Ata 66 100 ide cable msg в биосе что это
Человечество смеясь расстается с прошлым. В том числе и с компьютерным. Сочтены дни шины ISA, бывшей еще недавно незыблемой основой ЭВМ класса PC. Подходит к концу господство портов COM и LPT, уверенно вытесняемых USB… Вот и параллельный интерфейс ATA (AT Attachment), ставший в последние 6–7 лет самым популярным способом подключения к компьютеру накопителей и приводов 1 , неуклонно движется к финалу своей жизни.
По оценкам аналитиков, лебединой песней параллельного интерфейса ATA станет его новейшая модификация — UltraATA/100 2 , пришедшая летом 2000 года на смену появившемуся всего год назад UltraATA/66. Не в последнюю очередь скорейшей гибели параллельного ATA способствует небывалый прогресс жестких дисков — еще летом 1999 года пределом мечтаний были винчестеры с плотностью записи 5 Гбайт на пластину, а сейчас в продаже диски с плотностью 20 Гбайт и скоростью чтения полезных данных с поверхности почти 40 миллионов байт в секунду.
Однако дальнейший рост скорости передачи параллельного интерфейса АТА сковывают, в частности, физические ограничения, накладываемые многожильным IDE-кабелем. Нынешний 80-жильный 46-сантиметровый плоский кабель, применяемый для протоколов UATA/66 и UATA/100, где сигнальные жилы чередуются с экранирующими «земляными», уже не способен эффективно работать на более высоких частотах даже с применением избыточных кодов защиты от ошибок. Аналогичная проблема для интерфейсов SCSI при переходе с Ultra2 LVD (80 Мбайт/с) на Ultra160 (160 Мбайт/с) была решена заменой такого же плоскопараллельного кабеля на многожильный, состоящий из витых пар. Однако это решение недешево.
Прогноз производительности 3,5-дюймовых жестких дисковс частотой вращения шпинделя 7200 об./мин.
К тому же параллельному интерфейсу присущи такие недостатки, как 26 пятивольтовых сигнальных линий, для которых требуются отдельные многоножечные микросхемы (поскольку современные чипсеты рассчитаны на меньшее напряжение питания), большие разъемы и широкие кабели. Это увеличивает размер и стоимость системных плат, затрудняет порой сборку требуемых конфигураций и ухудшает условия циркуляции воздуха внутри корпуса. И хотя с появлением UltraATA/33 введена проверка целостности передаваемой информации по CRC, методов выявления источников и исправления ошибок в интерфейсе ATA до сих пор нет.
Но главное преимущество Serial ATA — большая полоса пропускания. Первое поколение интерфейса Serial ATA будет обладать пропускной способностью до 1,6 Гбит/с. Второе и третье увеличат скорость до 3 и 6 Гбит/с соответственно 4 .
Предыдущая попытка введения универсального скоростного последовательного интерфейса IEEE 1394 не имела большого коммерческого успеха, поскольку по лицензии вынуждала отчислять четверть доллара за каждый порт. Группа, продвигающая Serial ATA, уже работает над тем, чтобы исключить такие поборы и сделать новый интерфейс легко доступным широкому кругу желающих.
Важно, что изменения архитектуры Serial ATA лежат только в области физического интерфейса, а по регистрам и программному обеспечению он будет полностью совместим с нынешним параллельным ATA. Поэтому не будет необходимости кардинально менять драйверы. Архитектура Serial ATA прозрачна для BIOS и операционной системы. Кроме того, Serial ATA будет обладать средствами исправления ошибок (по ECC), и целостность передаваемых по кабелю данных будет гарантироваться.
Обратная совместимость последовательного ATA с параллельным будет реализовываться двумя способами:
Объединением чипсетов, поддерживающих параллельный ATA-интерфейс, с дискретными компонентами, реализующими Serial ATA физически. Эти дискретные компоненты должны стать доступны в 2001 году, а в 2002 году должны появиться чипсеты со встроенными компонентами Serial ATA.
Применением адаптеров (dongles), превращающих параллельную шину АТА в последовательную, и наоборот (см. блок-схему).
SerialATA. Схема соединения
Устройства первого поколения Serial ATA со скоростью передачи до 150 Мбайт/с должны появиться в 2001 году. Позднее с интервалами в три года появятся модификации на 300 и 600 Мбайт/с, а полный переход на Serial ATA ожидается к 2003 году. Заинтересовавшимся рекомендую почитать весьма живую презентацию Intel.
Таким образом, большинство производителей уже почти признало бесперспективность создания параллельного интерфейса UltraATA/133, и новорожденный UATA/100 обречен стать последним из могикан.
Тем не менее, сейчас младенец выглядит вполне розовощеким и даже не думает кукситься. Оптимистические прогнозы роста внутренней скорости чтения дисков обещают ему господство аж до 2003 года. Повышение скорости передачи улучшает надежность при работе с непрерывными потоками аудио/видеоданных, все более актуальными в последнее время, а также позволяет без ущерба сокращать размер буфера в низкостоимостных моделях дисков, как например, Quantum Fireball lct20 (128 Кбайт) или IBM Deskstar 40GV (380 Кбайт для данных, так как 132 Кбайт занимает firmware).
Поскольку возможности UATA/66 иссякнут при достижении дисками внутренней скорости чтения около 56 Мбайт/с (что ожидается в 2001 году), фирма Quantum выступила с инициативой разработки протокола UATA/100, который позже был принят остальными производителями дисков и поддержан в новейших чипсетах и контроллерах. Фактически он является дальнейшим усовершенствованием UATA/66, оптимизированным для мультимедийных приложений. В новом протоколе уменьшены времена задержки сигналов, гистерезисные явления, увеличена рабочая частота. UATA/100 обладает полной обратной совместимостью и автоматически переключается на менее скоростные моды (UATA/33 или UATA/66), если одно из устройств его не поддерживает.
Несмотря на то, что интерфейс UltraATA/100 запатентован фирмой Quantum, он доступен для свободного лицензирования производителями чипсетов и других компьютерных компонентов и уже поддерживается во всех современных чипсетах и отдельных чипах дисковых контроллеров, как HPT370 от фирмы HighPoint Technology и PDC20267 от Promise Technology и др.
После затянувшегося молчания 5 новые серии винчестеров IBM к лету 2000 года восстановили статус-кво Голубого Гиганта как бесспорного лидера отрасли. Действительно, если конкуренты тогда только планировали перейти на пятнадцатигигабайтные пластины в «медленных» моделях, то IBM сразу порадовала плотностью 15 Гбайт на дисках 75GXP со скоростью вращения 7200 об./мин. и 20 Гбайт на низкостоимостных «пятитысячниках» 40GV. Такой прорыв стал возможен благодаря применению стеклянных пластин-носителей вместо традиционных алюминиевых, а также улучшенной системе балансировки головок. Помимо стандартных размеров буфера в 2 Мбайт (75GXP) или 512 Кбайт (40GV) стоит особо отметить значительно улучшенную ударостойкость и ощутимо сниженный акустический шум дисков. Субъективно, младшие «семитысячники» работают заметно тише хваленых Quantum Fireball lct10 и вполне сравнимы с неназойливым шелестом Fujitsu. Модельный ряд дисков (емкости 15/20/30/45/60/75 Гбайт для 75GXP и 20/30/40 Гбайт для 40GV) был уникален присутствием самой огромной на тот момент IDE-модели (75 Гбайт) и необычен наличием 20-гигабайтной модели «семитысячника» с тремя головками (нестандартная емкость пластины).
Мы испытали четыре диска IBM: два гиганта DTLA-307075 по 75 Гбайт каждый (оба из Венгрии) и два таиландских двадцатигигабайтника — на 7200 об./мин. (DTLA-307020) и на 5400 об./мин. (DTLA-305020). И если семитысячники порадовали невиданно высокой скоростью чтения — свыше 37 млн. байт в секунду, демонстрируемой под управлением UATA/66 или 100 (см. график на отдельной странице, по оси ординат — тыс. байт/с), то плотность 20 Гбайт на пластину в пятитысячниках еще сыровата, и график чтения заметно «дрожит» даже под UATA/100.
Кстати, график чтения одной стороны пластины для «урезанной» модели DTLA-307020 практически совпадает с полноразмерной моделью — исключены только 10 процентов емкости в самой медленной части диска. Это подтверждает и меньшее на 0,7 миллисекунды время доступа благодаря меньшей амплитуде хода головок. Так что такую модель сомнительно считать результатом «отбраковки» полноценных блинов, тем более что в ряде тестов она переигрывает даже самую старшую модель.
Кроме того, обнаружилась неприятная особенность — если по UATA/33 и UATA/100 все четыре диска работали как часы, то по UATA/66 (контроллер на чипе HPT366 от ABIT) два из них (307020 и один из 307075) намертво вешали компьютер после окончания процедуры POST (начальный этап при включении ПК до загрузки операционной системы). Я склонен считать это сыростью контроллера IBM (все диски были датированы маем этого года), поскольку любые другие винчестеры, поддерживающие UATA/66, никогда не имели подобных проблем с HPT366 (по крайней мере, на трех тестовых системах). Более того, когда я запустил диски на повышенной частоте шины PCI (41,3 МГц), все четыре отлично заработали и под UATA/66 6 . Плавно снижая частоту PCI, я нашел, что даже при частоте системной шины 101 МГц (PCI=33,7 МГц) все диски работали нормально, а вот при 33,3 МГц — два уже отказывали. Позднее вышли обновления BIOS контроллера, исправляющие эти проблемы (версии начиная с 1.26).
Результаты теста WinBench 99, тыс. байт/с.
Результаты теста Adaptec ThreadMark 2.0.
О безоговорочном лидерстве семитысячников IBM DTLA в тестах говорить нет необходимости, а вот отметить, что пятитысячник IBM смотрится не хуже самых свежих семитысячников других производителей, нужно. При копировании огромных файлов все IBM DTLA слегка уступают диску WD102BA, однако оптимизация их контроллера для аудио/видеоприменений, особенно под Windows NT 4.0, безусловно, заслуживает похвалы.
И в заключение нельзя не отметить график чтения массива RAID0 (Stripe) из двух гигантов DTLA-307075 (по оси ординат — тыс. байт/с), полученный с применением контроллера Promise FastTrak100, а также суммарную емкость (см. скриншот выше). Подробнее работу RAID-массивов мы рассмотрим позднее, а пока видно, что скорость чтения данных с такого 150-гигабайтного «малыша» составляет свыше 75 млн. байт в секунду! Причем, как на разных шлейфах, так и на одном (master и slave). Вот где ощущается вся мощь последнего из параллельных ATA-интерфейсов.
IDE-типа, то есть, устройств со встроенным контроллером — Integrated Device Electronics.
Протоколу UltraATA/100 соответствуют обозначения официального стандарта ATA-6 и режима UltraDMA 5, тогда как обозначения ATA-4, ATA-5 и UltraDMA 4 относятся к UltraATA/66.
Для сравнения приведу данные других последовательных интерфейсов: USB 1.1 имеет две скорости передачи данных — 1,5 и 12 Мбит/с, новейшая USB 2.0 — до 480 Мбит/с, что уже вполне приемлемо для накопителей, а IEEE 1394 (FireWire) сейчас поддерживает 100, 200 и 400 Мбит/с, но в будущем планируются 1,6 и 3,2 Гбит/с.
Кстати, не стоит заблуждаться, что при такой частоте PCI старенький контроллер UATA/33, например, из чипсета i440BX, позволит читать диск на скорости 37 Мбайт/с — график при этом в точности такой же, как и при 33,3 МГц на PCI.
Ultra ATA/66 — самый новый из стандартов передачи данных по интерфейсу IDE и, как и сам интерфейс, является недорогим способом подключения жестких дисков, допуская при этом высокую скорость передачи данных. Как и его предшественник Ultra ATA/33, был предложен Quantum и принят большинством производителей дисков и наборов системной логики. Также известен под именами Ultra DMA/66. По сранению с Ultra ATA/33, Ultra ATA/66 удваивает предельное значение для скорости передачи данных между кэш-буфером жесткого диска и системной шиной — до 66,6 MB/s, против 33,3 MB/s у Ultra DMA/33. Несмотря на то, что ограничения на быстродействие дисков накладываются прежде всего их механическими характеристиками и технологией изготовления компонентов, задача разработчиков электроники и протоколов передачи данных состоит в том, чтобы не допускать сближения пиковых значений внутренней скорости передачи данных между рабочими поверхностями через головки во внутренний кэш дисков с ограничениями кремния. Благодаря удвоенному «запасу прочности» Ultra ATA/66 гарантирует, в еще большей степени чем Ultra ATA/33, что электроника дисков и материнских плат не окажется узким местом при передаче данных, и в особенности, при операциях последовательного чтения и записи. Кроме этого Ultra ATA/66 обеспечивает целостность данных, что имеет важное значение для интерфейса EIDE, недостатком которого является слабая помехозащищенность. Для этого вводится добавочное экранирование, с использованием 40-контактного 80-жильного кабеля и проверка ошибок по циклически избыточному коду CRC (Cyclic Redundancy Check). Дополнительные к обычным 40 линиям сигнала и земли еще 40 линий заземления уменьшают наводки и повышают качество сигнала. Разъем является совместимым по контактам с существующей 40-контактной распайкой, что минимизирует дополнительные расходы на кабель нового типа.
Предшествующий Ultra ATA/66 протокол передачи данных Ultra ATA/33 гарантирует потоки данных с максимальной пиковой скоростью 33.3 MB/s. В свою очередь, до появления Ultra ATA/33 его роль играли стандарты передачи данных с участием центрального процессора PIO Mode 4 и пакетных посылок с непосредственным доступом к системной памяти DMA Mode 2 с предельной скоростью 16,6 MB/s. Ultra ATA/66 вдвое превышает возможности Ultra ATA/33 и вчетверо — PIO Mode 4/DMA Mode 2. Развитие возможностей интерфейса происходит на сигнальном уровне, путем изменения спецификации следования данных синхронизирующим импульсам. С изменением механических параметров современных жестких дисков, скоростей их вращения, совершенствованием подвесок головок, изменением их типа, материала, и технологии нанесения магнитного слоя на рабочие поверхности дисков, внутренняя скорость передачи данных заметно возросла, и будет расти дальше, все больше приближаясь к пределам, задаваемым интерфейсом диска с системной шиной. Ultra ATA/66 приводит в разумное соответствие эффективную скорость передачи по системной шине с внутренней скоростью дисков. Новый протокол позволяет гарантировать большую пропускную способность шины, что особенно актуально для режимов непрерывной последовательной передачи данных, характерных для аудио/видеоприложений.
Скорость передачи данных в системную шину и из нее должна превышать внутреннюю скорость работы с поверхностью, в противном случае производительность падает — необходимы дополнительные обороты привода для опустошения буфера при считывании с поверхности и наполнения его при записи. Бороться с этим можно, увеличивая размер кэш-буфера диска или повышая эффективность его обменов с системной шиной. Первый способ связан с использованием дорогостоящей памяти и противоречит самому назначению IDE-дисков, производители как раз-таки всячески минимизируют размер кэша. Приводимый график отражает тенденцию роста внутренней скорости передачи данных, подтверждая необходимость увеличения интерфейсной скорости. Из него следует, что пределы Ultra ATA/33 будут достигнуты во второй половине 1999 года, а значит время Ultra ATA/66 пришло.
- PIO Mode 4 и DMA Mode 2, 16.6 MB/s в 1994
- Ultra ATA/33, 33.3 MB/s в 1997
- Ultra ATA/66, 66.6 MB/s в 1999
Продолжающееся увеличение емкости дисков и скоростей их вращения, внутренние их скорости также продолжают расти. Передача больших по размеру файлов, особенно записанных последовательно на диск, особенно чувствительна к возможностям интерфейса. При последовательном чтении диск, благодаря высокой внутренней скорости, может наполнять буфер быстрее, чем система считывает из него данные. Производительность дисковой подсистемы чаще всего падает из-за таких узких мест. Ultra ATA/66 — средство усовершенствования интерфейса, актуальное именно сейчас в силу изменения структуры потоков передаваемой информации в сторону мультимедийных данных.
Ultra ATA/66 гарантирует целостность данных
Стандартная передача данных по ATA-шине в спецификации DMA Mode 2 (16,6 MB/s) состояла из посылок данных, синхронизируемых импульсами, но только по переднему фронту строб-сигнала. Основная идея расширения Ultra ATA/33 состояла в использовании и переднего и заднего фронтов сигнала для синхронной передачи данных, достигая удвоенной скорости передачи данных без увеличения частоты импульсов. Имея жесткий диск в качестве генератора и импульсов и данных в процессе чтения, Спецификация Ultra ATA/33 исключала задержки прямого и обратного прохождения данных, что позволило улучшить временную диаграмму передачи. Ultra ATA/66 использует ту же частоту следования строб-импульсов, но опять удваивает пиковое значение возможной скорости передачи, на этот раз за счет уменьшения времен вхождения в режим передачи. Тактирование данных происходит вдвое быстрее. Однако, при этом для обеспечения целостности данных требуется новый 80-жильный кабель. Стандартный 40-контактный 40-жильный кабель не справляется с обработкой временных циклов при скоростях передачи порядка 66 MB/s. 80-жильный кабель будет использоваться с тем же 40-контактным разъемом, но сигнальные линии в нем будут разделены линиями земли, играющими роль экрана. Никакие новые сигналы генерироваться и передаваться не будут.
В Ultra ATA/33 впервые была применена проверка ошибок по циклически избыточному коду CRC, новая для интерфейса IDE опция, предназначенная для верификации данных. Ultra ATA/66 использует ту же процедуру: CRC рассчитывается в момент передачи хост-системой и жестким диском и информация размещается в соответствующих CRC-регистрах. После каждого пакета данных хост-система посылает содержимое CRC-регистра жесткому диску, который сравнивает полученное значение со своим. При этом, в случае расхождения, переданные данные запрашиваются еще раз.
Совместимость и требования к системе
- Windows 98
- Windows NT Service Pack 3
- Windows 95 OEM Service Release 2
Время пришло…
Время для интерфейса Ultra ATA/66 пришло по двум причинам. Активно обсуждавшийся переход к высокоскоростной последовательной шине IEEE 1394 (FireWire) и перевод дисков в настольных системах на этот интерфейс до сих пор не перешел в стадию принятия спецификаций. В частности, Intel исключила из разработки мостовой части своих новых чипсетов PIIX6 упоминание о 1394, что говорит о задержке внедрения этого интерфейса. В то же время непрерывный рост типичных скоростей передачи данных в жестких дисках за счет увеличения линейной плотности записи на поверхность и ускорения приводов обещает к концу 1999 года выйти на ограничения Ultra ATA/33. Для поддержания роста производительности предельная скорость интерфейса должна также возрасти. Как результат, в индустрии ожидается в 1999 году поддержка Ultra ATA/66 новыми продуктами: Western Digital, Fujitsu, IBM, Maxtor, Quantum, Seagate, Toshiba и другими.
Компания Western Digital стала пионером-первопроходцем стандарта Ultra ATA/66 среди всех производителей накопителей, оснастив последнее семейство EIDE-дисков Caviar, с емкостью 4.3Gb на пластину (старший представитель AC313000 — 13Gb) электроникой Ultra ATA/66. Очевидно, в самом скором времени появятся соответствующие продукты конкурирующих производителей. Несмотря на то, что диски первой волны, оснащенные новой электроникой, не развивают тех скоростей, для которых критично введение спецификации, их появление надо рассматривать как внедрение и обкатку стандарта будущего. Точно так же обстояли дела с появлением Ultra ATA/33. До сих пор большинство дисков, не то что не приближаются к его ограничениям 33 MB/s, но даже в пиковом режиме не превосходят значений DMA Mode 2 16,6 MB/s, но зато разработка и расчетное поведение новых продуктов никак не сдерживается ограничениями электроники дисков или системной логики материнских плат.
Что касается поддержки Ultra ATA/66 на уровне системной логики, то пока что она реализована только альтернативными Intel разработчиками чипсетов — VIA Technologies и Silicon Integrated Systems (SiS). Ultra ATA/66 — совместимыми являются наборы логики VIA MVP4 под Socket 7 и VIA Apollo Pro под Slot 1 (в состав обоих входит South Bridge VT82c596, отвечающий за поддержку периферийных устройств). SiS реализовала поддержку стандарта в чипе SiS 530 под Socket 7, в состав которого входит Ultra ATA/66 IDE-контроллер. Надо полагать, BIOSы материнских плат, разработанных на новых наборах, будут позволять работать с временными характеристиками новой спецификации. Что же касается Intel, то поддержка Ultra ATA/66 будет реализована в контроллере PIIX6, который войдет в состав нового чипсета i820 во втором квартале.
Скорость обмена
(max.)
Тип разъма
Количество проводников в кабеле
CRC контроль
Multi-word DMA Mode 1
Multi-word DMA Mode 2
Ultra ATA Mode 2
Ultra ATA Mode 4
Первые жесткие диски с поддержкой нового стандарта были выпущены фирмой Western Digital в декабре 1998 года.
Ultra ATA/100
Скорость обмена
(max.)
Тип разъма
Количество проводников в кабеле
CRC контроль
Multi-word DMA Mode 1
Multi-word DMA Mode 2
Ultra ATA Mode 2
Ultra ATA Mode 4
Ultra ATA Mode 5
Принцип функционирования Ultra ATA/100 не существенно отличается от UltraDMA/66 (Ultra ATA/66). После получения информации от жесткого диска о его поддержке режима Ultra ATA/100 драйвер IDE соответствующим образом программирует IDE контроллер и просто повышается тактовая частота работы на интерфейсе. Внутренняя частота контроллера в этом режиме становится 133 MHz, но, поскольку сигналы записи на диск формируются контроллером, а сигналы чтения с диска собственно диском и есть значительная разница в способах формирования сигналов записи и чтения, чтение диска выполняется со скоростью 100 MBytes/s, в то время как запись только со скоростью 88.9 MBytes/s. Несимметричность интерфейса, пожалуй, главная особенность нового варианта IDE.
Для работы с конкретным диском по Ultra ATA/100 совершенно необязательно поддержка этого режима другими устройствами на том же канале IDE. Обмен данными по Ultra ATA/100 возможен между контроллером и именно тем устройством, которое этот режим поддерживает.
Никаких конструктивных изменений новый интерфейс не требует. Подходит тот же кабель, что и для Ultra DMA/66 .
Serial ATA
Именно по указанным выше причинам компании APT Technologies, Dell, Intel, Maxtor, Quantum, Maxtor, Seagate создали рабочую группу по разработке нового стандарта интерфейса для подключения различных накопителей информации. Стандарт был назван SerialATA. Конкретные преимущества нового интерфейса таковы:
Разъемы, которые будут использоваться в новом интерфейсе, выглядят так:
В таблицу ниже сведены этапы развития нового стандарта.
Для совместимости жестких дисков и других накопителей планируется на первом этапе выпуск этих устройств с поддержкой SerialATA и обычного IDE одновременно.
Что представляет собой Ultra ATA/66?
Ultra ATA/66 - последнее развитие интерфейса подключения жестких дисков ATA/IDE. Это набор спецификаций, относящийся к электронике жестких дисков и материнских плат, и описывающий передачу сигналов между диском и платой. Не вдаваясь в подробности, можно сказать, что под определением "нового высокоскоростного интерфейса" понимается то, что формируемые по новым сигнальным протоколам Ultra ATA/66 временные диаграммы принципиально допускают передачу данных со скоростью, вдвое выше достижимой предшественником, Ultra ATA/33. В Ultra ATA/66 сохранена процедура проверки целостности данных по циклически избыточному коду (CRC). Во избежание искажений сигналов в введено экранирование сигнальных линий за счет дополнительных проводников соединительного кабеля. Сохранив старый 40-контактный разъем, новый кабель является 80-жильным, большинство из проводников которого заведены на землю.
Чем отличаются Ultra ATA/66 и Ultra ATA/33?
Уплотненной временной диаграммой следования сигналов, что позволяет за один и тот же промежуток времени передавать по новому интерфейсу вдвое больше данных. Предел пропускной способности увеличен вдвое - с 33MB/s до 66MB/s.
Что требуется от системы для работы с новым интерфейсом?
- Ultra ATA/66-совместимая логика на системной плате или на специальном Ultra DMA PCI-адаптере и Ultra DMA-cовместимый BIOS
- Поддержка Ultra ATA/66 самим жестким диском. Возможно, понадобится активизация этого режима (если по умолчанию эта опция имеется, но отключена), например, соответствующей утилитой производителя.
- Подключение диска должно быть выполнено 40-контактным 80-жильным кабелем
- DMA-драйвер устройства под используемую операционную систему
Какие из существующих наборов логики материнских плат поддерживают Ultra ATA/66?
Практически все платы (абсолютно все за последние пару лет) поддерживают Ultra ATA/66
Жесткие диски каких производителей поддерживают Ultra ATA/66?
- все новые диски IBM
- все новые диски Western Digital: серий Caviar 5400rpm 4.3-20.4GB и Expert 7200rpm 9.1-18.3GB;
- Quantum серий Fireball CR 5400rpm 4.3-13GB, Fireball CK 5400rpm 6.4-20.4GB, Fireball Plus KA 7200rpm 6.4-18.2GB;
- Fujitsu cерий MPD3xxxAT 5400rpm 4.3 -18GB и MPD3xxxAH 7200rpm 4.55 -18GB;
- все новые диски Seagate
- все новые диски Maxtor
Чем вызвана необходимость в новом 40-контактном 80-жильном кабеле?
Увеличение скорости передачи информации связано с изменением частотных характеристик сигналов, и может сопровождаться наводками между соседними проводниками. Во избежание помех и для сохранения целостности передаваемых данных существующие 40 сигнальных линий и линий земли в новом кабеле дополнительно перемежаются еще 40 линиями земли. Стоит новый кабель несколько дороже обычного, 40-жильного.
Совместим ли вниз интерфейс Ultra ATA/66?
100% cовместим, что означает возможность использования жестких дисков Ultra ATA/66 в системах, часть или все компоненты которых не удовлетворяют необходимым условиям, перечисленным выше. При этом пределы теоретически допустимой скорости передачи данных по интерфейсу остаются на прежнем уровне - 33MB/s.
Можно ли использовать новый 80-жильный кабель со старым диском/в старой системе?
Можно, новый кабель совместим вниз со старым, 40-жильным. Производительность при этом ограничивается пределами интерфейса Ultra ATA/33.
Что может произойти, если опция Ultra ATA/66 диска активизирована, но диск работает в системе, не поддерживающей этого стандарта?
Как правило, ничего. Диск будет работать так, как ему позволяют его физические возможности и ограничения системы. Возможна несовместимость с некоторыми старыми версиями BIOS, что в редких случаях может привести к снижению производительности или CRC-ошибкам передачи данных. Некоторые производители, например Western Digital, рекомендуют использовать утилиту (WDATA66 для дисков WD) для разрешения/отмены режима Ultra ATA/66 в тех случаях, когда диски гарантированно поддерживают новый стандарт, но нет уверенности в его поддержке остальными компонентами системы.
Какова реальная скорость передачи данных между диском и системной шиной?
Скорость передачи информации в реальных условиях зависит от многих параметров: характеристик самого диска, расположения данных на нем, работы приложений и операционной системы, отвечающей за обслуживание диска и.т.д. Обычно говорят о двух пороговых параметрах: внутренней скорости передачи данных между поверхностью и рабочими головками, направляющими информацию в кэш-буфер диска (Media to Buffer) и внешней скорости - между кэшем диска и системной шиной (Buffer to Host). Первое значение определяется физическими параметрами: типом головок, свойствами магнитного слоя поверхности, расположением дорожек, с которых считываются данные. Пиковая скорость считывания с поверхности для современных дисков редко превосходит 160-200 мегабит в секунду (т.е 20-25MB/s). Усредненная же скорость чтения с разных дорожек, перемежаемая позиционированием головок - и того меньше. При таких скоростях, как бы скоро кэш-буфер не обменивался данными с хост-системой, он не в состоянии передавать данных в единицу времени больше, чем их находится в нем самом! Для современных систем можно говорить о передаче данных в потоке с устоявшейся скоростью порядка 10-12MB/s, и то только для отдельных приложений, таких как чтение/запись видео или звука, работающих с последовательно размещаемыми на диске данными. Ultra ATA/66 описывает режимы передачи Buffer to Host, и его ограничения внешней скорости 66MB/s является скорее теоретическим пределом, гарантирующим, что возможности электроники в обозримом будущем не станут узким местом, сдерживающим быстродействие жестких дисков.
Зачем активно рекламируется интерфейс Ultra ATA/66, если он не дает приращения скорости?
До сих пор большинство дисков работают со скоростями, которым хватает не только Ultra ATA/33, но и более ранних протоколов PIO Mode 4, DMA 2 с их предельной пропускной способностью 16MB/s. Если внутренняя скорость дисков растет постепенно, по мере совершенствования технологий изготовления рабочей поверхности и компонентов дисков, то внешняя скорость относится к разработкам полупроводниковых схем ускоренной передачи сигналов, меняется скачкообразно - в соответствии с достигаемыми соглашениями разработчиков стандарта. В момент реализации новых протоколов диски быстрее не становятся. Основное назначение этих соглашений и воплощения их в кремнии - упредить момент сближения типичных внутренних и внешних скоростей дисков, когда ограничения электроники могут стать сдерживающим фактором роста производительности. Новый протокол передачи данных - это новая ступень, характеризующая прогресс в индустрии и справедливо рассматриваемая разработчиками жестких дисков и системной логики как этапное событие. Тем не менее, из сказанного выше следует, что кроме маркетингового эффекта и поддержания репутации производителя как проводника прогрессивных технологий, никакой реальной пользы для потребителей от Ultra ATA/66 в ближайшее время ожидать не следует.
ATA (AT Attachment) — параллельный интерфейс для подключения накопителей к ПК. В 90-е являлся стандартом, построенным на платформе IBM PC. В настоящее время стремительно вытесняется на рынке своим же последователем — SATA. С момента появления SATA, ATA переименовали в PATA (Parallel ATA).
История
Первоначально интерфейс получил предварительное название PC/AT Attachment («Соединение с PC/AT»), поскольку он предназначался для подключения к 16-битной шине ISA (известна как шина AT). В окончательной версии название переделали в «AT Attachment» во избежании проблем с торговыми марками.
Первая версия стандарта была разработана в 1986 году компанией Western Digital, она имела название IDE (Integrated Drive Electronics — «встроенная в привод электроника»). Название отображало существенное нововведение: контроллер привода располагался в нем самом, а не в виде отдельной платы расширения, как в предшествующем стандарте ST-506 и существовавших тогда интерфейсах SCSI и ST-412. Благодаря этому нововведению были улучшены характеристики накопителей. Меньшее расстояние до контроллера, упрощенное управление им, поскольку контроллер канала IDE абстрагировался от деталей работы привода, более дешевое производство.
Правильное название контроллера канала IDE - хост-адаптер, потому что он перешел от прямого управления приводом к обмену данными с ним по протоколу.
Интерфейс между контроллером и накопителем определен в стандарте АТА. Интерфейс оснащен 8 регистрами, которые занимают 8 адресов в пространстве ввода-вывода. Ширина шины данных равна 16 битам. Число каналов, находящихся в системе, может превышать 2. Важно, чтобы адреса каналов не пересекались с адресами других устройств ввода-вывода. Каждый канал позволяет подключить к себе 2 устройства (master и slave), однако в каждый момент времени может работать лишь одно устройство.
Принцип адресации CHS заключается в следующем: прежде всего блок головок устанавливается позиционером на требуемую дорожку, после чего выбирается требуемая головка, а затем из требуемого сектора считывается информация.
Стандарт EIDE (Enhanced IDE — «расширенный IDE») появился сразу вслед за IDE. Он позволял использовать приводы с емкостью более 528 Мб (504 МиБ), вплоть до 8,4 Гб.
Хоть эти аббревиатуры возникли в качестве торговых линеек, а не официальных названий стандарта, термины IDE и EIDE обычно употребляются вместо термина ATA.
После выхода стандарта Serial ATA («последовательный ATA»), который состоялся в 2003 году, традиционный ATA стал называться Parallel ATA, что подразумивало под собой ничто иное, как способ передачи данных по параллельному 40- или 80-жильному кабелю.
Первоначально, интерфейс применялся с жесткими дисками, однако затем стандарт был расширен для работы и с другими устройствами, преимущественно, со сменными носителями. На шину ATAPI подключали даже FDD. Такой расширенный стандарт получил название Advanced Technology Attachment Packet Interface (ATAPI), а полное наименование стандарта выглядит как ATA/ATAPI. ATAPI почти полностью совпадает со SCSI на уровне команд.
Сперва интерфейсы по подключению приводов CD-ROM не были стандартизованы, являясь исключительно частными разработками производителей приводов. По этой причине, для подключения CD-ROM необходимо было устанавливать отдельную плату расширения, настроенную под конкретного производителя. Некоторые версии звуковых карт, например Sound Blaster, оснащались именно такими портами. Выход на рынок ATAPI позволил стандартизировать всю периферию и дать возможность подключать ее к любому контроллеру.
Еще одним немаловажным этапом развития ATA стал переход от PIO (Programmed input/output — программный ввод/вывод) к DMA (Direct memory access — прямой доступ к памяти). В ходе использования PIO управлением считыванием данных с диска занимался центральный процессор, а это, в свою очередь, приводило к повышенной нагрузке на процессор и снижению его производтельности. По этой причине компьютеры, которые использовали интерфейс ATA, выполняли операции, связанные с диском, медленнее, чем компьютеры, работающие на SCSI и прочих интерфейсах. Внедрение DMA значительно сократило затраты процессорного времени на операции с диском.
Потоком данных в этой технологии управляет сам накопитель. Он считывает данные из памяти почти без участия процессора, а тот, в свою очередь, просто выдает команды на выполнение того или иного действия. При этом жесткий диск выдает сигнал запроса DMARQ на операцию DMA контроллеру. Если операция DMA возможна, контроллер посылает сигнал DMACK и жесткий диск выдает данные в 1-й регистр (DATA), с которого контроллер считывает их. Так, процессор практически не задействован в этой цепочке.
Операция DMA возможна только в том случае, если режим поддерживается одновременно BIOS, контроллером и операционной системой. В противном случае, возможен лишь режим PIO. При развитии стандарта (АТА-3), инженерами был введен дополнительный режим UltraDMA 2 (UDMA 33), который имеет временные характеристики DMA Mode 2. Однако, данные передаются и по переднему, и по заднему фронту сигнала DIOR/DIOW, что вдвое увеличивает скорость передачи данных по интерфейсу. Кроме того, введена проверка на четность CRC, что увеличивает надежность передачи.
История развития ATA включала в себя ряд барьеров (в частности, ограничения на максимальный размер диска в 504 МиБ, около 8 ГиБ, около 32 ГиБ, и 128 ГиБ), связанных с организацией доступа к данным. Большинство из этих барьеров, благодаря современным системам адресации, были преодолены. Впрочем, существовали и другие барьеры, в основном связанные с драйверами устройств, и организацией ввода/вывода в ОС, не работающих в ATA.
Ограничения на размер проявляются в том, что система идентифицирует объем диска меньше его реального значения, либо же вовсе отказывается загружаться и виснет на стадии инициализации жестких дисков. Иногда проблему удатся решить обновлением BIOS. Другое возможное решение - использование специальных программ (например, Ontrack DiskManager), которые загружают в память свой драйвер до загрузки операционной системы. Недостатком таких решений является то, что используется нестандартная разбивка диска (разделы диска оказываются недоступны, в случае загрузки с обычной DOS-овской загрузочной дискеты). Впрочем, большинство современных ОС может работать с дисками большего размера, даже если BIOS компьютера не определяет размер как требуется.
Чтобы подключить HDD с интерфейсом PATA обычно используется специальный шлейф - 40-проводный кабель. Каждый шлейф обычно оснащен двумя или тремя разъемами, один из которых подключается к разъему контроллера на материнской плате, а остальные два - к дискам. В один момент времени шлейф P-ATA передает 16 бит данных. Иногда встречаются шлейфы IDE, которые позволяют подключать до трех дисков к одному IDE каналу, однако, в этом случае один из дисков работает в режиме read-only.
Читайте также: