную смесь.
Примечания. * Насос оборудован шарнирно сочлененной распределительной стрелой длиной 19 м. ** В скобках приведены показатели для насоса СБ-95 без стрелы при использовании дополнительного комплекта бетоноводов.
Наибольшее распространение в настоящее время получили бетононасосы с гидравлическим приводом (табл. 8.2), имеющие следующие преимущества по сравнению с бетононасосами с механическим приводом: возможно плавное регулирование производительности; уменьшается удельное сопротивление движению бетонной смеси в бетоноводе; сокращается износ деталей, работающих в абразивной среде. Высокое давление в гидросистеме обеспечивает давление в транспортном цилиндре насоса, в 7—8 раз превышающее давление, создаваемое в цилиндрах бетононасосом с механическим приводом. Эти качества позволяют улучшить дальность транспортирования бетонной смеси по (притоптали до 400 м и по вертикали до 60 м, повысить эксплуатационную надежность бетононасосов и снизить их энергоемкость.
В базе бетононасосов с гидравлическим приводом ппм,,(шы стационарные, прицепные и самоходные установки, славящиеся широким диапазоном производительности (пг 5 до 60 м3/ч), удобством и надежностью в эксплуатации, мобильностью.
В СССР выпускается малогабаритный бетононасос с гидравлическим приводом производительностью 5 м3/ч (У1н; ПН), производство электрогидравлических бетон-блоков производительностью 25 и 40 м3/ч (СБ-95А, ППГ-Г), СМ-123), а также автобетононасоса БН-80-20 производительностью до 65 м3/ч на базе автомобиля КрЛЗ-257 и автобетононасоса СБ-126 производительностью 65 м3/ч на базе автомобиля КамАЗ-58213.
В стесненных условиях рационально применение установок с распределительной стрелой для подачи бетонной смеси к месту укладки (рис. 8.6). Применение распределительной стрелы исключает трудоемкие работы по монтажу и демонтажу трубопроводов, устройству распределительных лотков, ручной перекидке бетонной смеси. Стрелы выполняются секционными из двух-трех шарнирно сочлененных звеньев и монтируются на прицепе, кране или шасси автомобиля в комплексе с бетононасосом. В условиях реконструкции особенно эффективно применение автобетононасосов (рис. 8.7). Они оборудованы трехзвенной шарнирно сочлененной стрелой с радиусом подачи бетонной смеси 17 м (БН-80-20) и 20 м (СБ-126). Стрелы полноповоротные, легко складывающиеся в течение нескольких минут при перебазировании. Наличие телескопической шарнирно сочлененной стрелы обеспечивает значительную рабочую зону при работе с одной стоянки, возможность подачи бетонной смеси в труднодоступные места внутрицехового пространства. Па стройках СССР успешно применяются автобетононасосы с шарнирно сочлененной стрелой фирм «Штеттер» и «Путцмайстер» (ФРГ), «Вортингтон» (Италия) и др. (табл. 8.3.).
Стационарные и прицепные бетононасосы производительностью 5. 25 м3/ч применяются для подачи бетонной смеси
при возведении железобетонных густоармированных, тонкостенных и массивных конструкций объемом 300. 2500 м3, а производительностью 40 м3/ч и более — для бетонирования массивных малоармированных конструкций с объемом бетона в сооружении 5000 м 3 и более.
Самоходные и прицепные бетононасосные установки, оборудованные инвентарными шарнирно сочлененными распределительными стрелами с гидроприводом, наиболее эффективно используются при бетонировании рассредоточенных конструкций объемом не менее 50 м3, а также при необходимости подачи бетонной смеси в оконные и технологические проемы и в труднодоступные места внутри реконструируемого цеха.
Пневмонагнетатели можно использовать для подачи бетонной смеси в труднодоступные места в тех случаях, когда по технологическим соображениям неизбежны интервалы в подаче бетонной смеси.
Выпускаемые предприятиями Минтрансстроя СССР пневмонагнетатели имеют производительность от 5 до 20 м3/ч, дальность подачи бетонной смеси по горизонтали до 200 м, высоту подачи до 35 м, внутренний диаметр бето-новода 70. 180 мм. Они в основном применяются при строительстве .тоннелей. В промышленном строительстве при реконструкции целесообразно применение передвижных установок ППТУ-2 и ППТУ-3, разработанных Днепропетровским филиалом НИИСП Госстроя УССР. Установки смонтированы на пневмоколесном шасси и могут буксироваться автомобилем или трактором. Производительность установок ППТУ-2 и ППТУ-3 составляет соответственно 8 и 16 м3/ч, дальность подачи бетонной смеси по горизонтали до 200 м, по вертикали до 60 м, внутренний диаметр трубопровода соответственно 145 и 193 мм, подвижность транспортируемой бетонной смеси — более 3 и-2 см.
Самоходные ленточные бетоноукладчики, а также конвейеры применяются для подачи бетонной смеси с интенсивностью 20—90 м3/сут при бетонировании фундаментов различного типа. Ленточные бетоноукладчики применяются для бетонирования значительных по объему фундаментов и массивов зданий и сооружений, пристраиваемых к цехам или вновь возводимых на территории реконструируемого предприятия. Ленточные конвейеры предназначены для бетонирования в основном монолитных конструкций с небольшими размерами в плане (5—8 м2), устраиваемыми внутри реконструируемого цеха. Бетонная смесь на ленточных конвейерах подается на расстояние до 100 м, как правило, с изменением оси движения из-за необходимости обхода технологического оборудования предприятия и прохода в технологические проемы.
В стесненных условиях площадки возможно применение самоходных бетоноукладчиков с телескопической стрелой типа ЛБУ-20, наличие которой позволяет механизировать процесс подачи и распределения бетонной смеси в пределах значительной рабочей зоны с одной стоянки машины. Так, бетоноукладчиком ЛБУ-20, разработанным ЦНИИОМТП, с одной стоянки можно подавать и распределять бетонную смесь в радиусе от 3 до 20 м от оси вращения стрелы с поворотом ее на 360°.
Для подачи бетонной смеси в заглубленные конструкции небольших размеров в плане (до 10 м2), расположенные внутри реконструируемых цехов, эффективно использование вибрационных конвейеров. При невозможности подъезда транспортных средств внутри цеха к вибропитателю конвейера он может быть также установлен снаружи. При этом вибролоток пропускают через технологическое отверстие в стене. Бетонную смесь транспортируют вниз под углом 5—20° на расстояние до 30 м.
Для транспортирования бетонной смеси к приемному устройству бетоноукладочной машины или в возможных случаях непосредственно в конструкцию применяют автобетоносмесители, обеспечивающие доставку бетонной смеси высокой подвижности и регулирующие ее выдачу. Выпускаются автобетоносмесители СБ-69, СБ-92 и СБ-92-1 с объемом готового замеса 2,5 и 4 м3 на базе автомобилей МАЗ-503Б, КрАЗ-258 и КамАЗ-5511.
СП 70.13330.2012 Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87 (с Изменениями N 1, 3, 4)
5.3.1 Для обеспечения прочного и плотного сцепления бетонного основания со свежеуложенным бетоном требуется:
удалить поверхностную цементную пленку со всей площади бетонирования;
срубить наплывы бетона и участки нарушенной структуры;
удалить опалубку штраб, пробки и другие ненужные закладные части;
очистить поверхность бетона от мусора и пыли, а перед началом бетонирования поверхность старого бетона продуть струей сжатого воздуха.
5.3.2 Прочность бетонного основания при очистке от цементной пленки должна составлять не менее:
0,3 МПа - при очистке водной или воздушной струей;
1,5 МПа - при очистке механической металлической щеткой;
5,0 МПа - при очистке гидропескоструйной или механической фрезой.
Примечание - прочность бетона основания определяется по ГОСТ 22690.
5.3.3 В зимнее время при укладке бетонных смесей без противоморозных добавок необходимо обеспечить температуру основания не менее 5°С. При температуре воздуха ниже минус 10°С бетонирование густоармированных конструкций (при расходе арматуры более 70 кг/м или расстоянии между параллельными стержнями в свету менее 6) с арматурой диаметром более 24 мм, арматурой из жестких прокатных профилей по ГОСТ 27772 или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла до положительной температуры, за исключением случаев укладки предварительно разогретых бетонных смесей (при температуре смеси выше 45°С).
5.3.4 Все конструкции и их элементы, закрываемые в процессе последующего производства работ (подготовленные основания конструкций, арматура, закладные изделия и др.), а также правильность установки и закрепления опалубки и поддерживающих ее элементов должны быть приняты производителем работ в соответствии с СП 48.13330.
5.3.5 В железобетонных и армированных конструкциях отдельных сооружений состояние ранее установленной арматуры должно быть перед бетонированием проверено на соответствие рабочим чертежам. При этом следует обращать внимание во всех случаях на выпуски арматуры, закладные части и элементы уплотнения, которые должны быть очищены от ржавчины и следов бетона.
5.3.6 Укладку и уплотнение бетона следует выполнять по ППР таким образом, чтобы обеспечить заданную плотность и однородность бетона, отвечающих требованиям качества бетона, предусмотренных для рассматриваемой конструкции настоящим сводом правил, ГОСТ 18105, ГОСТ 26633 и проекту.
Порядок бетонирования следует устанавливать, предусматривая расположение швов бетонирования с учетом технологии возведения здания и сооружения и его конструктивных особенностей. При этом должна быть обеспечена необходимая прочность контакта поверхностей бетона в шве бетонирования, а также прочность конструкции с учетом наличия швов бетонирования.
При бетонировании массивных конструкций самоуплотняющимися бетонными смесями возможен вариант укладки одновременно по всей площадке конструкции с взаимно перекрывающимися зонами растекания смеси.
5.3.7 Бетонную смесь укладывают бетононасосами или пневмонагнетателями при интенсивности бетонирования не менее 6 м/ч, а также в стесненных условиях и в местах, не доступных для других средств механизации.
5.3.8 Перед началом уплотнения каждого укладываемого слоя бетонную смесь следует равномерно распределить по всей площади бетонируемой конструкции. Высота отдельных выступов над общим уровнем поверхности бетонной смеси перед уплотнением не должна превышать 10 см. Запрещается использовать вибраторы для перераспределения и разравнивания укладываемого слоя бетонной смеси. Уплотнять бетонную смесь в уложенном слое следует только после окончания распределения и разравнивания ее на бетонируемой площади.
5.3.9 Укладка следующего слоя бетонной смеси допускается до начала схватывания бетона предыдущего слоя. Продолжительность перерыва между укладкой смежных слоев бетонной смеси без образования рабочего шва устанавливается строительной лабораторией. Верхний уровень уложенной бетонной смеси должен быть на 50-70 мм ниже верха щитов опалубки.
5.3.10 При уплотнении бетонной смеси не допускается опирание вибраторов на арматуру и закладные изделия, тяжи и другие элементы крепления опалубки. Глубина погружения глубинного вибратора в бетонную смесь должна обеспечивать углубление его в ранее уложенный слой на 5-10 см. Шаг перестановки глубинных вибраторов не должен превышать полуторного радиуса их действия, поверхностных вибраторов - должен обеспечивать перекрытие на 100 мм площадкой вибратора границы уже провибрированного участка.
Бетонную смесь в каждом уложенном слое или на каждой позиции перестановки наконечника вибратора уплотняют до прекращения оседания и появления на поверхности и в местах соприкосновения с опалубкой блеска цементного теста и прекращение выхода пузырьков воздуха.
5.3.11 Виброрейки, вибробрусья или площадочные вибраторы могут быть использованы для уплотнения только бетонных конструкций; толщина каждого укладываемого и уплотняемого слоя бетонной смеси не должна превышать 25 см.
При бетонировании железобетонных конструкций поверхностное вибрирование может быть применено для уплотнения верхнего слоя бетона и отделки поверхности.
5.3.12 Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа. Рабочие швы по согласованию с проектной организацией допускается устраивать при бетонировании:
колонн и пилонов - на отметке верха фундамента, низа порогов, балок и подкрановых консолей, верха подкрановых балок, низа капителей колонн;
балок больших размеров, монолитно соединенных с плитами - на 20-30 мм ниже отметки нижней поверхности плиты, а при наличии в плите капителей - на отметке низа капителей плиты;
Бетонные работы в стесненных условиях
КОНСТРУКЦИИ БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ МОНОЛИТНЫЕ
Правила производства и приемки работ
Monolithic constructions of concrete and reinforced concrete . Rules of production and acceptance of work
Дата введения 2019-05-27
Предисловие
Сведения о своде правил
1 ИСПОЛНИТЕЛЬ - АО "НИЦ "Строительство" - Научно-исследовательский, проектно-конструкторский и технологический институт бетона и железобетона (НИИЖБ) им. А.А.Гвоздева
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
6 ВВЕДЕН ВПЕРВЫЕ
В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет
Введение
Настоящий свод правил разработан авторским коллективом АО "НИЦ "Строительство" - НИИЖБ им. А.А.Гвоздева (д-р техн. наук В.Ф.Степанова; канд. техн. наук М.И.Бруссер, канд. техн. наук С.С.Жоробаев, канд. техн. наук В.Н.Строцкий, С.Г.Зимин, А.В.Анцибор, С.Н.Захарчук).
1 Область применения
1.1 Настоящий свод правил распространяется на производство, контроль и приемку работ при строительстве зданий и сооружений из монолитных бетонных и железобетонных конструкций с применением легкого, мелкозернистого и тяжелого бетонов и фибробетона.
1.2 Свод правил устанавливает общие требования к бетонным смесям, бетонам, опалубкам и арматурным изделиям; к производству, контролю и приемке опалубочных, арматурных и бетонных работ; приемке готовых монолитных бетонных и железобетонных конструкций.
2 Нормативные ссылки
В настоящем своде правил использованы нормативные ссылки на следующие документы:
ГОСТ 3282-74 Проволока стальная низкоуглеродистая общего назначения. Технические условия
ГОСТ 5802-86 Растворы строительные. Методы испытаний
ГОСТ 6727-80 Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций. Технические условия
ГОСТ 7473-2010 Смеси бетонные. Технические условия
ГОСТ 7566-94 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение
ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости
ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 10181-2014 Смеси бетонные. Методы испытаний
ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия
ГОСТ 12730.3-78 Бетоны. Метод определения водопоглощения
ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости
ГОСТ 13087-81 Бетоны. Методы определения истираемости
ГОСТ 15467-79 Управление качеством продукции. Основные понятия. Термины и определения
ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности
ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности бетона
ГОСТ 22266-2013 Цементы сульфатостойкие. Технические условия
ГОСТ 22690-2015 Бетоны. Определение прочности механическими методами неразрушающего контроля
ГОСТ 23279-2012 Сетки арматурные сварные для железобетонных конструкций и изделий. Общие технические условия
ГОСТ 23616-79 Система обеспечения точности геометрических параметров в строительстве. Контроль точности
ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия
ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические условия
ГОСТ 25820-2014 Бетоны легкие. Технические условия
ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия
ГОСТ 27006-86 Бетоны. Правила подбора состава
ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций
ГОСТ 30459-2008 Добавки для бетонов и строительных растворов. Определение и оценка эффективности
ГОСТ 30515-2013 Цементы. Общие технические условия
ГОСТ 31189-2015 Смеси сухие строительные. Классификация
ГОСТ 31356-2007 Смеси сухие строительные на цементном вяжущем. Методы испытаний
ГОСТ 31357-2007 Смеси сухие строительные на цементном вяжущем. Общие технические условия
ГОСТ 31383-2008 Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний
ГОСТ 31384-2017 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования
ГОСТ 31914-2012 Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценки качества
ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния
ГОСТ 34329-2017 Опалубка. Общие технические условия
ГОСТ ISO/IEC 17000-2012 Оценка соответствия. Словарь и общие принципы
ГОСТ Р 51872-2002 Документация исполнительная геодезическая. Правила выполнения
ГОСТ Р 52086-2003 Опалубка. Термины и определения
ГОСТ Р 52544-2006 Прокат арматурный свариваемый периодического профиля классов А500С и В500С для армирования железобетонных конструкций. Технические условия
ГОСТ Р 52752-2007 Опалубка. Методы испытаний
ГОСТ Р 52804-2007 Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний
ГОСТ Р 55224-2012 Цементы для транспортного строительства. Технические условия
ГОСТ Р 57997-2017 Арматурные и закладные изделия сварные, соединения сварные арматуры и закладных изделий железобетонных конструкций. Общие технические условия
СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии"
СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, N 2, N 3)
СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменениями N 1, N 3)
СП 130.13330.2011 "СНиП 3.09.01-85 Производство сборных железобетонных конструкций и изделий"
Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.
3 Термины и определения
В настоящем своде правил применены термины по [1], ГОСТ 7473, ГОСТ 24211, ГОСТ 26633, ГОСТ 30515, ГОСТ Р 52086 и ГОСТ ISO/IEC 17000, а также следующие термины с соответствующими определениями:
3.1 модуль поверхности конструкции: Отношение площади охлаждаемой поверхности конструкции к ее объему.
3.2 монолитные работы: Работы с применением бетонных смесей по устройству несущих и ограждающих бетонных и железобетонных конструкций и их частей в условиях строительной площадки.
3.3 конструкции бетонные монолитные: Конструкции, изготовляемые непосредственно на строительной площадке из бетона без арматуры или с арматурой, устанавливаемой по конструктивным соображениям и не учитываемой в расчете; расчетные усилия от всех воздействий в бетонных конструкциях должны быть восприняты бетоном.
3.4 конструкции железобетонные монолитные: Конструкции, изготовляемые непосредственно на строительной площадке из бетона с рабочей и конструктивной арматурой (армированные бетонные конструкции); расчетные усилия от всех воздействий в железобетонных конструкциях должны быть восприняты бетоном и рабочей арматурой.
3.5 сохраняемость бетонной смеси: Время после приготовления бетонной смеси, в течение которого сохраняются заданные технологические свойства в пределах допусков.
3.6 воздухововлечение: Процесс равномерного вовлечения в бетонную смесь мелких пузырьков воздуха при перемешивании, которые остаются после уплотнения и затвердевания.
Бетонные работы в стесненных условиях
НЕСУЩИЕ И ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ
Load-bearing and separating constructions
Дата введения 2013-07-01
Предисловие
Сведения о своде правил
1 ИСПОЛНИТЕЛИ - ЗАО "ЦНИИПСК им.Мельникова"; институты ОАО "НИЦ "Строительство": НИИЖБ им.А.А.Гвоздева и ЦНИИСК им.В.А.Кучеренко; Ассоциация производителей керамических стеновых материалов; Ассоциация производителей силикатных изделий, Сибирский Федеральный университет
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПОДГОТОВЛЕН к утверждению Управлением градостроительной политики
Информация об изменениях к настоящему актуализированному своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Госстрой) в сети Интернет
Изменения N 1, 3, 4 внесены изготовителем базы данных
Введение
Настоящий свод правил разработан с целью повышения качества выполнения строительно-монтажных работ, долговечности и надежности зданий и сооружений, а также уровня безопасности людей на строительной площадке, сохранности материальных ценностей в соответствии с Федеральным законом от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений", повышения уровня гармонизации нормативных требований с европейскими и международными нормативными документами; применения единых методов определения эксплуатационных характеристик и методов оценки.
Актуализация СНиП 3.03.01-87 выполнена следующим авторским коллективом: ЗАО "ЦНИИПСК им.Мельникова" в составе специалистов: кандидаты техн. наук И.И.Пресняков, В.В.Евдокимов, В.Ф.Беляев; д-ра техн. наук Б.В.Остроумов, В.К.Востров; инженеры С.И.Бочкова, В.М.Бабушкин, Г.В.Калашников; Сибирский Федеральный Университет - доцент, канд. техн. наук В.Л.Игошин; институты ОАО "НИЦ "Строительство": НИИЖБ им.А.А.Гвоздева - д-ра техн. наук Б.А.Крылов, В.Ф.Степанова, Н.К.Розенталь; кандидаты техн. наук В.Р.Фаликман, М.И.Бруссер, А.Н.Болгов, В.И.Савин, Т.А.Кузьмич, М.Г.Коревицкая, Л.А.Титова; И.И.Карпухин, Г.В.Любарская, Д.В.Кузеванов, Н.К.Вернигора и ЦНИИСК им.В.А.Кучеренко - д-ра техн. наук И.И.Ведяков, С.А.Мадатян; кандидаты техн. наук О.И.Пономарев, С.Б.Турковский, А.А.Погорельцев, И.И.Преображенская, А.В.Простяков, Г.Г.Гурова, М.И.Гукова; А.В.Потапов, A.M.Горбунов, Е.Г.Фокина; Ассоциация производителей керамических стеновых материалов - В.Н.Геращенко; Ассоциация производителей силикатных изделий - Н.В.Сомов.
1 Область применения
1.1 Настоящий свод правил распространяется на производство и приемку работ, выполняемых при строительстве и реконструкции предприятий, зданий и сооружений во всех отраслях народного хозяйства:
при возведении монолитных бетонных и железобетонных конструкций из тяжелого, особо тяжелого, на пористых заполнителях, жаростойкого и щелочестойкого бетона, при производстве работ по торкретированию и подводному бетонированию;
при изготовлении сборных бетонных и железобетонных конструкций в условиях строительной площадки;
при монтаже сборных железобетонных, стальных, деревянных конструкций и конструкций из легких эффективных материалов;
при сварке монтажных соединений строительных стальных и железобетонных конструкций, соединений арматуры и закладных изделий монолитных железобетонных конструкций;
при производстве работ по возведению каменных и армокаменных конструкций из керамического и силикатного кирпича, керамических, силикатных, природных и бетонных камней, кирпичных и керамических панелей и блоков, бетонных блоков.
Требования настоящего свода правил следует учитывать при проектировании конструкций зданий и сооружений.
1.2 При возведении специальных сооружений - автомобильных дорог, мостов, труб, стальных резервуаров и газгольдеров, тоннелей, метрополитенов, аэродромов, гидротехнических мелиоративных и других сооружений, а также при возведении зданий и сооружений на вечномерзлых и просадочных грунтах, подрабатываемых территориях и в сейсмических районах следует дополнительно руководствоваться требованиями соответствующих нормативных документов.
2 Нормативные ссылки
2.1 В настоящем своде правил использованы ссылки на следующие нормативные документы:
ГОСТ 379-95 Кирпич и камни силикатные. Технические условия
ГОСТ 450-77 Кальций хлористый технический. Технические условия
ГОСТ 530-2012 Кирпич и камень керамические. Общие технические условия
ГОСТ 965-89 Портландцементы белые. Технические условия
ГОСТ 969-91 Цементы глиноземистые и высокоглиноземистые. Технические условия
ГОСТ 1581-96 Портландцементы тампонажные. Технические условия
ГОСТ 2081-2010 Карбамид. Технические условия
ГОСТ 2246-70 Проволока стальная сварочная. Технические условия
ГОСТ 3242-79 Соединения сварные. Методы контроля качества
ГОСТ 5264-80 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры
ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями
ГОСТ 5802-86 Растворы строительные. Методы испытаний
ГОСТ 6402-70 Шайбы пружинные. Технические условия
ГОСТ 6996-66 Сварные соединения. Методы определения механических свойств
ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме
ГОСТ 7473-2010 Смеси бетонные. Технические условия
ГОСТ 7512-82 Контроль неразрушающий. Соединения сварные. Радиографический метод
ГОСТ 7566-2018 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение
ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия
ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний
ГОСТ 8713-79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры
ГОСТ 8735-88 Песок для строительных работ. Методы испытаний
ГОСТ 8736-2014 Песок для строительных работ. Технические условия
ГОСТ 9087-81 Флюсы сварочные плавленые. Технические условия
ГОСТ 9206-80 Порошки алмазные. Технические условия
ГОСТ 9467-75 Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы
ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости
ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 10181-2014 Смеси бетонные. Методы испытаний
ГОСТ 10243-75 Сталь. Методы испытаний и оценки макроструктуры
ГОСТ 10541-78 Масла моторные универсальные и для автомобильных карбюраторных двигателей. Технические условия
ГОСТ 10690-73 Калий углекислый технический (поташ). Технические условия
ГОСТ 10832-2009 Песок и щебень перлитовые вспученные. Технические условия
ГОСТ 10906-78 Шайбы косые. Технические условия
ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия
ГОСТ 11052-74 Цемент гипсоглиноземистый расширяющийся
ГОСТ 11371-78 Шайбы. Технические условия
ГОСТ 11533-75 Автоматическая и полуавтоматическая дуговая сварка под флюсом. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры
ГОСТ 11534-75 Ручная дуговая сварка. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры
ГОСТ 12730.5-2018 Бетоны. Методы определения водонепроницаемости
ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 13087-2018 Бетоны. Методы определения истираемости
ГОСТ 14771-76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры
ГОСТ Р 55724-2013 Контроль неразрушающий. Соединения сварные. Методы ультразвуковые
ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 15164-78 Электрошлаковая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры
Как правильно обосновать стесненность условий строительства в экспертизе
Доказанная стесненность строительства позволяет применять повышающий коэффициент 1,15 к ценам на строительно-монтажные работы, но к сожалению проектировщиков и строителей, не на каждой стройке такая стесненность присутствует, увы.
Право применять вожделенный коэффициент на стесненность разрешается экспертизой только в том случае, если одновременно присутствует наличие трех факторов из пяти , согласно МДС 81-35.2004 :
- транспорт и пешеходы;
- инженерные сети, подлежащие перекладке;
- объекты, находящиеся в непосредственной близости от строительной площадке, подлежащие сохранности (здания, деревья);
- отсутствие мест для складирования материалов;
- работа башенных кранов.
Тем не менее, встречаются и такие объекты, где вроде бы как и есть факторы для стесненности, но площадь объекта слишком большая (относительно), а факторы стесненности имеют локальный характер. Эксперт стесненность не пропускает, потому что места много на первый взгляд, есть где развернуться строительной мощью.
Тогда проектировщики тужатся и изобретают способы доказательства.
Но зачем так мучиться, если можно изначально все учесть: и директору подрядной организации будет понятно, что лишнего жиру нету, и эксперту ясно, на каких участках он стесненность пропускает, а на каких ее нет.
Делим участки работ на захватки
Давайте посмотрим на примере проекта "Стенка наб. Малой Невы и Ждановки (вокруг стадиона "Петровский") как доказывается стесненность ( эксперт не хотел пропускать, но потом согласился ).
В соответствии с таблицей-обоснованием (см. ниже), стесненные условия работы характеризуются наличием четырех вышеуказанных факторов, наличие которых согласно МДС 81-35.2004 дает основание считать, что свайные и бетонные работы при капитальном ремонте стенки набережной вокруг стадиона Петровский на захватках №№3, 22, 23 относятся к работам, осуществляемых в стесненных условиях:
Таблица-обоснование. Фактор 1 и Фактор 4 присутствовали на всей территории строительства. Не хватало еще одного фактора. При разделении объекта на захватки удалось доказать, что на некоторых захватках присутствует еще один фактор: на участке 4 это был Фактор 2, а на участке 1 - Фактор 3. Таблица-обоснование. Фактор 1 и Фактор 4 присутствовали на всей территории строительства. Не хватало еще одного фактора. При разделении объекта на захватки удалось доказать, что на некоторых захватках присутствует еще один фактор: на участке 4 это был Фактор 2, а на участке 1 - Фактор 3.Доказательство четвертого фактора стесненности - отсутствие мест для складирования строительных материалов
Для начала нужно определиться с количеством и видом материальных ресурсов, чтобы можно было проанализировать планируемую загруженность материально-технической базы в сравнении с нормами расчетных площадей складов:
Основной объем материалов для строительства объекта Стенка наб. Малой Невы и Ждановки (вокруг стадиона "Петровский") Основной объем материалов для строительства объекта Стенка наб. Малой Невы и Ждановки (вокруг стадиона "Петровский")На стадии ПОС площадь склада определяют по «Расчетным нормативам для составления проектов организации строительства (ч.1)», где регламентируется расчетная площадь склада на единицу измерения материала – таблица №29, расчеты сводим в таблицу расчета складских площадей. За расчетное значение принимается количество материала (т), рассчитанное на 1 захватку, срок работы на захватке не превышает 35 дней.
Таблица расчета складских площадей Таблица расчета складских площадейТаким образом, наглядно получается доказать, что площадь пригодная для складирования строительного материала в пределах одной усредненной захватки (по проекту ее площадь составляла 35*4=140 м2), меньше площади, необходимой для складирования шпунта Ларсен IV (пп. 6,7 таблицы расчета складских площадей).
Это приводит к необходимости доставлять шпунт к местам производства работ небольшими партиями и монтировать его «с колес», что замедляет темпы строительства и является одним из факторов определения стесненности условий производства работ .
Остальные строительные материалы могут быть размещены непосредственно на территории захватки, но это уже не важно.
Если статья была полезной, ставье лайки и не забудьте подписаться на канал.
Читайте также: