Армирование железобетонных балок арматурой напрягаемой до бетонирования
Строй-справка.ру
В обычных железобетонных конструкциях, испытывающих изгибающие и растягивающие напряжения, в период эксплуатации могут возникнуть трещины. Поэтому в растянутые зоны железобетонных конструкций устанавливается предварительно напряженная арматура. Это с одной стороны повышает трещиностойкость конструкций, а с другой стороны способствует существенному сокращению расхода арматурной стали.
На заводах ЖБИ в основном используется первый способ. Второй и третий способ применяют при возведении массивных сборно-монтажных конструкций.
Для фиксации предварительно-напряженной арматуры используют анкеры и зажимы.
На стержневой напрягаемой арматуре выполняются концевые анкеры трех видов, которые даны на рис. 4.18.
Анкеры имеют различную конструкцию в зависимости от вида закрепления арматуры. Для закрепления проволочной арматуры в виде пучков применяются два типа анкеров: конический анкер с натяжением арматуры домкратом двойного действия (рис. 4.19); гильзовый анкер с натяжением арматуры стержневым домкратом.
Для получения пучка проволоки симметрично располагают вокруг спиралей диаметром 30-40 мм и закрепляют скрутками из отожженной проволоки, которые ставят на расстоянии не более 1 м.
Зажимы являются универсальными устройствами для многоразового применения для закрепления стержневой, проволочной и прядевой арматур.
В зависимости от числа одновременно закрепляемых проволок, стержней и прядей различают зажимы одиночные и групповые. Для закрепления одного элемента широко применяются различные цанговые зажимы (рис. 4.21). Принцип действия этого зажима основан на применении трех-клинового устройства, обеспечивающего большие силы трения от усилия натяжения арматуры. Эти зажимы просты и надежны в эксплуатации. Они выдерживают до 100 и более циклов работ.
Клиновые зажимы служат для закрепления прядевой арматуры. Ко-лодина делается закрытой с плоскими клиньями на одну или две пряди (рис. 4.22). Для стендов применяют групповые зажимы с волнистыми трещинами для закрепления высокопрочной проволоки в виде пакетов (до 28 штук). После укладки проволок между пластинами пакет обжимают в гидравлическом прессе с усилием до 80 т. и закрепляют клином или стопорными болтами (рис. 4.23).
Механический способ натяжения заключается в растяжении арматуры осевой нагрузкой, создаваемой обычно гидравлическими или механическими домкратами, рычажными и грузовыми устройствами (типа лебедок), а также специальными машинами (при непрерывном армировании).
Натяжение арматуры на упоры формы и стендов может быть одиночным (каждый арматурный элемент натягивается отдельно) и групповым (одновременно натягиваются несколько элементов или вся напрягаемая арматура изделия) в зависимости от вида конструкции, расположения в ней натягиваемой арматуры, числа натягиваемых арматурных элементов, общего усилия их натяжения и наличия оборудования необходимой мощности. При концентрированном расположении арматуры по сечению изделия рекомендуется применять групповое натяжение арматуры.
Если при заготовке невозможно обеспечить требуемую точность длины арматурных элементов, до группового натяжения следует предварительно подтягивать каждый элемент усилием, не превышающим 10% проектного.
Контролируемое напряжение должно соответствовать указанному в проекте. Контроль усилия натяжения должен выполняться по показаниям манометров гидравлических домкратов и одновременно по удлинению арматуры. Результаты измерения усилия натяжения по показаниям манометра и по удлинению арматуры, полученного расчетом для данного усилия, не должны отличаться более чем на 10%. При большем расхождении необходимо приостановить натяжение арматуры, выявить и устранить причину расхождения этих показателей.
Арматурные работы: советы профессионала, приёмы и секреты
В этой статье мы расскажем о разных видах армирования конструкций и откроем некоторые секреты профессии арматурщика. Также будут приведены упрощённые расчёты, описания документации, схемы армирования. В статье вы найдёте практические советы и рекомендации по ведению арматурных работ.
Арматурные работы: советы профессионала, приёмы и секретыВиды армирования
Армирование — неотъемлемая часть конструкции, материал которой предусматривает переход из жидкого состояния в твёрдое. Этот процесс называют схватыванием или твердением. По способам армирования различают:
- Дисперсное — добавление в жидкий раствор фибровых волокон или металлической стружки. Придаёт монолитному участку жёсткость и стойкость к истиранию. Применяют в устройстве полов, стяжек. Может применяться в комбинации со стержневым способом.
- Стержневое — в объём бетона или раствора включают систему стержней (сетку, каркас), которая распределяет нагрузку внутри конструкции. Применяют для несущих и отдельно стоящих элементов зданий.
- Слоевое (укрепление слоя) — в слой жидкого раствора или шпатлёвки включают сетку для придания стабильности отделочного слоя. Применяют при отделке и ремонте плоскостей.
В данной статье мы рассмотрим армирование конструкций при помощи каркаса и сеток.
Армирование конструкций
Отвердевший бетон выдерживает высокие нагрузки на сжатие — до 1000 кг/см², но неустойчив на излом, разрыв и растяжение. При этом его производство — относительно недорогое.
Арматурный стержень воспринимает значительные нагрузки на растяжение, но неустойчив к сжатию и изгибу. К тому же стоимость производства высока, учитывая, что в неё входят расходы на добычу металла .
Поскольку любая несущая конструкция подвергается комбинированным нагрузкам, необходим материал, удовлетворяющий нескольким требованиям. Комбинация арматурных стержней и бетона даёт комбинацию их свойств. В результате получается железобетон, устойчивый к сжатию, изгибу и излому.
Арматурные работы: советы профессионала, приёмы и секретыПоскольку все ж/б изделия условно подразделяются на заводские и местного производства, арматура работает в них по-разному. Большинство заводских изделий производится с использованием предварительно напряжённой арматуры. Перед укладкой бетона в форму стержни предварительно растягивают (напрягают) специальным устройством. После отвердения напряжение в стержнях остаётся — арматура как бы «поджимает» весь элемент вдоль них, что значительно улучшает механические свойства детали. Например, балка или плита с предварительно напряжённой арматурой выдерживает большие нагрузки (+ 40–60%) на изгиб, чем обычные.
В высотных зданиях арматурный каркас служит основой всей конструкции. Стержни переходят из одного элемента в другой, что делает их взаимосвязанными между собой и придаёт требуемую жёсткость каркасу здания. Этот эффект даёт возможность возводить небоскрёбы на относительно малой площади.
Армирование СНиП
При строительстве ответственных зданий и сооружений расчёт сечения и количества стержней — один из основных. Нормы армирования регламентируются документами — СНиП 2.03.01–84 «Бетонные и железобетонные конструкции» и приложением к нему «Армирование элементов монолитных железобетонных зданий. Пособие по проектированию». В этих документах подробно описаны расчёты, допуски и требования к конструкциям, в которых применено армирование.
Условия эксплуатации и требования к самим стержням нормируются документом ГОСТ 10884–94 «Сталь для железобетонных конструкций» .
Глубокие расчёты необходимы при строительстве крупных и сложных объектов — высотных зданий, мостов, башен, плотин. Для расчёта армирования конструкций в частном строительстве достаточно придерживаться основных правил, которые актуальны для всех случаев применения арматуры.
Сортамент арматуры
Ещё одним полезным документом является сортамент. В нём приведены все возможные характеристики арматурных изделий — вес погонного метра и зависимость его от диаметра, площадь сечения стержня и марки стали и многие другие. Эти данные необходимы при более сложных расчётах — монолитных перекрытий, резервуаров или зданий, имеющих более 3-х этажей.
Класс арматуры
Как правило, в частном порядке используют самые распространённые марки и диаметры стержней. Условно этот набор можно назвать «оптимальным разрядом». В него входят стержни диаметром от 6 до 18 мм. Классы арматуры оптимального разряда по ГОСТ 5781:
- А1 (А240). Гладкий прут Ø 6–12 мм — в бухтах (бобинах, мотках), 12–40 мм — в прутах (круг).
- А2 (А300). Имеет винтовые рёбра. Диаметр 10–12 мм — в бухтах, 12–40 мм — в прутах.
- А3 (А400). Поперечные рёбра расходятся «ёлочкой» от продольного ребра. Ø 6–12 мм — в бухтах, 12–40 мм — прутах.
Другие марки встречаются редко — в основном на объектах с высокими требованиями, эти изделия изготавливают на заказ из более качественной стали.
Армирование бетона бывает только двух видов по конструкции — плоская сетка (может быть изогнута) или пространственный каркас. Сетку применяют для лежачих плит и стяжек, пространственный каркас — для объёмных элементов — балок, перемычек, армопояса , колонн, стен и др. При этом две сетки, устроенные на стабильном расстоянии друг от друга, уже представляют собой каркас (например, стеновой).
Расчёт армирования
Когда определена форма изделия (элемента) и его размер, дело остаётся за малым — определить диаметр и шаг ячейки каркаса. В строительстве с невысокими требованиями оптимально применить эффективную систему адаптированного расчёта. Принцип применения арматуры разного диаметра прост — чем больше нагрузки несёт элемент, тем толще необходимы стержни.
Показатели каркасов и сеток для разных конструкций:
Арматурные работы: советы профессионала, приёмы и секретыВ адаптированном расчёте можно применить общий принцип — достаточный шаг ячейки будет равен диаметру стержня, умноженному на 10. В ответственных местах — примыкания и соединения элементов — следует добавлять усиления, т. е. устанавливать дополнительные стержни.
Схема армирования
Как правило, из железобетона устраивают два вида элементов — балки и плиты. В 80% случаев для выполнения каркаса любой сложности достаточно будет двух позиций:
- рабочие стержни — пруты арматуры Ø 12–18 мм, устроенные вдоль конструкции;
- распределительные (конструктивные) элементы — изделия из проволоки Ø 6–8 мм, которые распределяют в пространстве и фиксируют рабочие стержни с заданным шагом.
Разумеется, понадобится вязальная проволока.
Схема армирования балки: 1 — армирование лежачих, фундаментных балок и армопояса; 2 — армирование висячих балок, фундамента; 3 — защитный слой 40 мм; 4 — вспомогательные рабочие стержни; 5 — основные рабочие стержни; 6 — хомут Схема армирования балки: 1 — армирование лежачих, фундаментных балок и армопояса; 2 — армирование висячих балок, фундамента; 3 — защитный слой 40 мм; 4 — вспомогательные рабочие стержни; 5 — основные рабочие стержни; 6 — хомутЕсли балка предполагается висячая, все стержни в ней должны быть одинакового сечения (не менее 16 мм). Для лежачей балки вспомогательные стержни могут быть меньшего диаметра.
Схема армирования плиты: 1 — лежачая плита; 2 — висячая плита; 3 — «лягушка»; 4 — распределительная арматура; 5 — рабочая арматура Схема армирования плиты: 1 — лежачая плита; 2 — висячая плита; 3 — «лягушка»; 4 — распределительная арматура; 5 — рабочая арматураКаркас висячей плиты представляет собой две зеркально расположенные сетки. Равное расстояние между ними удерживается с помощью ограничителей.
Станок для арматуры
Для того чтобы изготовить элементы типа «хомут» или «лягушка» потребуется специальное приспособление — гибочный станок. Если предполагается ощутимый объём бетонирования, начать следует именно с изготовления этого станка из подручного материала. Он представляет собой верстак на стальной раме, надёжно установленный в горизонтальном положении.
Чтобы собрать станок для арматуры на месте, вам понадобится подручный материал — обрезки металла, среди которых должны быть два уголка 40х40 или 45х45.
- Основной элемент станка — упор со втулкой. В середине верстака привариваем вертикально стержень длиной 8–10 мм и подбираем стальную трубку, которая свободно на него наденется.
- К трубке привариваем рычаг — лучше всего уголок горизонтальной полкой к трубке. Если уголка нет, тогда упор в 100 мм от приваренного стержня.
- К наружному краю рычага привариваем удобную ручку.
- Укладываем арматуру наибольшего диаметра (но не более 18 мм), которую необходимо гнуть параллельно длинному краю верстака.
- Привариваем к верстаку упор — лучше всего уголок.
Станок может иметь произвольную конструкцию. Основная идея — сила прикладывается в трёх точках через рычаги.
В продаже часто можно встретить заводские ручные приспособления для загиба арматуры, но они редко выдерживают интенсивные нагрузки и предназначены для домашнего использования. Для больших объёмов можно приобрести электрический гибочный станок 220 или 380 В. При помощи электрического станка можно выгибать довольно сложные элементы, которые используют в том числе и в художественной ковке. Цена нового электрического гибочного станка до 40 мм начинается от 70 000 руб.
Арматурные работы: советы профессионала, приёмы и секретыСварка арматуры
Самая распространённая ошибка при выполнении арматурных работ — применение электросварки для соединения элементов каркаса. Причины, по которым этого делать нельзя:
- Перегрев металла. При производстве арматуры классов А1, А2, А3 используется сталь с относительно высоким содержанием углерода. Это значит, что после нагрева она теряет до 50% свойств по прочности. Это особенно важно для соединений под углом.
- Неправильное распределение нагрузки. Жёстко зафиксированный (приваренный) участок стержня как бы вычленяется из него и работает отдельно от остальной его части. По этой причине возникают ненормальные напряжения, сосредоточенные в местах жёсткой фиксации (сварки) вместо того, чтобы распределяться по всей длине.
- Неправильно собранный каркас останется только выбросить (невозможно переделать).
- Опасность для других рабочих — возможно случайное поражение током.
- Затраты на электричество.
Однако есть случаи, когда сварка не только незаменима, но и обязательно требуется:
- Установка закладных деталей (ЗД). ЗД — приоритетные элементы, на которых сосредотачивается большая нагрузка. Они ввариваются в каркас для лучшей передачи нагрузки на стержни.
- Сварка продольных стыков (перехлёстов). Перегретая арматура сохраняет до 70% свойств на растяжение. К тому же на перехлёсте она сдвоена. Сварка продольных стержней «в стык» лишена смысла.
- Крепление по месту к уже существующим ЗД или стальным элементам (при реконструкции зданий).
Вязка арматуры
Скрепление пересекающихся стержней между собой — кропотливая и трудоёмкая работа. Но её нельзя избежать при армировании конструкций. Для этого используют мягкую вязальную проволоку толщиной от 0,5 до 2,5 мм. Приспособление для работы — крючок арматурщика — каждый специалист подбирает себе сам. Есть небольшой ассортимент заводских моделей, но в подавляющем большинстве случаев крючок изготавливают на месте из прута проволоки Ø 8–12 мм. Для этого необходимо выгнуть его в удобной форме и заточить с одного конца. На обратном конце стержня крючка можно надеть пластиковую трубку. Также крюк можно установить в аккумуляторный шуруповёрт, что значительно облегчит работу.
Арматурные работы: советы профессионала, приёмы и секретыДля облегчения труда арматурщика есть развитые формы вязального крючка:
- Заводской арматурный крючок. Между ручкой и стержнем крюка установлен подшипник.
- Автоматический крюк. Вращается за счёт пружины в рукояти, соединённой с жалом.
- Вязальное устройство (пистолет). Операция автоматизирована, пистолет сам поджимает стержни и вяжет проволоку.
При создании каркасов для разных элементов применяют разный шаг вязки. Чем более ответственный участок — тем плотнее будут расположены узлы.
Шаг узлов в разных каркасах:
Арматурные работы: советы профессионала, приёмы и секретыАрматурные работы часто сопряжены с установкой опалубки, которую часто смазывают маслом для облегчения демонтажа. Внимательно следите за тем, чтобы масло не попадало на стержни — это приведёт к отсутствию сцепления между бетоном и арматурой. Использование сильно окисленной арматуры категорически нежелательно.
ВВЕДЕНИЕ
Арматурный прокат для железобетона является одним из самых массовых видов продукции черной металлургии.
С учетом все возрастающих темпов строительства объемы производства арматурного проката в обозримой перспективе будут только увеличиваться (табл. 1).
Прогноз производства железобетона и потребности в арматурных сталях в РФ до 2010 г .
Ввод жилья, строительные материалы
Ввод жилья, млн. м 2
Железобетон; всего **, млн . м 2
сборный железобетон, млн. м 3
предварительно напряженный железобетон. млн. м 3
Стальная арматура всех видов, тыс. т
Высокопрочная напрягаемая арматура, тыс. т
в том числе стержневая классов А800, A т800 и Ат1000
* Данные лаборатории арматуры НИИЖБ
** Оценочные данные ЦПЭ НИИЖБ
Номенклатура и сортамент арматурного проката, производимого на металлургических предприятиях бывшего СССР, складывались под влиянием спроса, ориентированного массовым развитием сборного железобетона и в условиях, практически изолированных от мирового рынка. До настоящего времени это обстоятельство в большей или меньшей степени для разных металлургических предприятии сказывается в недополучении прибыли, связанном с производством устаревших видов арматурного проката, с высокой себестоимостью и низкой конкурентной способностью.
Требования, предъявляемые к арматурному прокату строителями (потребителями) еще на ранней стадии развития железобетона, остались актуальными и в настоящее время.
Учитывая особенности современного производства и эксплуатации арматурных элементов сборного и монолитною железобетона (каркасов, сеток, закладных деталей, монтажных петель и т.п.), к основным требованиям по прочности, деформативности и сцеплению с бетоном добавились дополнительные требования по свариваемости, хладостойкости, коррозионной стойкости арматуры и др. Из-за все возрастающих требований к качеству строительства экономическая эффективность и надежность применения того или иного вида арматурного проката у потребителя становятся основополагающими для внедрения его у производителя.
На ранней стадии производства арматуры главными определяющими ее потребительских свойств были технические возможности сталелитейного и прокатного технологического оборудования. Тогда строители были вынуждены довольствоваться той арматурной продукцией, которую производила металлургическая промышленность.
В связи с бурным развитием металлургического производства в последние годы практически все технологические ограничения с производства арматуры были сняты. В настоящее время металлурги готовы производить ту арматурную продукцию, которая может быть эффективно использована в строительстве.
В соответствии с СП 52-101-2003 для армирования железобетонных конструкций рекомендуется применять арматуру следующих видов:
- горячекатаную гладкую и периодического профиля с постоянной и переменной высотой выступов (соответственно кольцевой и серповидный профили) диаметром 6-40 мм;
- термомеханически упрочненную периодического профиля с постоянной и переменной высотой выступов (кольцевой и серповидный) диаметром 6-40 мм:
- холоднодеформированную периодического профиля диаметром 3-12 мм.
Класс арматуры по прочности на растяжение обозначается:
А - для горячекатаной и термомеханически упрочненной арматуры;
В - для холоднодеформированной арматуры.
Классы арматуры по прочности на растяжение А и В отвечают гарантированному значению предела текучести (с округлением) с обеспеченностью не менее 0,95, определяемому по соответствующим государственным стандартам или техническим условиям.
В необходимых случаях к арматуре предъявляются требования по дополнительным показателям качества: свариваемость, пластичность, сцепление с бетоном, хладостойкость, коррозионная стойкость, усталостная прочность и др.
При проектировании железобетонных конструкций может быть использована арматура:
- гладкая класса А240 (A-I);
- периодического профиля классов А300 (А- II ), А400 (А- III , А400С), А500 (А500С, А500СП), В500 (Bp-I, B500C), где С - свариваемая, П - повышенного сцепления.
Страна и стандарт
Класс арматуры и диаметр, мм
BS EN 10080:2005
Унифицированная свариваемая арматура имеет химический состав, определяемый содержанием в стали углерода не более 0,22 %.
Применение арматуры класса А500 вместо арматуры класса А400 (А- III ) обеспечивает более 10 % экономии стали в строительстве.
Для отечественного строительства возможна замена этим классом стали не только арматуры класса А400 (А- III ), но и гладкой арматуры класса А240(А- I ), применяемой в виде конструктивной арматуры в монтажных петлях, в закладных деталях и т.п.
Этим условиям в термомеханически упрочненном состоянии могут соответствовать низкоуглеродистые стали марок: Ст3сп, Ст3пс, Ст3Гпс или низколегированные стали типов 18ГС, 20ГС и т.п.
Учитывая вышеизложенное, в качестве эффективной арматуры для железобетонных конструкций, устанавливаемой по расчету, следует преимущественно применять арматуру периодического профиля класса А500 (А500С, А500СП), а также арматуру класса В500 в сварных сетках и каркасах.
1) Отменен с 1 марта 2004 г.
Во второй части, оформленной в виде приложений 1 и 2, приводятся конструктивные требования к армированию основных элементов зданий из монолитного железобетона, а также примеры рабочей документации по армированию основных конструктивных элементов монолитных зданий с разными конструктивными схемами, построенных в Москве и разработанных ЗАО «Проектно-архитектурная мастерская "ПИК"», ЗАО «Трианон», КНПСО Центр «Поликварт», а также в НИИЖБ.
В работе использованы материалы исследований, в проведении которых принимали участие сотрудники: И.Н. Суриков, В.З. Мешков, B.C. Гуменюк, Г.Н. Судаков, К.Ф. Штритер, Б.Н. Фридлянов, И.С. Шапиро, АА. Квасников, И.П. Саврасов, О.О. Цыба, М.М. Козелков, А.Р. Демидов, С.Н. Шатилов, В.П. Асатрян. Оформление графической части издания выполнял А.А. Квасников с участием Л.А. Гладышевой, А.В. Лугового, Д.В. Плотникова, В.Я. Никитиной, Т.Н. Николаевой, Н.И. Федоренко и др.
1. ЭФФЕКТИВНАЯ АРМАТУРА ДЛЯ МОНОЛИТНОГО СТРОИТЕЛЬСТВА
1.1 Стержневой арматурный прокат
В строительстве из монолитного железобетона для армирования применяется преимущественно стержневой арматурный прокат диаметром 10-40 мм (табл. 3).
Расход арматуры в жилищном строительстве Москвы
Класс и сортамент арматуры, мм
Расход стали на 1 м 2 , %
Монолитные здания с шагом более 4,2 м
Средний по многоэтажным жилым домам
монолитные с шагом до здания 4,2 м
Средний расход на 1 м 2 . кг
Рисунок 1 - Основные типы периодического профиля
а - кольцевой, ГОСТ 5781-82, fR = 0,10 (не нормируется); б - серповидный двусторонний, СТО АСЧМ 7-93, fR = 0.056; в - серповидный четырехсторонний, ТУ 14-1-5526-2006, fR = 0,075
По сравнению с «кольцевым» профилем по ГОСТ 5781-82 геометрия серповидного профиля имеет ряд преимуществ, относящихся к технологичности в современном прокатном производстве.
Плавное изменение высоты серповидных поперечных ребер и отсутствие их пересечений с продольными ребрами позволяет несколько повысить выносливость стержней при воздействии многократно повторяющихся нагрузок.
Существенным недостатком серповидного профиля являются сниженная по сравнению с кольцевым профилем прочность и жесткость сцепления арматурных стержней с бетоном вследствие меньшей площади смятия поперечных ребер при их увеличенном шаге.
Рисунок 2 - Базовые значения длины анкеровки стержневой арматуры по нормам проектирования СССР (РФ), CEN ( FIN ), США (ACI-318). Бетон В25 (М350), арматура А400 (A-III) диаметром 16 мм
Рисунок 3 - Конструкция четырехстороннего серповидного профиля
По сравнению с двухсторонним серповидным новый профиль позволяет при той же высоте поперечных ребер увеличить их относительную площадь смятия fR в 1,3-1,4 раза при том, что шаг ребер в каждом ряду увеличивается на 10-15 %. Увеличенный шаг расположенных вразбежку поперечных выступов облегчает внедрение между выступами зернам крупного заполнителя, что повышает и прочность, и жесткость сцепления. Четырехрядная компоновка ребер делает более равномерным по контуру сечения стержня распределение расклинивающих бетон усилий распора, возникающих в зонах анкеровки или нахлестки арматуры.
Преимущества формы нового профиля подтвердили проведенные в НИИЖБ сравнительные исследования взаимодействия с бетоном стержней с кольцевым профилем по ГОСТ 5781-82, с серповидным двухсторонним по СТО АСЧМ 7-93 и новым (серповидным четырехсторонним). Так как минимальные нормируемые значения относительной площади смятия (критерий Рема) приняты для арматуры с серповидным двухсторонним профилем 0,056 и четырехсторонним 0,075, наиболее объективными будут считаться сопоставительные испытания на сцепление образцов арматуры с этими значениями критерия Рема. Характерные результаты испытаний на сцепление арматуры с бетоном приведены на рис. 4. Выполненными исследованиями обнаружена способность стержней с новым профилем при определенных условиях сохранять максимально достигнутую прочность сцепления даже при значительных пластических деформациях стержней при напряжениях на уровне предела текучести и даже выше.
Рисунок 4 - Деформации втягивания незагруженного конца стержня и энергоемкость разрушения сцепления арматуры с бетоном (профили: серповидные четырехсторонний и двухсторонний).
Rb =41,6 МПа; Ø16; l ап =8 d (130 мм)
В аналогичных условиях стержни и серповидного двухстороннего, и кольцевого профилей теряют прочность сцепления при значительно меньших пластических деформациях. То есть затрата энергии на разрушение сцепления (энергоемкость сцепления) при испытаниях на вытягивание, которая на рис. 4 выражена как площадь под диаграммой растяжения загруженного конца стержня, для нового профиля заметно выше. Это очень существенный фактор увеличения стойкости конструкции против прогрессирующего разрушения в условиях запредельной (катастрофической) стадии работы.
Отмеченное явление в поведении арматуры с четырехсторонним серповидным профилем в бетоне может быть объяснено его меньшей одноосной распорностью, обусловливаемой равномерным (объемным) характером распределения этих усилий по периметру (поверхности) стержня (рис. 5).
Рисунок 5 - Схема взаимодействия растянутого арматурного стержня с окружающим бетоном
1 - европейский профиль (серповидный двухсторонний); 2 - профиль нового типа (серповидный четырехсторонний); а - усилия в бетоне в зоне передачи напряжений с арматуры на бетон и характер трещинообразования в бетоне; б - распределение усилий распора в поперечном сечении
При одинаковых усилиях N вытягивания или вдавливания стержня из бетона или в бетон расклинивающие усилия на единицу длины арматуры с двухсторонним расположением
Р = n Р 1 ,
где при F sn = Fsn1,
Fsn , Fsn 1 , Fsn 2 - площади проекции поперечных ребер на плоскость, нормальную продольной оси стержня;
t 1 и t 2 - шаги поперечных ребер (рис. 5).
Среднестатистические диаграммы растяжения арматуры классов А500С и А500СП производства РУП «БМЗ» и Западно-Сибирского металлургического комбината приведены на рис. 6 и 7.
Рисунок 6 - Среднестатистическая диаграмма растяжения арматуры классов А500С и А500СП Ø10-40 производства РУП «Белорусский металлургический завод»
Рисунок 7 - Среднестатистическая диаграмма растяжения арматуры классов А500С и А500СП Ø10-28 производства ОАО «ЗапСибметкомбинат»
Усталостные испытания образцов проката с новым профилем показали, что по выносливости стержни с новым профилем не уступают стержням с профилем по СТО АСЧМ 7-93, что объясняется более чем вдвое уменьшенным по сравнению с ГОСТ 5781-82 числом пересечений продольных и поперечных ребер, а также исключением замкнутости формы поперечных ребер (высота всех ребер плавно сводится на нет).
Арматурную сталь с серповидным четырехсторонним профилем класса А500СП поставляет Западно-Сибирский металлургический комбинат по ТУ 14-1-5526-2006 «Прокат арматурный класса А500СП с эффективным периодическим профилем». Применение этого арматурного проката в строительстве регламентировано стандартом организации ФГУП «НИЦ «Строительство» СТО 36554501-005-2006.
Эффективность применения арматурного проката класса А500СП приведена в табл. 4.
Эффективность применения арматурной стали класса прочности 500 МПа
Нормативные документы, механические свойства, области применения, эффективность, потребительские и технические характеристики
Ст3СП, Ст3ПС, Ст3ГПС, 18ГС, 20ГСФ
Документы для поставки
СТО АСЧМ 7-93 , ТУ 14-1-5254-2006, ТУ 14-1-5526-2006
Документы для расчета, проектирования и применения в железобетонных конструкциях
Угол изгиба при диаметре оправки C =3 d
Расчетное сопротивление растяжению Rs , МПа
Расчетное сопротивление сжатию Rsc , МПа
Нормативное сопротивление Rsn , МПа
Применение при отрицательных температурах
Применение дуговой сварки прихватками крестообразных соединений
Вид профиля арматуры, минимальное значение критерия Рема fR
fR - не нормируется
fR = 0,056 кольцевой
Эффективность сцепления с бетоном
Высокая при эксплуатационных нагрузках, средняя - при критических (аварийных)
Эффективность сопротивления динамическим нагрузкам
Применение в качестве анкеров закладных деталей
Рекомендуется для повышения надежности
Применение в качестве монтажных петель
Возможный экономический эффект относительно арматуры класса А400 (А- III )
Применение в ответственных зданиях и сооружениях, в том числе проектируемых с учетом сейсмических и аварийных нагрузок
Рекомендуется для повышения надежности
Способ производства проката
Термомеханически упрочненный, холоднодеформированный
Термомеханически упрочненный, холоднодеформированный, горячекатаный
Маркировка класса арматуры
Прокатная на поверхности, не реже чем через 1,5 м
Примечание. Значение Rsc в скобках используют только при расчетах на кратковременное действие нагрузки.
1.2 Арматурный прокат, поставляемый в мотках (бунтах)
Диаметр арматуры, мм
В мотках, в стержнях
Применение арматуры в мотках практически исключает отходы при заготовительных операциях, позволяет механизировать производство сварных арматурных сеток, каркасов и других изделий.
Как видно из таблицы 5, арматурная сталь, поставляемая в мотках, применяется преимущественно в производстве сборного железобетона. В монолитном строительстве применение арматуры в мотках ограничивалось использованием в качестве хомутов колонн и пилонов, конструктивной арматуры стен, поперечной перекрытий и балочных изгибаемых элементов. Ее применение является рациональным при использовании в монолитном строительстве арматурных каркасов и сеток, изготавливаемых на специализированном арматурном производстве, укомплектованном правильно-отрезным оборудованием.
Применение арматуры, поставляемой в мотках, сдерживалось конструктивным ограничением СНиП 2.03.01-84*, п. 5.17, в котором для армирования внецентренно сжатых элементов монолитных конструкций требовался диаметр не менее 12 мм. Исключение этого ограничения в СП 52-101-2003 для железобетонных стен позволит проектировщикам широко использовать для армирования сжатых элементов арматуру диаметрами 8 и 10 мм, поставляемую как в мотках, так и в стержнях.
Одной из современных проблем строительного комплекса в России является неудовлетворенный спрос на арматуру периодического профиля в мотках. Так как многие металлургические предприятия пока не располагают техническими возможностями производить в мотках арматурный прокат требуемых размера и прочности в необходимых объемах, строители вынуждены перерасходовать до 20-30 % стали в изделиях из-за замены необходимой арматуры на имеющийся в наличии прокат большего диаметра.
Одним из направлений уменьшения дефицита арматуры диаметром до 12 мм является организация массового производства арматуры класса В500 по опыту Германии и других стран, где в качестве арматуры диаметром 4 - 12 мм применяют преимущественно холоднодеформированную сталь. Другое направление связано с освоением металлургами производства арматуры класса А500 диаметром 12 мм и менее в мотках. В обоих случаях необходимо предусмотреть расширение по сравнению со СТО АСЧМ 7-93 сортамента проката, что позволит уменьшить расход конструктивной (нерасчетной) арматуры и при определенных условиях решить задачу взаимозаменяемости арматуры одного класса прочности на другой класс без перепроектирования железобетонных конструкций. Соседние позиции существующего сортамента от 6 до 12 мм сильно отличаются по площади поперечного сечения (на 44-78 %), что вынуждает при проектировании специфицировать существенно большее количество арматуры, чем это требуется по расчету [4].
Реализация на практике первого направления наблюдается в последние годы в Центральном регионе России, где на предприятиях среднего бизнеса интенсивно наращивается производство по техническим условиям свариваемой холоднодеформированной арматуры периодического профиля класса В500С диаметром до 12 мм в мотках [5] волочением через роликовые волоки. Реализация второго направления начата на Белорусском металлургическом заводе.
Отраслевой стандарт СТО АСЧМ 7-93 предусматривает три категории свариваемого стержневого и поставляемого в мотках арматурного проката класса прочности 500 МПа, различающиеся по способу производства: горячекатаный, термомеханически упрочненный с прокатного нагрева, механически упрочненный в холодном состоянии (холоднодеформированный). Поставка арматуры диаметром от 6 до 12 мм может быть предусмотрена в мотках. Свод правил СП 52-101-2003, который содержит рекомендации по расчету и проектированию бетонных и железобетонных конструкций без предварительного натяжения арматуры, определяет требования к показателям качества для двух групп арматуры класса прочности 500 МПа: класс А500 для горячекатаного и термомеханически упрочненного проката номинальным диаметром от 10 до 40 мм и класс В500 для холоднодеформированной по разным технологиям арматуры номинальным диаметром от 3 до 12 мм. Требования к расчетным показателям арматуры классов А500 и В500 в СП 52-101-2003 различаются.
Расширение сортамента арматуры классов А500 и В500 позволяет уменьшить расход конструктивной арматуры и в необходимых случаях решить задачу взаимозаменяемости арматуры одного класса на арматуру другого класса с учетом всех требований, предъявляемых к рабочей арматуре железобетонных конструкций без пересчета последних. В качестве примера в таблице 6 приведены рекомендации по замене в железобетонных конструкциях без их перепроектирования растянутой рабочей арматуры классов А400С и А400 (А- III ) на арматуру классов А500 и В500. Предполагаемая замена в конструктивном армировании, как видно из таблицы 6, позволяет получить экономию стали от 12 % до 19 % при использовании в качестве заменяющей арматуры обоих классов А500 и В500.
В рабочем (расчетном) армировании аналогичный эффект достигается при использовании только горячекатаной и термомеханически упрочненной арматуры класса А500.
Из-за меньшего расчетного сопротивления холоднодеформированной арматуры класса В500 экономически целесообразна замена на нее (07,5 мм) только арматуры 08 мм класса А400 (А-III). В этом случае снижение рабочего армирования составит 12,1 %.
Вид эффективного арматурного проката, поставляемого в мотках с четырехсторонним периодическим профилем, приведен на рисунках 8 и 9.
Рисунок 8 - Вид арматурного проката классов А400 и А500С, поставляемого в мотках по ТУ 14-1-5501-2004 РУП «Белорусский металлургический завод»
Рисунок 9 - Прокат периодического профиля по ТУ 14-1-5501-2004
а - номинальный диаметр 5,5 мм; б - номинальный диаметр 7 мм
Рекомендации по замене растянутой рабочей арматуры классов А400С и А400 (А- III ) на арматуру класса А500/В500 без перепроектирования железобетонных конструкций*
Заменяемая арматура классом А400 и А400С
Предлагаемая арматура класса А500/В00
Номинальный диаметр d н , мм
Номинальная площадь поперечного сечения As 1 , мм 2
Усилие, соответствующее Rsn 1 , кН
Усилие, соответствующее Rs 1 ,кН
Нормативное сопротивление Rsn 1 , МПа
Расчетное сопротивление Rs 1 ,МПа
Номинальный диаметр d н , мм
Номинальная площадь поперечного сечения As 2 , мм 2
Усилие, соответствующее Rsn 2 , кН
Усилие, соответствующее Rs 2 , кН для А500/В00
Нормативное сопротивление Rsn 2 , МПа
Расчетное сопротивление Rs 2 , МПа, для А500/В500
Армирование монолитных балок
В предыдущей своей статье я рассказывал об армировании монолитных конструкций на примере монолитной плиты перекрытия. Рассказал технологиях, немного истории изобретения железобетона в принципе и о физике работы железобетона. Кроме перекрытий из монолитного железобетона изготавливают балки, консоли, стены, колоны, ростверки и многие другие конструкции. Применение в частном домостроении находят в основном балки, как на заглавной фотографии, стены, приямки, иногда колонны. Особенный интерес и сложность вызывают балки если балка банально опирается на две стены и с двух сторон на неё опираются например плиты перекрытия, то работает в ней арматура только на изгиб. Гораздо сложнее будет схема работы балки, если перекрытие опирается на неё только с одной стороны. В такой балке появляются силы, которые будут эту балку скручивать. Я не буду описывать Вам процесс расчета балки, если она работает на скручивание, просто скажу как она обычно армируется. В балках применяется 3 типа хомутов:
Начну с третьего, самого простого, открытого хомута - его задача удержание продольных элементов в проектном положении. Он не предназначен для восприятия скручивающих нагрузок, используется при армировании балок объединенных с плитами, образующими ребристое перекрытие на самом деле достаточно редко.
Второй очень распространённый тип хомута применяется в большинстве балок и колонн, не воспринимающих скручивающие нагрузки.
Ну и первый тип - применяется в балках и колоннах, испытывающих скручивающие нагрузки. Самый простой пример - армопояс, который одновременно служит опорой этажного перекрытия и надоконный перемычкой.
Сразу покажу как неправильно
Армирование монолитных балокАрмопояс в данной конструкции объединен с оконной перемычкой, но хомуты установлены неправильно. Хомут должен иметь больший перехлест и обязательно оканчиваться крючком. В принципе это общее правило применения гладной арматуры - она всегда имеет крючок на конце для обеспечения анкеровки в бетон, иначе она легко проскользнет и не будет работать совместно с бетоном.
Над окном такой пояс будет испытывать скручивающую нагрузку от воздействия перекрытия. В нем обязательно должны быть установлены хомуты 1-го типа. Концы хомута 1-го типа не должны быть заведены с перехлестом не менее 30 диаметров арматуры. То есть хомут из арматуры диаметром 8 мм, должен иметь перехлёст не менее 240 мм.Для изготовления хомутов по месту иногда применяют приспособление в виде куска арматуры и приваренной к ней гайки большого диаметра. Но желательно хомуты и саму балку изготавливать отдельно, хомуты гнуть при помощи простейшего ручного гибочного станка по шаблону. Балку собирать на импровизированным стапеле.
Тоже очень ровная и аккуратная балка, видно что работали неплохие специалисты, но ошибок все равно не избежали - пресловутые крючки.
Кстати, на данной фотографии представлен импровизированный стапель, на котором балку можно собирать. Это происходит в следующей последовательности. Сначала укладываются верхние стержни, одеваются хомуты, вставляются нижние стержни, все провязывается и балка готова. Обратите внимание поскольку вставлять длинные стержни в хомуты сложнее чем просто укладывать на опору балка собрана вверх ногами, то есть нижние стержни на этой фотографии находятся вверху.
Еще есть одна тонкость, связанная с размещением хомутов по длине балки. Балка условно делится на три части. Две приопорные части как это понятно из названия и центральную пролетную часть.
Если нагрузка на балку равномерная - то длина приопорных частей равна четверти пролета. Если на белке есть сосредоточенная нагрузка - например на нее опирается еще какая-то балка, то приопорная часть продлевается до места сосредоточенной нагрузки, при этом ее длина все равно не может быть меньше четверти пролета.
Шаг установки хомутов для пролетной части равен половине высоты балки но не более 150 мм. Для остальной части балки - 3/4 высоты балки, но не более 500 мм. Впрочем для частного домостроения такие большие балки не встречаются.
Впрочем правильно разместить хомуты это дело конструктора, Вас надо знать как их выполнять и еще, как они обозначаются на чертеже.
Фрагмент чертежа простой балки Фрагмент чертежа простой балкиНа данном фрагменте чертежа показано армирование небольшой перемычки длиной каркаса 2180 мм, высотой 222 мм и шириной 97 мм. Это стандартная брусковая оконная перемычка так марки 3ПБ22-3П
Применяется такая перемычка для перекрытия оконных проемов шириной до 1900 мм. Это достаточно широкое окно. Обратите внимание для устройства перемычки применены следующие размеры арматуры - в нижнем сечении 2х10 мм в стандартном типе обозначенном цифрой I и 2х14 мм в усиленной перемычке типа II. Верхняя арматура в обоих типах диаметром всего 6 мм причем это гладкая арматура. Хомуты выполнены также из арматуры диаметром 6 мм. Шаг хомутов над опорой - 85 мм, в приопорной части - 100 мм, в пролете 150 мм. Такие перемычки изготавливаются на заводах и готовыми завозятся на строительные площадки для установки в наружные стены и перегородки многоэтажных домов.
Я специально взял типовую рассчитанную в проектных институтах перемычку. И вот вырезка из проекта одного из частных домов
Армирование монолитных балокТри ряда арматуры над окнами, 16 и 12 мм диаметр, суммарная высота перемычки с учетом армопояса дома 400 мм., а потом мы удивляемся почему строить дом так дорого. А пролет шириной всего 1600 мм, в то время как типовая для кирпичной кладки на пролет 1900. Причем чем больше высота перемычки, тем эффективнее работает арматура в ней то есть ее можно использовать куда меньшего диаметра.
Просто считать никто не хочет, делаем по принципу в некотором типовом проекте видел арматуру диаметром 10 мм, поставлю себе 12 чтобы уж точно, следующий проектировщик видит 12, себе ставит 14 и т.д.
На этом тему балок и перемычек закрываю дабы не углубляться в сложные расчетные дебри. Желаю всем удачного строительства и качественных проектов.
Читайте также: