Назначение и основные функции операционных систем персональных компьютеров на примере windows
Операционная система (ОС)– это комплекс взаимосвязанных системных программ для организации взаимодействия пользователя с компьютером и выполнения всех других программ. Вычислительная система - взаимосвязанная совокупность аппаратных средств вычислительной техники и программного обеспечения, предназначенная для обработки информации) и удобства работы с ней.
Назначение операционных систем
Назначение ОС - организация вычислительного процесса в вычислительной системе, рациональное распределение вычислительных ресурсов между отдельными решаемыми задачами; предоставление пользователям многочисленных сервисных средств, облегчающих процесс программирования и отладки задач. Операционная система исполняет роль своеобразного интерфейса ( Интерфейс - совокупность аппаратуры и программных средств, необходимых для подключения периферийных устройств к ПЭВМ) между пользователем и ВС, т.е. ОС предоставляет пользователю виртуальную ВС.
Это означает, что ОС в значительной степени формирует у пользователя представление о возможностях ВС, удобстве работы с ней, ее пропускной способности. Различные ОС на одних и тех же технических средствах могут предоставить пользователю различные возможности для организации вычислительного процесса или автоматизированной обработки данных.
ОС относятся к составу системного программного обеспечения и являются основной его частью.
Наиболее популярные операционные системы:
- MS DOS
- Nicrosoft Windows
- Mac OS
- OS/2
- UNIX
- Linux.
Основные функции ОС:
- управление устройствами компьютера (ресурсами)
- согласованная работа всех аппаратных средств ПК: стандартизованный доступ к периферийным устройствам, управление оперативной памятью и др. - управление процессами
- выполнение программ и их взаимодействие с устройствами компьютера. - управление доступом к данным на энергонезависимых носителях
(таких как жесткий диск, компакт-диск и т.д.), как правило, с помощью файловой системы. - ведение файловой структуры
- создание, изменение, удаление, хранение файлов на носителях - пользовательский интерфейс
- диалог с пользователем.
- параллельное или псевдопараллельное выполнение задач (многозадачность).
- взаимодействие между процессами: обмен данными, взаимная синхронизация.
- защита самой системы, а также пользовательских данных и программ от злонамеренных действий пользователей или приложений.
- разграничение прав доступа и многопользовательский режим работы (аутентификация, авторизация).
Главные цели операционной системы:
- Эффективное использование всех компьютерных ресурсов.
- Повышение производительности труда программистов.
- Простота, гибкость, эффективность и надежность организации вычислительного процесса.
- Обеспечение независимости прикладных программ от аппаратного обеспечения (АО).
Функцией ОС является распределение процессоров, памяти, устройств и данных между процессами, конкурирующими за эти ресурсы. ОС должна управлять всеми ресурсами вычислительной машины таким образом, чтобы обеспечить максимальную эффективность ее функционирования. Критерием эффективности может быть, например, пропускная способность или реактивность системы.
Таким образом, ОС реализует:
- интерфейс пользователя (команды в MS DOS, UNIX; графический интерфейс в ОС Windows);
- разделение аппаратных ресурсов между пользователями (в многопользовательской и многозадачной ОС);
- работу в локальных и глобальных сетях;
- возможность работы с общими данными в режиме коллективного пользования;
- планирование доступа пользователей к общим ресурсам;
- эффективное выполнение операций ввода-вывода;
- восстановление данных и вычислительного процесса в случае ошибок.
Для реализации управления ресурсами разные ОС используют различные алгоритмы, что, в конечном счете, и определяет их облик в целом, включая характеристики производительности, область применения и даже пользовательский интерфейс. Так, например, алгоритм управления процессором в значительной степени определяет, является ли ОС системой разделения времени, системой пакетной обработки или системой реального времени.
Состав операционной системы
Современные операционные системы имеют сложную структуру, каждый элемент которой выполняет определенные функции по управлению компьютером.
- Управление файловой системой. Процесс работы компьютера сводится к обмену файлами между устройствами. В операционной системе имеются программные модули, управляющие файловой системой.
- Командный процессор. Специальная программа, которая запрашивает у пользователя команды и выполняет их.
- Драйверы устройств. Специальные программы, которые обеспечивают управление работой устройств и согласование информационного обмена с другими устройствами, а также позволяют производить настройку некоторых параметров устройств. Технология «Plug ad Play» (подключай и играй) позволяет автоматизировать подключение к компьютеру новых устройств и обеспечивает их конфигурирование.
- Графический интерфейс. Используется для упрощения работы пользователя.
- Сервисные программы или утилиты. Программы, позволяющие обслуживать диски (проверять, сжимать, дефрагментировать и т.д.), выполнять операции с файлами (архивировать и т.д.), работать в компьютерных сетях и т.д.
- Справочная система. Позволяет оперативно получить информацию как о функционировании операционной системы в целом, так и о работе ее отдельных модулей.
Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:
- Ядро – это модули, выполняющие основные функции ОС.
- Вспомогательные модули, выполняющие вспомогательные функции ОС. Одним из определяющих свойств ядра является работа в привилегированном режиме.
- Планирование заданий.
- Использование процессора.
- Обеспечение программ средствами коммуникации и синхронизации.
- Управление памятью.
- Управление файловой системой.
- Управление вводом выводом.
- Обеспечение безопасности.
Виды интерфейсов пользователя операционных систем
По типу пользовательского интерфейса различают :
- текстовые (линейные) операционные системы
- графические операционные системы
- речевые операционные системы
Пользовательским интерфейсом называется набор приемов взаимодействия пользователя с приложением. Пользовательский интерфейс включает общение пользователя с приложением и язык общения.
Операционная система (ОС) – это комплекс взаимосвязанных системных программ для организации взаимодействия пользователя с компьютером и выполнения всех других программ. ОС относятся к составу системного программного обеспечения и являются основной его частью. Операционные системы: MS DOS 7.0, Windows Vista Business, Windows 2008 Server, OS/2, UNIX, Linux.
Основные функции ОС:
- управление устройствами компьютера (ресурсами), т.е. согласованная работа всех аппаратных средств ПК: стандартизованный доступ к периферийным устройствам, управление оперативной памятью и др.
- управление процессами, т.е. выполнение программ и их взаимодействие с устройствами компьютера.
- управление доступом к данным на энергонезависимых носителях (таких как жесткий диск, компакт-диск и т.д.), как правило, с помощью файловой системы.
- ведение файловой структуры.
- пользовательский интерфейс, т.е. диалог с пользователем.
Дополнительные функции:
- параллельное или псевдопараллельное выполнение задач (многозадачность).
- взаимодействие между процессами: обмен данными, взаимная синхронизация.
- защита самой системы, а также пользовательских данных и программ от злонамеренных действий пользователей или приложений.
- разграничение прав доступа и многопользовательский режим работы (аутентификация, авторизация).
Состав операционной системы
В общем случае в состав ОС входят следующие модули:
- Программный модуль, управляющий файловой системой.
- Командный процессор, выполняющий команды пользователя.
- Драйверы устройств.
- Программные модули, обеспечивающие графический пользовательский интерфейс.
- Сервисные программы.
- Справочная система.
Драйвер устройства (device driver) – специальная программа, обеспечивающая управление работой устройств и согласование информационного обмена с другими устройствами.
Командный процессор (command processor) – специальная программа, которая запрашивает у пользователя команды и выполняет их (интерпретатор программ).
Интерпретатор команд отвечает за загрузку приложений и управление информационным потоком между приложениями.
Для упрощения работы пользователя в состав современных ОС входят программные модули, обеспечивающие графический пользовательский интерфейс.
Процесс работы компьютера в определенном смысле сводится к обмену файлами между устройствами. В ОС имеется программный модуль, управляющий файловой системой.
Сервисные программы позволяют обслуживать диски (проверять, сжимать, дефрагментировать и др.), выполнять операции с файлами (копирование, переименование и др.), работать в компьютерных сетях.
Для удобства пользователя в состав ОС входит справочная система, позволяющая оперативно получить необходимую информацию о функционировании как ОС в целом, так и о работе ее отдельных модулей.
Примечание
Состав модулей ОС, а также их количество зависит от семейства и вида ОС. Так, например, в ОС MS DOS отсутствует модуль, обеспечивающий графический пользовательский интерфейс.
Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:
- Ядро – это модули, выполняющие основные функции ОС.
- Вспомогательные модули, выполняющие вспомогательные функции ОС. Одним из определяющих свойств ядра является работа в привилегированномрежиме.
Модули ядра выполняют следующие базовые функции ОС: Управление процессами, Управление системой прерываний, Управление памятью, управление устройствами ввода-вывода, Функции, решающие внутрисистемные задачи организации вычислительного процесса: переключение контекстов, загрузка/выгрузка страниц, обработка прерываний. Эти функции недоступны для приложений. Функции, служащие для поддержки приложений, создавая для них так называемую прикладную программную среду.
Приложения могут обращаться к ядру с запросами – системными вызовами – для выполнения тех или иных действий: для открытия и чтения файла, вывода графической информации на дисплей, получения системного времени и т.д. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования – API (Application programming interface).
Пример.
Базовый код API Win32 содержится в трех библиотеках динамической загрузки (Dynamic Link Library, DLL): USER32, GDI32 и KERNEL32.
Обычно ядро оформляется в виде программного модуля некоторого специального формата, отличающегося от формата пользовательских приложений.
Вспомогательные модули ОС выполняют вспомогательные функции ОС (полезные, но менее обязательные чем функции ядра).
Примеры вспомогательных модулей:
- Программа архивирования данных.
- Программа дефрагментации диска.
- Текстовый редактор.
Вспомогательные модули ОС оформляются либо в виде приложений, либо в виде библиотек процедур. Вспомогательные модули ОС подразделяются на следующие группы:
утилиты – программы, решающие задачи управления и сопровождения компьютерной системы: обслуживание дисков и файлов.
системные обрабатывающие программы – текстовые или графические редакторы, компиляторы, компоновщики, отладчики.
программы предоставления пользователю дополнительных услуг пользовательского интерфейса (калькулятор, игры).
библиотеки процедур различного назначения, упрощающие разработку приложений (библиотека математических функций, функций ввода-вывода).
Как и обычные приложения, для выполнения своих задач утилиты, обрабатывающие программы и библиотеки ОС, обращаются к функциям ядра посредством системных вызовов.
Функции, выполняемые модулями ядра, являются наиболее часто используемыми функциями операционной системы, поэтому скорость их выполнения определяет производительность всей системы в целом. Для обеспечения высокой скорости работы ОС все модули ядра или большая их часть постоянно находятся в оперативной памяти, то есть являются резидентными.
Вспомогательные модули обычно загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Такая организация ОС экономит оперативную память компьютера.
Примечание
Разделение операционной системы на ядро и вспомогательные модули обеспечивает легкую расширяемость ОС. Чтобы добавить новую высокоуровневую функцию, достаточно разработать новое приложение, и при этом не требуется модифицировать основные функции, образующие ядро системы.
Меня зовут Андрей Артемьев, я работаю в Microsoft над ядром ОС Windows 10, ранее я работал над Windows 10x (WCOS), XBox, Windows Phone и Microsoft Edge. Я хочу популярно в образовательных целях рассказать о том как работает компьютер на примере клавиатурного ввода и Windows 10. Данный цикл статей рассчитан в первую очередь на студентов технических специальностей. Мы рассмотрим какой путь проходит информация о нажатой клавише от клавиатуры до отображения в Notepad.exe. В виду обширности и междисциплинарности темы в статьях могут быть неточности, о которых сообщайте в комментариях. Какая-то информация может быть устаревшей в виду скорости с которой развивается Windows.
Насколько глубоко мы погрузимся в тему?
Давайте для начала в общих чертах поговорим об уровнях на которых можно рассматривать компьютер. Каждый уровень основывается на предыдущем. Начнём с самого верха.
Уровень операционной системы. ОС можно рассматривать как:
- Менеджер ресурсов — память, жёсткие диски, принтеры, экран, клавиатура ограниченные ресурсы которые совместно используются запущенными на компьютере программами.
- Виртуальная машина — файл это наглядный пример виртуального объекта. Он представляет абстракцию данных на диске, API для работы с ним и так же добавляет концепцию прав доступа. Вместо файла могла быть концепция контейнера данных и совершенно другого API. Таких виртуальных объектов в ОС много.
- Платформа — ОС предоставляет программные модели и примитивы для построения программ. К примеру Windows Drivers Framework позволяет быстро разрабатывать драйвера, окна в Windows используются для построения сложных пользовательских интерфейсов. Dll — предоставляет модель расширения функционала программы через плагины, а так же механизм для реализации читалки экрана через ловушки клавиатуры (см. LowLevelKeyboard hook).
Уровень архитектуры компьютера. Он представлен материнской платой, которая имеет определённый форм-фактор, встроенные функции закодированные в микросхемах называемых чип-сетом и порты, через которые можно расширять функционал компьютера подключив графическую карту, сетевую карту, дополнительную оперативную память (RAM), жёсткие диски, клавиатуру и пр. Порты влияют на скорость работы и возможности компьютера, что и будет определять его назначение будь то сервер для обработки тысяч запросов в секунду, планшет для пользования Интернетом или игровой ПК с несколькими видеокартами. ОС абстрагирует особенности материнской платы.
Микросхемы выглядят как на картинке ниже и представляют собой мини-компьютер выполняющий простые программы для низкоуровневых задач, к примеру прочитать данные от клавиатуры и передать их дальше чтобы они достигли в конечном счёте процессора. Как правило реализованы в виде аналоговой непрограммируемой микросхемы или микроконтроллера, программируемого на языке С.
Материнскую плату можно рассматривать как колонию микросхем которые общаются между собой через шины и через них циркулируют данные от подключенных устройств к процессору и обратно. Чип-сет — это своего рода нервная система компьютера. Все чипы на материнской плате были изначально созданы чтобы работать друг с другом. Некоторые из них могут иметь особые функции, к примеру таймер или хранение настроек BIOS. Пожалуй самый важный из них тот что имеет встроенную программу (прошивку, BIOS, UEFI) которая начинает выполняться как только появляется электричество. Она находит жёсткий диск с загрузчиком Windows и передаёт тому управление который в свою очередь запускает исполняемый файл ОС, который можно назвать Windows10.exe, на самом деле NtOsKrnl.exe. BIOS знает что искать благодаря соглашению между производителями железа и операционных систем.
Вокруг материнской платы можно собрать мобильный телефон, игровую приставку, серверную станцию или умное устройство. На картинке ниже распространённые форм-факторы материнских плат.
Уровень микроархитектуры представлен процессором (CPU), это сердце материнки и весь чип-сет нужен для обслуживания CPU. Процессор это компьютер в компьютере, более мощный и продвинутый микроконтроллер которому не нужна прошивка, потому как поток команд подаётся на лету, когда планировщик потоков поменял контекст процессора. Функционал процессора делится на подсистемы, к примеру компонент занимающийся математическими и логическими операциями, математический сопроцессор, кэш. Какие-то из них раньше были отдельным чипом на материнской плате, но сейчас их сделали частью ЦПУ, например контроллер прерывания и микросхема под названием “Северный мост” что увеличило скорость работы.
Микроархитектура это не то же самое что архитектура. Весь функционал CPU разделён на компоненты, которые работают сообща. Эти компоненты и их взаимодействие и есть микроархитектура. На блок-схеме ниже они представлены цветными прямоугольниками и квадратиками.
Архитектура процессора это по сути документ который описывает какой функциональностью он должен обладать для того чтобы соответствовать к примеру архитектуре x86, x64 или ARM применяемой на мобильных устройствах. В этом документе описано какие должны поддерживаться команды, назначения регистров и логика работы. Создатели процессоров Intel, AMD, Эльбрус могут реализовывать эту функциональность как угодно и добавлять к ней новые возможности в виде команд, регистров, флагов, прерываний и если ОС знает о них то может использовать. В терминах ООП архитектура ЦПУ — это интерфейс, а микроархитектура — его реализация.
Логические схемы. Цветные прямоугольники с блок-схемы CPU состоят из логических схем, которые производят свои операции на последовательностях нулей и единиц. Процессор видит все данные и команды в виде битов (0 и 1), по формуле любое десятичное число можно представить в виде последовательности 0 и 1, а вот что значит конкретное число зависит от контекста. Это может быть код, цифра, буква. Арифметическое и логическое устройство (ALU) умеет производить сложение двух чисел через побитовые операции. Побитовые алгоритмы сложения, вычитания, умножения и деления давно известны, разработчикам логической схемы их только надо эффективно реализовать.
Уровень радиоэлементов. Физически аналоговые схемы полагаются на радиоэлементы, которые собственно и эксплуатируют законы физики. Преимущественно это полупроводники, т.е. в определённых условиях они могут проводить электричество, а могут и нет. Диод проводит ток только в одном направлении, если его выпаять, развернуть на 180 и впаять обратно, то ток через него проходить не будет. Транзистор пропускает ток только если есть напряжение на управляющей ножке. Человечество научилось делать транзисторы микроскопическими и потому их можно размещать на маленькой плате миллионами. На картинках ниже полупроводниковые радиоэлементы и обычный транзистор рядом с нано транзистором под электронным микроскопом.
Уровень законов физики. И наконец самый нижний уровень — это уровень законов физики которые заключены в полупроводниковые радиоэлементы.
Мы будем много говорить про уровень ОС и чуть меньше про архитектуру компьютера, микроархитектуру, аналоговые схемы и радиоэлементы. К последней части у вас должно быть понимание как это всё работает вместе.
Основы Операционной Системы
Когда мы проходили в универе программирование на ассемблере у многих студентов был ступор от таких умных слов как “режимы ядра и пользователя”, под которыми на самом деле скрывается хорошо всем известная ролевая система аутентификации, на всех сайтах есть как минимум “Админ” имеющий доступ ко всем страницам и “Пользователь” имеющий ограниченный доступ. Точно так же роль “Ядро” имеет доступ ко всем возможностям CPU, а роль “Пользователь” может вызывать не все команды процессора и не со всеми аргументами. Поверх этой ролевой модели по принципу клиент-серверной архитектуры построена операционная система, где сервер это ядро, которое и реализовывает функционал ОС, а клиент — это пользовательские программы. В мире Web клиент и сервер разделены физически — это два разных компьютера общающихся по сети. В ОС клиент и сервер живут на одной машине и на одном железе. У сервера есть некий API который позволяет клиентам изменять его состояние, к примеру Twitter API позволяет создавать посты, логиниться и загружать ленту твитов в мобильный клиент. У Windows есть Win API, только более громоздкий в виду более широкого круга задач, на сегодняшний день у винды примерно 330 000 API плюс API для UWP apps. Если концепции Твитера более менее всем понятны — пост, пользователь, фид — то концепции ОС могут потребовать некоторого углубления в её внутренности. Поэтому API Windows могут быть трудно понятными без понимания внутреннего устройства ОС.
На самом деле под ядром понимают три разные вещи. Ядро как весь код ОС. Ядро как подсистема которая отвечает за механизмы ОС, такие как планировщик потоков, переключение контекста, обработка прерываний, свап виртуальный памяти на физическую (Kernel) и ядро подсистемы для поддержки других ОС — CSRSS.exe (Windows), PSXSS.exe (POSIX), OS2SS.exe (OS/2) или WSL (Windows SubSystem for Linux). В данном контексте понимается первый смысл — весь код ОС.
Когда на экране появляется окно, то в серверной части ОС (режим ядра) появляется структура данных которая описывает это окно — его положение на экране, размеры, текст заголовка, оконная функция через которую ОС даёт приложению среагировать на события. Поскольку подсистем в ОС много, то и структур данных описывающих один объект может быть несколько, к примеру информация о пользовательском процессе есть в компонентах:
- Executive — здесь логика работы ОС. В этом слое проверяется что могут и не могут делать процессы. Здесь хранится инфа о родительском процессе, параметры старта процесса (Process Environment Block), привязанный аккаунт пользователя, имя exe файла процесса.
- Kernel — здесь реализованы механизмы ОС, такие как планировщик потоков. Здесь хранится сколько времени процесс проводит в режиме пользователя и ядра, к каким процессорам привязаны его потоки, базовый приоритет потоков процесса.
- Windowing subsystem — инфа о GDI объектах которые используются для рисования в окне. Это такие примитивы как кисти, pen и пр.
- DirectX — всё что имеет отношение к DirectX: шейдеры, поверхности, DX-объекты, счётчики производительности GPU, настройки памяти графической памяти.
- Подсистема Windows которая представлена процессом CSRSS.exe (Client Server Runtime SubSystem). Windows ранее поддерживал ОС POSIX (процесс PSXSS.exe) и OS/2 (OS2SS.exe). В те времена возникла идея сделать и Windows такой же подсистемой, но эта было медленно и поэтому скоро часть CSRSS.exe перенесли в win32k.sys, который сейчас разбит на несколько файлов — win32k.sys, win32kbase.sys и win32kfull.sys. Здесь хранится информация о Process Group Data, Shutdown level, Session Data и пр.
Что такое компонент? Это логически сгруппированный функционал. Компонентом можно назвать ООП-класс, dll, папку, набор функций с общим префиксом, пространство имён, слой в архитектуре.
Более подробно о разделении на клиент-сервер
Разделение на клиент и сервер реализовано при помощи встроенной функциональности CPU, разделения памяти и программных проверок.
Производители оборудования сотрудничают с разработчиками ОС, поэтому в процессоре есть механизмы созданные с учётом потребностей создателей операционных систем. Во всех современных процессорах реализован механизм ролей пользователя, где под пользователем понимается исполняемый в данный момент код. В веб приложениях роль залогиненого пользователя хранится в какой-то переменной и помимо понятного названия Admin или User имеет Id этой роли который чаще и используется при авторизации, потому как сравнивать числа быстрее и проще чем строки. В процессоре роль текущего пользователя хранится в поле которое называется “кольцо безопасности” (Security Ring), а не “CurrentUser.Role.Id”. В большинстве процессоров это поле принимает четыре значения от 0 до 3. Windows использует 0 для роли которая называется “Режим Ядра”, потому как это самый привилегированный режим и самое большое значение для роли “Режим Пользователя”, потому как это самая ограниченная роль. Остальные роли не используются потому как различие между 0 и 1, 2 и 3 незначительное. Эти роли ограничивают страницы памяти которые могут быть адресованы, нельзя вызывать некоторые инструкции или же нельзя их вызывать с определёнными аргументами. Так же есть ограничения на использование технологии I/O Ports для обмена данными с устройствами такими как клавиатура, но она уже лет 10 не используется. Переключение в режим ядра происходит через команду syscall, которая по индексу находит в массиве указателей на APIs Windows функцию которую надо вызвать. Указатель на этот массив сохраняется в специальном регистре процессора во время загрузки ОС.
Прерывания могут генерироваться не только процессором но и внешними устройствами (клавиатура, мышь) или программным кодом. Планировщик потоков устанавливает таймер который с интервалами равными одному кванту (по умолчанию около 15мс, в Windows Server больше) генерирует прерывание чтобы по внутреннему алгоритму назначить другой поток на исполнение. Пошаговое исполнение программы в Visual Studio так же полагается на механизм прерываний — у процессора устанавливается флаг, который после каждой команды вызывает прерывание которое обрабатывает Windows Debugging Engine и уведомляет через API Visual Studio.
Разделение памятью реализовано благодаря виртуальной памяти. Ранее я говорил что ОС это менеджер ресурсов и виртуальная машина. Даже если у вас 1Гб RAM 32х битный Windows будет работать так как если бы у вас было 4Гб оперативки, т.е. реально у вас 1Гб, а виртуально 4Гб. Современные компьютеры основаны на теоретической модели машины Тьюринга или же архитектуре фон Неймана (с некоторыми изменениями). Согласно этим моделям память в компьютере это лента состоящая из ячеек размером один байт. Эти ячейки сгруппированы в страницы как правило по 4096 байт (4Кб), потому как:
64 битный адрес позволяет адресовать 16 экзабайт, это 18,446,744,073,709,551,616 ячеек памяти. Современные процессоры пока что не поддерживают так много RAM и поэтому используют только младшие 48 бит адреса, остальные 16 заполняются старшим разрядом. Поэтому Win x64 попросту не использует часть адресов, которые помечены на рисунке выше чёрным. Но это не значит, что 64х битный Windows “видит” 256 Tb оперативки. Максимум 8TB виртуальной памяти на архитектуре IA64 и 7TB на x64. Предел физической памяти поддерживаемой Windows 10 — 2TB, потому как с большим количеством Винда не тестировалась. Объём поддерживаемой RAM в Windows 10 определяется во многом редакцией ОС, чем дороже тем больше.
Почему ячейки памяти пронумерованы шестнадцатиричными (HEX) числами, а не десятичными или двоичными? Адрес ячейки это не просто порядковый номер, в нём закодировано три числа по которым эту ячейку можно отобразить на физическую память. Первые два это индексы по которым находится конкретная страница виртуальной памяти, а третье число — смещение от начала страницы. CPU и ОС здесь работают в связке — ОС предоставляет структуру данных по которой CPU находит страницу виртуальной памяти и копирует её в физическую. По HEX номеру можно сразу увидеть как выровнен в памяти адрес. Формат двоичного числа слишком громоздкий, 32 бита (или 64) трудны для восприятия. Десятичный формат — показывает слишком мало информации, тогда как HEX удобный компромисс между десятичной и двоичной системами, средами людей и машин.
Программный способ разделения на клиент-сервер (режим ядра-режим пользователя) гораздо скучнее перечисленных выше механизмов. Процессы и потоки могут быть помечены специальными аттрибутами или же мы можем хранить список указателей на потоки/процессы и проверять их в коде. Если вы хоть раз делали авторизацию в веб-приложении, то хорошо понимаете о чём я говорю.
Из чего состоит Windows?
Абстракция или же разбиение на компоненты есть во всех сферах программирования и интуитивно понятно что Windows тоже делится на какие-то компоненты. Под компонентом понимается какая-то единица функциональности — ООП класс, файл, dll, папка. Компоненты на диаграмме ниже могут быть как индивидуальными *.sys, *.dll файлами, так и просто набором API сгруппированным логически через добавление префикса к имени функции, старая часть системы написана на C, а он не поддерживает классы. Новые части пишутся нередко на C++. В укрупнённом виде Винда выглядит так:
Давайте быстренько пробежимся по её компонентам снизу вверх:
- Hyper-V Hypervisor — слой виртуализации благодаря которому в Windows можно создать виртуальную машину. Иногда говорят, что Hyper-V это минус первый уровень привилегий, однако реализован он в одном уровне привилегий и адресном пространстве что и ядро ОС, за счёт использования слоёной архитектуры ОС ничего не знает о нём.
- HAL.dll — Hardware Abtraction Layer — изначально задумывался как абстракция над железом — чипсет, материнская плата, процессор — для того чтобы можно было перенести Windows на новую платформу реализовав новый HAL.dll, который будет выбран и скопирован во время установки. По сути это драйвер к устройствам материнской платы, к примеру таймерам, контроллеру прерываний. Сейчас его роль снижена, потому как многие драйвера материнки и чип-сета реализованы в ACPI.sys.
Операционная система (operating system ) – комплекс программ, предоставляющий пользователю удобную среду для работы с компьютерным оборудованием.
Операционная система позволяет запускать пользовательские программы; управляет всеми ресурсами компьютерной системы – процессором (процессорами), оперативной памятью, устройствами ввода вывода; обеспечивает долговременное хранение данных в виде файлов на устройствах внешней памяти; предоставляет доступ к компьютерным сетям.
Для более полного понимания роли операционной системы рассмотрим составные компоненты любой вычислительной системы (рис.1.1).
Все компоненты можно разделить на два больших класса – программы или программное обеспечение ( ПО , software ) и оборудование или аппаратное обеспечение ( hardware ). Программное обеспечение делится на прикладное, инструментальное и системное. Рассмотрим кратко каждый вид ПО .
Цель создания вычислительной системы – решение задач пользователя. Для решения определенного круга задач создается прикладная программа ( приложение , application ). Примерами прикладных программ являются текстовые редакторы и процессоры (Блокнот, Microsoft Word ), графические редакторы ( Paint , Microsoft Visio), электронные таблицы (Microsoft Excel ), системы управления базами данных (Microsoft Access, Microsoft SQL Server ), браузеры ( Internet Explorer) и т. п. Все множество прикладных программ называется прикладным программным обеспечением ( application software ).
Создается программное обеспечение при помощи разнообразных средств программирования (среды разработки, компиляторы, отладчики и т. д.), совокупность которых называется инструментальным программным обеспечением. Представителем инструментального ПО является среда разработки Microsoft Visual Studio .
Основным видом системного программного обеспечения являются операционные системы. Их основная задача – обеспечить интерфейс (способ взаимодействия) между пользователем и приложениями с одной стороны, и аппаратным обеспечением с другой. К системному ПО относятся также системные утилиты – программы, которые выполняют строго определенную функцию по обслуживанию вычислительной системы, например, диагностируют состояние системы , выполняют дефрагментацию файлов на диске, осуществляют сжатие ( архивирование ) данных. Утилиты могут входить в состав операционной системы.
Взаимодействие всех программ с операционной системой осуществляется при помощи системных вызовов ( system calls) – запросов программ на выполнение операционной системой необходимых действий. Набор системных вызовов образует API – Application Programming Interface ( интерфейс прикладного программирования).
Далее рассмотрим, какие функции должны выполнять современные операционные системы.
Функции операционной системы
К основным функциям, выполняемым операционными системами, можно отнести:
- обеспечение выполнения программ – загрузка программ в память, предоставление программам процессорного времени, обработка системных вызовов;
- управление оперативной памятью – эффективное выделение памяти программам, учет свободной и занятой памяти;
- управление внешней памятью – поддержка различных файловых систем;
- управление вводом-выводом – обеспечение работы с различными периферийными устройствами;
- предоставление пользовательского интерфейса;
- обеспечение безопасности – защита информации и других ресурсов системы от несанкционированного использования;
- организация сетевого взаимодействия.
Структура операционной системы
Перед изучением структуры операционных систем следует рассмотреть режимы работы процессоров.
Современные процессоры имеют минимум два режима работы – привилегированный (supervisor mode) и пользовательский (user mode).
Отличие между ними заключается в том, что в пользовательском режиме недоступны команды процессора, связанные с управлением аппаратным обеспечением, защитой оперативной памяти, переключением режимов работы процессора. В привилегированном режиме процессор может выполнять все возможные команды.
Приложения, выполняемые в пользовательском режиме, не могут напрямую обращаться к адресным пространствам друг друга – только посредством системных вызовов.
Все компоненты операционной системы можно разделить на две группы – работающие в привилегированном режиме и работающие в пользовательском режиме, причем состав этих групп меняется от системы к системе.
Основным компонентом операционной системы является ядро (kernel). Функции ядра могут существенно отличаться в разных системах; но во всех системах ядро работает в привилегированном режиме (который часто называется режим ядра, kernel mode).
Термин "ядро" также используется в разных смыслах. Например, в Windows термин "ядро" (NTOS kernel) обозначает совокупность двух компонентов – исполнительной системы (executive layer) и собственно ядра (kernel layer) [12].
Существует два основных вида ядер – монолитные ядра (monolithic kernel) и микроядра (microkernel). В монолитном ядре реализуются все основные функции операционной системы, и оно является, по сути, единой программой, представляющей собой совокупность процедур [6]. В микроядре остается лишь минимум функций, который должен быть реализован в привилегированном режиме: планирование потоков, обработка прерываний, межпроцессное взаимодействие. Остальные функции операционной системы по управлению приложениями, памятью, безопасностью и пр. реализуются в виде отдельных модулей в пользовательском режиме.
Ядра, которые занимают промежуточные положение между монолитными и микроядрами, называют гибридными (hybrid kernel).
Примеры различных типов ядер:
- монолитное ядро – MS-DOS, Linux, FreeBSD;
- микроядро – Mach, Symbian, MINIX 3;
- гибридное ядро – NetWare, BeOS, Syllable.
Кроме ядра в привилегированном режиме (в большинстве операционных систем) работают драйверы (driver) – программные модули, управляющие устройствами.
В состав операционной системы также входят:
- системные библиотеки (system DLL – Dynamic Link Library, динамически подключаемая библиотека), преобразующие системные вызовы приложений в системные вызовы ядра;
- пользовательские оболочки (shell), предоставляющие пользователю интерфейс – удобный способ работы с операционной системой.
Пользовательские оболочки реализуют один из двух основных видов пользовательского интерфейса:
- текстовый интерфейс (Text User Interface, TUI), другие названия – консольный интерфейс (Console User Interface, CUI), интерфейс командной строки (Command Line Interface, CLI);
- графический интерфейс (Graphic User Interface, GUI).
Пример реализации текстового интерфейса в Windows – интерпретатор командной строки cmd.exe; пример графического интерфейса – Проводник Windows (explorer.exe).
Классификация операционных систем
Классификацию операционных систем можно осуществлять несколькими способами.
- По способу организации вычислений:
- системы пакетной обработки (batch processing operating systems) – целью является выполнение максимального количества вычислительных задач за единицу времени; при этом из нескольких задач формируется пакет, который обрабатывается системой;
- системы разделения времени (time-sharing operating systems) – целью является возможность одновременного использования одного компьютера несколькими пользователями; реализуется посредством поочередного предоставления каждому пользователю интервала процессорного времени;
- системы реального времени (real-time operating systems) – целью является выполнение каждой задачи за строго определённый для данной задачи интервал времени.
- системы с монолитным ядром (monolithic operating systems);
- системы с микроядром (microkernel operating systems);
- системы с гибридным ядром (hybrid operating systems).
- однозадачные (single-tasking operating systems);
- многозадачные (multitasking operating systems).
- однопользовательские (single-user operating systems);
- многопользовательские (multi-user operating systems).
- однопроцессорные (uniprocessor operating systems);
- многопроцессорные (multiprocessor operating systems).
- локальные (local operating systems) – автономные системы, не предназначенные для работы в компьютерной сети;
- сетевые (network operating systems) – системы, имеющие компоненты, позволяющие работать с компьютерными сетями.
- серверные (server operating systems) – операционные системы, предоставляющие доступ к ресурсам сети и управляющие сетевой инфраструктурой;
- клиентские (client operating systems) – операционные системы, которые могут получать доступ к ресурсам сети.
- открытые (open-source operating systems) – операционные системы с открытым исходным кодом, доступным для изучения и изменения;
- проприетарные (proprietary operating systems) – операционные системы, которые имеют конкретного правообладателя; обычно поставляются с закрытым исходным кодом.
- операционные системы мэйнфреймов – больших компьютеров (mainframe operating systems);
- операционные системы серверов (server operating systems);
- операционные системы персональных компьютеров (personal computer operating systems);
- операционные системы мобильных устройств (mobile operating systems);
- встроенные операционные системы (embedded operating systems);
- операционные системы маршрутизаторов (router operating systems).
Требования к операционным системам
Основное требование, предъявляемое к современным операционным системам – выполнение функций, перечисленных выше в параграфе "Функции операционных систем". Кроме этого очевидного требования существуют другие, часто не менее важные [3]:
- расширяемость – возможность приобретения системой новых функций в процессе эволюции; часто реализуется за счет добавления новых модулей;
- переносимость – возможность переноса операционной системы на другую аппаратную платформу с минимальными изменениями;
- совместимость – способность совместной работы; может иметь место совместимость новой версии операционной системы с приложениями, написанными для старой версии, или совместимость разных операционных систем в том смысле, что приложения для одной из этих систем можно запускать на другой и наоборот;
- надежность – вероятность безотказной работы системы;
- производительность – способность обеспечивать приемлемые время решения задач и время реакции системы.
Резюме
В этой лекции приведено определение операционной системы, представлены виды программного обеспечения, рассмотрены функции и структура операционной системы. Особое внимание уделено понятию "ядра". Также приведены различные способы классификации операционных систем и требования, предъявляемые к современным операционным системам.
В следующей лекции будет представлен обзор операционных систем Microsoft Windows.
Читайте также: