6 в каком поколении компьютеров использовались магнитные ленты
В наш век супербыстрых SSD и терабайтных жёстких дисков пользователи ПК уже давно позабыли, что такое нехватка свободного места. Разумеется, так было не всегда. Совершите небольшое путешествие назад во времени, чтобы увидеть эволюцию носителей информации для компьютеров.
Помогите развитию проекта, поделитесь статьей в социальных сетях, через кнопки справа ->
Магнитная лента
Если отбросить перфокарты, то самым старым методом записи информации для компьютера станет магнитная лента, появившаяся в 1951 году. Первые магнитные ленты применяли в суперкомпьютерах, но потом они появились и в домах в виде аудиокассет и VHS. В том или ином виде, как носитель информации, магнитная лента дожила до конца двадцатого века. Если на первые магнитные ленты удавалось записывать лишь крохи информации, сравнимые с перфокартами, то впоследствии вместимость данных выросла в тысячи раз.
Жёсткий диск
Ещё один старый метод записи, но актуальный и по сей день. Жёсткие диски, спрятанные в корпус, появились в 1956 году. Стандартный 3.5’ HDD вмещает терабайты данных, в то время как один из первых жёстких дисков весил под тонну и вмещал жалкие 3.5Мб информации — сегодня на него не поместилась бы и одна гифка из социальных сетей. Возможности носителя ещё не исчерпаны. Некоторые производители умудряются создавать HDD с возможностью записи до 10Тб информации.
Дискета
Первый массовый носитель появился в 1971. Если домашний компьютер ещё мог работать без встроенного жёсткого диска, то без дискеты он превращался в обычную домашнюю мебель. Пластиковый квадратик вмещал в себя небольшой магнитный диск с вместимостью 1,44Мб. И хоть дискеты безнадёжно устарели, пиктограмма с их изображением до сих пор прочно ассоциируется с кнопкой « Cохранить ».
Оптический диск
Оптические диски, появившиеся в 1982 году, тоже развиваются. Хотя большинство людей уже не пользуются дисками на ПК, фильмы и видеоигры до сих пор записывают на диски формата Blu-ray. Первый диск производства Sony вмещал около 600Мб информации, а сегодня Blu-ray такого же размера вмещает уже 111Гб данных, куда может поместиться фильм высокой чёткости в формате 3Д.
Твердотельный накопитель
Флэшки и SSD — самые аудиальные на сегодняшний день носители. Быстрый и недорогие, они ещё долго будут привычными атрибутами любого ПК.
Облако
Следующий этап хранения информации, когда данные будут храниться на удалённых серверах. Конечно, при хранении этих данных будут использовать вполне себе привычные жёсткие диски, но пользователям уже совершенно не будет до этого дела. Это поможет сократить размеры устройств. Вспомните, какими стали компактными ноутбуки, лишившиеся дисковых приводов и объемных HDD.
В декабре 2020 года IBM Research и Fujifilm представили прототип картриджа LTO на 580 терабайт. Небольшая кассета с магнитной лентой вмещает информации как несколько десятков обычных HDD или 120 000 DVD.
Магнитные ленты появились почти сто лет назад, а компьютерные файлы на них записывают с 1952 года. Ещё наши мамы в советских НИИ меняли катушки на мейнфреймах. И в 2021 году плёнки остаются самым дешёвым накопителем со стоимостью хранения примерно в 6 раз ниже, чем на HDD. Поскольку плёнка практически исчезла с потребительского рынка, многие даже не знают, насколько бурно развивается эта технология.
Катушки с магнитными лентами производства Orwo (ГДР) в советском мейнфрейме ЭВМ ЕС-1020 на кафедре прикладной математики физмата Ленинградского политехнического института, середина 1980-х. Скорость чтения/записи составляла 2 метра (64 килобайта) в секунду, источник
Вообще, магнитную ленту изобрёл немецкий химик Фриц Пфлёймер в 1928 году, то есть 93 года назад. Он первым догадался сделать напыление магнитным порошком из оксида железа на тонкой бумаге с помощью клея. Первую ленту изготовил немецкий концерн BASF. Сначала её использовали для записи звука, а в 50-е годы начались эксперименты по записи видео, а также цифровых компьютерных данных, причём второй вариант использования считался гораздо перспективнее, потому что магнитные видеокассеты всё равно не могли сравниться с киноплёнкой по качеству изображения.
Первая в мире лента с цифровыми данными была записана и считана магнитными головками Uniservo I для компьютера UNIVAC I в 1951 году. На той ленте шириной полдюйма (12,65 мм) данные записывались с плотностью 100 символов на дюйм.
Магнитные головки Uniservo I
Потом за дело взялась IBM, которая выпустила 7-дорожечные ленты такой же ширины в полдюйма.
Модель IBM 726 сохраняла 2 мегабайта на катушке. Устройство сдавалось в аренду по $850 в месяц, источник
Потом были разработаны 9-дорожечные ленты для системы IBM System/360. Девять дорожек позволяли записать в каждом положении ленты ровно один байт (8 информационных разрядов плюс 1 контрольный). Эти катушки на долгие 30 лет стали компьютерным стандартом, в том числе для советских компьютеров.
Накопители IBM 2401 для компьютеров System/360
Плотность записи постоянно росла: до 200, 556, 800 символов на дюйм, затем у 9-дорожечных лент она составляла 800, 1600 и 6250 байт на дюйм. К 70-м запись достигла такой плотности, что стало возможным уменьшить ширину ленты. Так появились первые компактные кассеты и картриджи.
Стандарт QIC («картридж с лентой в четверть дюйма») представила компания 3M в 1972 году, Journey234
Linear Tape-Open (LTO) — один из современных стандартов для картриджей, который отличается максимальной плотностью записи.
Текущие ленты производятся с покрытием из феррита бария (BaFe). В каждом новом поколении LTO частицы становились всё мельче, компонуясь в более узкие дорожки данных. В декабре 2020 года Fujifilm и IBM анонсировали первую модель с покрытием из феррита стронция (SrFe). Размер частиц уменьшился на 60%.
Слева: строение ленты. Справа: Фотографии частиц из феррита бария и феррита стронция в покрытии. Изображение: Fujifilm
Плотность записи в лентах можно сравнить с аналогичным показателем HDD, потому что там используется схожий принцип хранения намагниченных бит в слое носителя на подложке.
Плотность записи на HDD в последнее десятилетие увеличивается на 9% в год, а у плёнки на 34%. Слайд из презентации IBM
Плотность записи на HDD замедлила рост в последнее десятилетие. Большие надежды возлагают только на термомагнитную запись (HAMR), где показатель превышает 2 Тбита/дюйм². До таких показателей LTO далеко.
Но уже при существующей плотности картриджи значительно обгоняют HDD по общему объёму информации, ведь площадь ленты на катушке гораздо больше площади блинов в винчестере. Конструкция картриджа позволяет задействовать одновременно 32 считывающие головки, что даёт преимущество по скорости чтения и записи, по сравнению с HDD.
Главное, что плотность записи на плёнку продолжает расти в геометрической прогрессии, примерно на 33% в год. То есть удвоение объёма накопителей происходит примерно раз в два-три года. Для сравнения, прогресс в производстве жёстких дисков сильно замедлился (если HAMR не оправдает надежд).
2006 | 2010 | 2014 | 2015 | 2017 | 2020 | |
---|---|---|---|---|---|---|
Плотность записи (Гбит на дюйм²) | 6,67 | 29,5 | 85,9 | 123 | 201 | 317 |
Ёмкость картриджа (ТБ) | 8 | 35 | 154 | 220 | 330 | 580 |
Ширина дорожки | 1,5 мкм | 0,45 мкм | 0,177 мкм | 0,14 мкм | 103 нм | 56,2 нм |
Линейная плотность (бит на дюйм) | 400 000 | 518 000 | 600 000 | 680 000 | 818 000 | 702 000 |
Материал магнитного слоя | BaFe | BaFe | BaFe | BaFe | CoPtCr-SiO2 | SrFe |
Толщина плёнки (мкм) | 6,1 | 5,9 | 4,3 | 4,3 | 4,7 | 4,3 |
Длина плёнки (м) | 890 | 917 | 1255 | 1255 | 1098 | 1255 |
Увеличение плотности записи и ёмкости картриджей LTO. Источник: IBM
Выходит, что плёночные картриджи сейчас — более перспективная технология, чем жёсткие диски. Плёнка развивается, рынок растёт, разработчики не жалеют денег на научные исследования и строят планы на десятилетия вперёд.
Надёжность
У ленточных накопителей относительно высокий срок гарантированного сохранения данных. Производители современных картриджей типа LTO обычно гарантируют сохранность информации от 15 до 30 лет.
Устройство картриджа в принципе проще, чем у SSD и HDD, где механизм для чтения и записи информации встроен внутрь накопителя, и этот механизм чрезвычайно сложный и подвержен поломкам. Например, распространённая причина выхода из строя SSD и HDD — сбой электроники в контроллере, а в HDD ещё повреждения головки. Плёночным картриджам в этом случае ничего не грозит. Вероятность ошибок при записи или чтении плёнки на 4-5 порядков ниже, чем у жёстких дисков.
Ещё одно преимущество картриджей — безопасность, поскольку накопители физически изолированы от сети.
Низкая стоимость
Если сравнить стоимость хранения 1 мегабайта на разных накопителях, то после превышения определённого объёма данных магнитная лента — самый выгодный вариант. Например, за $500 можно купить десяток кассет LTO-8 по 12 ТБ каждая. Для сравнения, HDD того же объёма обойдутся примерно в $3000.
Правда, сам привод LTO-8 стоит несколько тысяч долларов, так что на маленьких объёмах расходы не окупятся. В качестве малобюджетной альтернативы можно купить бэушный привод LTO-2 за $95 с кассетами 200 ГБ по 8 долларов, но это жутко устаревший лоутек.
Внешний привод MagStor LTO-8 HH SAS (LTO-8) для настольного компьютера стоит $3300
В отличие от домохозяйств, в корпоративных хранилищах выгода очевидна. Дополнительная экономия достигается за счёт сокращения капитальных затрат на строительство хранилища, сокращения административных расходов и оплаты электричества, поскольку для хранения кассет не требуется электропитание, как в случае с серверами. См. калькулятор стоимости владения (TCO) для корпоративного дата-центра.
Диски DVD в таких системах даже не рассматриваются. Например, для хранения хотя бы 5 ТБ требуется сотня дисков Blu-ray со смехотворной скоростью записи.
Скорость чтения и записи
Перемотка магнитной ленты — это механический процесс, который никак невозможно произвести за миллисекунды. Представьте, что для поиска файла требуется отмотать 200 метров ленты… Вообще, в современных картриджах LTO длина ленты превышает 1 километр. Поэтому среднее время доступа к данным — десятки секунд, тогда как у жёстких дисков — от 5 до 10 миллисекунд. В реальности кроме перемотки кассеты нужно ещё найти нужную кассету в хранилище, что тоже нетривиальная задача (см. КДПВ).
В последней модели LTO скорость прокрутки ленты во время чтения/записи составляет около 15 км/ч (4 м/с), а головки позиционируется с точностью 3,2 нанометра.
Скорость последовательного чтения и записи на плёнку выше, чем у современных HDD. В последнем поколении LTO-9 чтение/запись происходит параллельно на 32 дорожки, а скорость достигает 400 мегабайт в секунду в несжатом виде или 1 ГБ/с в сжатом.
Исходя из достоинств и недостатков плёнки понятны варианты её использования. Это надёжные накопители для дешёвого долговременного хранения с хорошей скоростью чтения/записи, но отсутствием мгновенного доступа. Таким образом, они лучше всего подходят для «холодного» хранения бэкапов.
Бэкапы
В 2011 году компания Google случайно удалила почту в 40 тысячах почтовых ящиках. Пострадали резервные копии на всех серверах. Данные удалось восстановить только с плёнки. Тогда и выяснилось, что Google тоже использует плёнку для резервного копирования, также как Microsoft и другие облачные провайдеры, не говоря уже об их клиентах.
Необычный пример долговременного резервного хранилища — GitHub Arctic World Archive на Шпицбергене. Причём это холодное хранилище и в прямом, и в переносном смысле. Оно размещается на глубине 250 метров в вечной мерзлоте и рассчитано на тысячу лет хранения.
Правда, там не магнитная лента, а фотоплёнка с галогенидами серебра в полиэфире производства норвежской компании Piql. У такой плёнки срок жизни минимум 500 лет.
Один кадр на фотоплёнке из бэкапа репозиториев GitHub, источник
Полный код 100 млн репозиториев в .tar занял 21 ТБ на 186 катушках. Вместе с архивом положили технические руководства по расшифровке QR и форматам, чтобы наши потомки сумели преобразовать QR-коды обратно в код и запустить его.
Облачные сервисы
Тарифы на холодное хранение данных предлагает Amazon и другие облачные провайдеры. Холодное хранилище гораздо дешевле, но извлечение данных дорогое. Например, в сервисе S3 Glacier Deep Archive хранение 1 терабайта стоит всего 1 доллар в месяц (доступ в течение 12-48 часов). Для сравнения, стандартное хранилище S3 в 23 раза дороже.
Информация в мировой инфраструктуре растёт как снежный ком по мере подключения миллиардов новых устройств. Согласно недавнему исследованию IDC, общий объём накопителей в глобальной мировой инфраструктуре вырастет с 16 до 163 зеттабайт за период 2016−2025 гг.
Сейчас число сверхкрупных дата-центров в мире достигло 597. Для них используется особый термин: Hyperscale Data Center (HSDC). В прошлом году было построено 52 подобных сооружения.
На Amazon, Microsoft и Google приходится более половины всех крупных ЦОД.
Наука
Некоторые современные научные инструменты генерируют такой огромный объём данных, что их невозможно хранить иначе, кроме как на ленточных накопителях. Например, Большой адронный коллайдер генерирует 140 ТБ в сутки, а гигантский распределённый радиотелескоп SKA (Square Kilometre Array) с тысячами параболических антенн будет выдавать до 1 экзабайта в день. Это сравнимо с объёмом трафика во всём мировом интернете (5,3 экзабайта в сутки в 2020 году).
Художественное представление массива антенн SKA. Изображение: SPDO/TDP/DRAO/Swinburne Astronomy Productions
Для таких научных инструментов два важнейших параметра — высокая ёмкость носителей и высокая скорость записи, а время доступа уже не так принципиально. Поэтому здесь и используются ленточные накопители.
По оценке IBM, сегодня в мире на магнитной плёнке хранится примерно 345 000 экзабайт данных. Получается, что плёнка в данный момент является основным накопителем человеческой цивилизации. И очень похоже, что в ближайшее время такое положение сохранится.
На правах рекламы
Закажите и сразу работайте! Создайте виртуальный сервер любой конфигурации в течение минуты, в том числе для хранения большого объёма данных до 4000 ГБ. Для хранения данных используем быстрое CEPH хранилище на NVMe дисках от Intel. Эпичненько :)
В прошлый речь шла про то, как появились перфокарты. Сегодня попробуем разобраться в истории технологии магнитных лент.
В конце XIX века датский инженер Вальдемар Поульсен разработал метод магнитной записи звука на стальную проволоку.
Первые приборы на базе этого метода, которые назывались телеграфонами, не пользовались коммерческим успехом. Их недостатки были очевидны: качество звука страдало, а гаджеты сами по себе были далеки от совершенства и часто ломались.
В период Второй мировой войны какое-то время использовались «проволочные» диктофоны, однако и их популярность сошла на нет с появлением магнитной плёнки.
Первая магнитная лента была создана в 1928 году немцем Фрицем Пфлюмером. Изобретатель нанёс на бумажную ленту слой из оксида железа, который позволил ей сохранять заряд.
Успешной разработка стала далеко не сразу — первые версии магнитной пленки легко рвались и сильно шуршали. Технологии потребовалось несколько лет, чтобы «дозреть» и стать массовой.
Первые высококачественные магнитофоны были стратегическими инструментами немецкой машины пропаганды. Технологию держали в секрете, и уже после поражения Германии американские солдаты обнаружили немецкие магнитофоны и привезли их на родину, где магнитная плёнка зажила новой жизнью.
Первые американские магнитофоны, основанные на немецких разработках, выпускались под брендом Ampex. Технология совершила переворот в радиовещании, сделав возможными идентичные трансляции передач в разных часовых поясах.
И не прошло много времени, как магнитные ленты начали использоваться для хранения данных.
Первым устройством c поддержкой чтения и вывода данных на магнитную плёнку, и по совместительству первым коммерчески доступным компьютером американского производства, был UNIVAC 1. Он увидел свет в 1951 году. Один такой компьютер поддерживал до десяти цифровых «магнитофонов» UNISERVO.
Лента позволяла считывать данные на скорости 7 кбит/с . Сейчас это звучит смешно, но по сравнению с перфокартами эта цифра казалась гигантской. Но у UNISERVO был недостаток — сама пленка. Она делалась из металла с никелевым покрытием и, как следствие, была тяжелой и неудобной в обращении.
Плёнка, совместимая с мейнфреймами IBM больше напоминала своих аудиособратьев: она состояла из ацетата целлюлозы, покрытого тонким слоем оксида железа. IBM представили её в 1952 году вместе с компьютерным магнитофоном IBM 726.
Преимущества такого формата были очевидны, поэтому «тяжелые» пленки не получили дальнейшего распространения.
С 50-х годов до конца эпохи мейнфреймов было создано большое количество плёночных форматов. Внешних различий между ними было мало. Стандартная полудюймовая плёнка распространялась на больших бобинах диаметром до 10,5 дюймов.
На одну бобину помещалось до 730 метров плёнки толщиной в 1,5 миллиметра, и до 1100 метров тонкой майларовой плёнки — после её распространения в 80-е. Однако форматы отличало следующее:
Покрытие. На протяжении всей истории магнитной ленты производители искали надёжный базовый материал и покрытие для него. Ленты создавались из различных видов пластика, включая поливинил и полиэтилен. Вариантов покрытия тоже было много: от различных оксидов железа и хрома до тонкого слоя чистого железа.
Дорожки. В эпоху мейнфреймов большая часть магнитных носителей предназначалась для линейной записи с дорожками, параллельно пролегающими по всей длине ленты. Ранние ленты имели семь дорожек, а в 1964 году IBM представило формат с девятью дорожками. Несмотря на больший объём таких лент, они не захватили рынок целиком — плёнка с семью дорожками продолжала совершенствоваться и выпускаться ещё долго.
Кодирование. Для записи цифровой информации на дорожку передавался либо отрицательный, либо положительный заряд. Способ определения «нулей» и «единиц» на магнитной ленте влиял на плотность записи и срок службы носителя.
Первая коммерчески доступная плёнка IBM вмещала в себя чуть больше мегабайта, и имела плотность записи в 100 символов на дюйм. Она и другие ранние ленты производства IBM использовали модуляцию NRZI (Non Return to Zero Invertive).
Заряд менялся только тогда, когда на плёнку записывалась единица. При записи нуля ничего не происходило.
Плёнки UNIVAC, а впоследствии и 9-трековые ленты производства IBM, использовали кодировку, известную как PE (phase encoding) или манчестерский код. В отличие от NRZI, и нули и единицы в такой кодировке представлялись изменением заряда.
Логическая единица обозначалась сменой заряда с положительного на отрицательный, а логический ноль наоборот.
Пишущие головки и плотность записи. Способность головок быстрее и точнее прикладывать к ленте заряд напрямую влияла на объём носителя. За первые десять лет существования формата плотность записи магнитных лент возросла в сотни раз.
Учитывая количество факторов, выбор магнитофона и магнитных лент для работы с ним в основном зависел от компьютера, с которым его собирались использовать. Мало кто мог себе позволить просто переключиться с одного формата на другой.
Большая часть периферийных устройств имели очень ограниченную совместимость, переход на другой мейнфрейм стоил больших денег, а перевод данных в новый формат также занимал много времени.
По мере развития магнитных технологий появлялись всевозможные компактные плёночные форматы. Но ни один из них не был таким распространенным, как кассета Phillips. Поначалу кассеты обошли компьютерный рынок стороной, но с уменьшением размеров вычислительных машин, они также нашли свою нишу.
Одним из первых устройств, которое поставлялось с компактным магнитофоном, был офисный компьютер HP 9830A 1972 года.
С распространением домашних микрокомпьютеров в конце 70-х и начале 80-х хранение данных на компактных кассетах достигло пика своей популярности. В 1975 году был разработан Kansas City Standard, стандарт хранения, впоследствии использовавшийся в одном из ранних домашних компьютеров BBC Micro.
Советские микрокомпьютеры, многим знакомые с детства, тоже были совместимы с кассетными приводами. Для хранения и записи данных на кассеты к ним подключали обычные бытовые магнитофоны.
Если вы следите за новостями в мире IT, то знаете, что магнитная плёнка никуда не делась, а просто поменяла свою роль.
Сегодня еще используются картриджи форматов LTO — их применяют для архивации данных в дата-центрах. Магнитные картриджи последнего поколения имеют емкость в 12 терабайт , позволяя компактно и сравнительно дёшево архивировать данные или делать бэкапы — производители обещают срок жизни до 30 лет.
Как массовый продукт плёнка умерла — её заменили жесткие диски и оптические носители. О них речь пойдет в следующий раз.
Потребность хранить какую-либо информацию у человека появилась еще в доисторические времена, чему яркий пример — наскальная живопись, которая сохранилась и по сей день. Наскальные рисунки можно по праву назвать самым износостойким носителем информации на данный момент, хотя с портативностью и удобством использования есть некоторые трудности. С появлением ЭВМ (и ПК в частности) разработка емких и удобных в использовании носителей информации стала особенно актуальной.
Бумажные носители
В первых компьютерах использовалась перфокарты и перфорированная бумажная лента, намотанная на бобины, так называемая перфолента. Ее прародителями были автоматизированные ткацкие станки, в частности машина Жаккара, финальный вариант которой был создан изобретателем (в честь которого она и названа) в 1808 году. Для автоматизации процесса подачи нитей использовались перфорированные пластины:
Перфокарты — картонные карточки, которые использовали подобный метод. Их было много разновидностей, как с отверстиями, которые отвечали за "1" в двоичном коде, так и текстового вида. Самым распространенным был формат IBM: размер карты составлял 187х83 мм, на ней инфомация располагалась в 12 строк и 80 столбцов. В современных терминах, одна перфокарта хранила 120 байт информации. Для ввода информации перфокарты нужно было подавать в определенной последовательности.
В перфоленте используется тот же принцип. Информация хранится на ней в виде отверстий. Первые компьютеры, созданные в 40-х годах прошлого века работали как с вводимыми с помощью перфоленты в реальном времени данными, так и использовали некое подобие оперативной памяти, преимущественно с использованием электронно-лучевых трубок. Бумажные носители активно использовались в 20-50 годах, после чего постепенно начали заменяться магнитными носителями.
Магнитные носители
В 50-х годах началось активное развитие магнитных носителей. За основу взято было явление электромагнетизма (образование магнитного поля в проводнике при пропускании тока через него). Магнитный носитель состоит из поверхности, покрытой ферромагнетиком и считывающей/пишущей головки (сердечник с обмоткой). По обмотке протекает ток, появляется магнитное поле определенной полярности (в зависимости от направления тока). Магнитное поле воздействует на ферромагнетик и магнитные частицы в нем поляризуются в направлении действия поля и создают остаточную намагниченность. Для записи данных на разные участки производится воздействие магнитным полем разной полярности, а при считывании данных регистрируются зоны, в которых изменяется направление остаточной намагниченности ферромагнетика. Первыми такими носителями были магнитные барабаны: большие металлические цилиндры, покрытые ферромагнетиком. Вокруг них устанавливались считывающие головки.
После них появился жесткий диск в 1956 году, это был 305 RAMAC компании IBM, который состоял из 50 дисков диаметром 60 см, по размером был соизмерим с большим холодильником современного формата Side-by-Side и весил чуть меньше тонны. Его объем составлял невероятные по тем временам 5 МБ. Головка свободно перемещалась по поверхности диска и скорость работы была выше, чем у магнитных барабанов. Процесс погрузки 305 RAMAC в самолет:
Объем быстро начал увеличиваться и в конце 60-х годов IBM выпустила высокоскоростной накопитель с двумя дисками емкостью по 30 МБ. Производители активно работали над уменьшением габаритов и к 1980 году жесткий диск имел размеры 5.25-дюймового привода. С тех времен конструкция, технологии, объем, плотность и размеры претерпели колоссальных изменений и самыми популярными стали форм-факторы и 3.5, 2.5 дюйма, в меньшей мере — 1.8 дюйма, а объемы уже достигают десятка терабайт на одном носителе.
Некоторое время использовался еще формат IBM Microdrive, который представлял из себя миниатюрный жесткий диск в форм-факторе карты памяти CompactFlash тип II. Выпущен в 2003 году, позже продан компании Hitachi.
Параллельно развивалась магнитная лента. Появилась она вместе с выходом первого американского коммерческого компьютера UNIVAC I в 1951 году. Опять же постаралась компания IBM. Магнитная лента представляла из себя тонкую пластиковую полосу с магниточувствительным покрытием. С тех времен использовалась в самых разных форм-факторах.
Начиная с бобин, ленточных картриджей и заканчивая компакт-кассетами и видеокассетами VHS. В компьютерах использовались начиная с 70 годов и заканчивая 90-ми (уже в значительно меньших количествах). Часто в качестве внешнего носителя к ПК использовался подключаемый магнитофон.
Накопители на магнитной ленте под названием Стримеры применяются и сейчас, преимущественно в промышленности и крупном бизнесе. На данный момент используются бобины стандарта Linear Tape-Open (LTO), а рекорд в этом году поставили IBM и FujiFilm, умудрившись записать на стандартную бобину 154 терабайта информации. Предыдущий рекорд — 2.5 терабайт, LTO 2012 года.
Еще один тип магнитных носителей — дискеты или флоппи-диск. Тут слой ферромагнетика наносится на гибкую, легкую основу и помещается в пластиковый корпус. Такие носители были просты с точки зрения изготовления и отличались невысокой стоимостью. Первая дискета имела форм-фактор 8 дюймов и появилась в конце 60-х. Создатель — опять IBM. К 1975 году емкость достигла 1 МБ. Хотя популярность дискеты заработали благодаря выходцам из IBM, которые основали собственную компанию Shugart Associates и в 1976 году выпустили дискету формата 5.25 дюйма, емкость составляла 110 КБ. К 1984 году емкость уже составляла 1.2 МБ, а Sony подсуетилась с более компактным форм-фактором 3.5 дюйма. Такие дискеты до сих пор можно найти у многих дома.
Компания Iomega выпустила в 1980-х картриджи с магнитными дисками Bernoulli Box, емкостью 10 и 20 МБ, а в 1994 году — так называемые Zip размера 3.5 дюйма объемом 100 МБ, до конца 90-х они достаточно активно использовались, но конкурировать с компакт-дисками им было не по зубам.
Оптические носители
Оптические носители имеют форму дисков, чтение с них ведется с помощью оптического излучения, обычно лазера. Луч лазера направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками на специальном слое, при регистрации и декодировании этих изменений восстанавливается записанная на диск информация. Впервые технологию оптической записи с использованием светопропускающего носителя была разработана Дэвидом Полом Греггом в 1958 году и запатентована в 1961 и 1990 годах, а в 1969 году компания Philips создала так называемый LaserDisc , в котором свет отражался. Впервые публике LaserDisc был показан в 1972 году, а в продажу поступил в 1978. По размеру он был близок к виниловым пластинкам и предназначался для фильмов.
В семидесятых годах началась разработка оптических носителей нового образца, в результате Philips и Sony представили в 1980 году формат CD (Compact Disk), который был впервые продемонстрирован в 1980 году. В продажу компакт-диски и аппаратура поступили в 1982 году. Изначально использовались для аудио, помещалось до 74 минут. В 1984 году Philips и Sony создали стандарт CD-ROM (Compact Disc Read Only Memory) для любых типов данных. Объем диска составлял 650 МБ, позже — 700 МБ. Первые диски, которые можно было записывать в домашних условиях, а не на заводе были выпущены в 1988 году и получили название CD-R (Compact Disc Recordable), а CD-RW, позволяющие многократную перезапись данных на диске, появились уже в 1997.
Форм-фактор не менялся, увеличивалась плотность записи. В 1996 году появился формат DVD (Digital Versatile Disc), который имел ту же форму и диаметр 12 см, а объем — 4.7 ГБ или 8.5 ГБ у двухслойного. Для работы с DVD-дисками были выпущены соответствующие приводы, обратно совместимые с CD. В последующие годы было выпущено еще несколько стандартов DVD.
В 2002 году миру были представлены два разных и несовместимых формата оптических дисков нового поколения: HD DVD и Blu-ray Disc (BD). В обоих случаях для записи и чтения данных используется голубой лазер с длинной волны 405 нм, что позволило еще увеличить плотность. HD DVD способен хранить 15 ГБ, 30 ГБ или 45 ГБ (один, два или три слоя), Blu-ray — 25, 50, 100 и 128 ГБ. Последний стал более популярен и 2008 году компания Toshiba (один из создателей) отказалась от HD DVD.
Полупроводниковые носители
В 1984 году компания Toshiba предложила полупроводниковые носители, так называемую флэш-память NAND, которая стала популярна спустя десятилетие после изобретения. Второй вариант NOR был предложен Intel в 1988 году и используется для хранения программных кодов, например BIOS. NAND-память используется сейчас в картах памяти, флэшках, SSD-накопителях и гибридных жестких дисках.
Технология NAND позволяет создавать чипы с высокой плотностью записи, она компактна, менее энергозатратна в использовании и имеет более высокую скорость работы (в сравнении с жесткими дисками). Основным минусом на данный момент является достаточно высокая стоимость.
Облачные хранилища
С развитием всемирной сети, увеличением скоростей и мобильного интернета появились многочисленные облачные хранилища, в которых данные хранятся на многочисленных распределенных в сети серверах. Данные хранятся и обрабатываются в так называемом виртуальном облаке и пользователь имеет к ним доступ при наличии доступа в интернет. Физически серверы могут находиться удаленно друг от друга. Есть как специализированные сервисы типа Dropbox, так и варианты компаний-производителей ПО или устройств. У Microsoft — OneDrive (ранее SkyDrive), iCloud у Apple, Google Диск и так далее.
Подписывайтесь на наш нескучный канал в Telegram, чтобы ничего не пропустить.
Читайте также: