Linux swap кто использует
SWAP один из важных параметров для стабильной работы операционной системы Linux. Споров о том как правильно использовать в интернете существует масса. Для правильной настройки надо иметь понимание для чего используется ваша система.
Введение
Постараюсь коротко рассказать основные моменты которые надо учитывать и дать практические советы проверенные на личном опыте.
Нужен SWAP или нет?
Однозначно нужен! Можно обойтись и без него, но тогда имейте в виду, что:
- SWAP используется при организации режима сна и при его отсутствии про этот режим можно забыть,
- Если SWAP отсутствует и память будет исчерпана тогда компьютер зависнет и потребуется выполнять полный сброс (hard reset). У меня был случай когда браузер Chrome скушал всю память и повесил систему.
Если в первом случае вы можете отказаться от использования режима сна, то во втором никто и никогда не даст вам гарантии что какая-то используемая вами программа не даст сбой и заполнив всю память не повесит систему.
Размер SWAP
Советов по размеру множество, но мы остановимся на советах разработчиков Red Hat (CentOS):
- Если памяти < 2G то необходимый объем S = M *2
- Если памяти > 2G то необходимый объем S = M + 2
При современных объемах жестких дисков я бы не стал жалеть места на размер SWAP и уверяю вас что экономия места в данном случае может привести к гораздо большим проблемам.
Варианты размещения SWAP
- на разделе диска,
- в файле,
- или в оперативной памяти использую zRAM.
Исторически в Linux SWAP размещался на разделе, но в современных дистрибутивах производительность SWAP-файла не уступает SWAP-разделу и это весьма радует.
SWAP-раздел
Когда вы точно знаете, что размер оперативной памяти меняться не будет и вы точно уверены в размере SWAP разумно выделить раздел при установке системы.
SWAP-файл
Использование файла очень удобно особенно когда нет точного понимания какие будут окончательные аппаратные параметры системы. Файл можно создать в любом удобном месте и необходимым вам размером. Ниже я расскажу как это сделать.
ZRAM и ZSWAP
Вариант с использованием этих вариантов требует наличие хорошего опыт в использовании Linux систем. На мой взгляд данный способ имеет смысл использовать с хорошим знанием системы на которой это будет работать.
ZRAM — это модуль ядра Linux, позволяющий сжимать содержимое оперативной памяти, и таким образом увеличивать ее объем в несколько раз. ZRAM создает сжатое блочное устройство в ОЗУ которое чаще всего используется как swap. При этом степень сжатия данных получается в среднем 3:1. Это означает что на 1 гигабайт подкачки будет использовано в 333 мегабайт физической памяти.
ZSWAP — отличается от ZRAM тем, что использует существующий swap-раздел на диске, а в ОЗУ создаётся пул со сжатыми данными (кэшем). После того как пул до отказа забьётся сжатыми данными, он сбросит их в раздел подкачки и снова начнёт принимать и сжимать данные. По утверждению разработчиков, в их конфигурации при компиляции ядра в ситуации когда происходит свопинг, выигрыш по объему ввода/вывода составил 76%, а время выполнения операции сократилось на 53%. При использовании ZSWAP, используется раздел swap на диске, в ОЗУ хранится только сжатый кэш.
Жажда тюнинга может завести в неведомые дебри. И, пожалуй, едва ли не самая частая неправильная оптимизация — отключение swap-файла. Если прикинуть частоту, с которой эта ошибка встречается, то, наверное, она входит в негласный top-10 (а может и top-5) самых распространенных, самых бесполезных и самых вредных оптимизаций - потому что swap-файл это одна из самых интересных, сложно понимаемых и недооцененных сущностей в подсистеме управления виртуальной памятью.
Эта статья является обзорной и предназначена для того, чтобы дать представление об общих процессах, происходящих в системе, и объяснить, откуда берутся некоторые мифы, следование которым может доставить неприятные моменты
В начале был … вопрос
Когда возникает необходимость в swap-файле? Самый частый ответ — «когда не хватает памяти». И, естественно, это ответ неправильный почти полностью. Правильный ответ - необходимость в использовании swap-файла возникает тогда, когда система не может удержать в памяти необходимый кэш и грязные страницы. А чтобы понять, что это значит, нам надо сделать маленький экскурс внутрь ядра операционной системы.
Вся память, которой оперирует система, разбита на страницы. Каждый процесс в системе имеет свое «плоское» адресное пространство. Для каждого процесса система поддерживает карту страниц — какая страница адресного пространства процесса (страница виртуальной памяти) отображена в какую страницу физической памяти - если вообще отображена, разумеется.
И когда процесс пытается получить доступ к какой-то странице своей памяти, MMU (memory management unit) процессора фактически производит обращение к той странице физической оперативной памяти, куда страница отображена.
А если страница не отображена ни в какую физическую страницу, то возникает page fault — исключительная ситуация «страница не найдена». При обработке этой ситуации система (ядро) проверяет, имеет ли процесс право получить доступ к своей логической странице: если не имеет (например эта страница заразервирована ядром или находится «за хвостом кучи» процесса) - то процессу придет сигнал SEGFAULT — и процесс умрет.
А если имеет — то ядро выполнит все нужные действия, чтобы восстановить правильное содержимое страницы, и предъявит её процессу - после чего операция успешно выполнится.
Какие группы страниц памяти живут в системе?
Свободная — страница физической памяти, которая не используется для хранения данных и может быть свободно использована в любой момент времени
Используемая — страница, хранящая данные, не принадлежащие кэшу
Чистая страница кэша (clean cache page)- страница, в которой хранятся закэшированные данные файла, которые не менялись.
Грязная страница кэща (dirty cache page) — страница, в которой хранятся данные файла, которые были изменены (данные в кэше поменяли но на диск изменения не сохранили)
Недоступная — процесс не имеет права на доступ к этой странице. Если процесс к ней обращается "неподобающим образом" то получает SEGFAULT
Доступная, сопоставленная физической странице, не принадлежащей кэшу. Процесс может работать с этой страницей
Доступная, сопоставленная физической странице кэша, в которую загружены данные файла. Процесс может работать с этой страницей.
Доступная, не сопоставленная физической странице, но сопоставленная региону какого-либо файла. Прежде чем процесс сможет работать с этой страницей, система должна выделить физическую страницу, отдать ее в кэш, загрузить в нее данные из файла — и после этого процесс сможет с ней работать (потому, что она превратится в предыдущую разновидность)
И сейчас, когда мы более-менее определились с видами страниц, мы переходим к самой интересной части
Работа процесса
Чтобы понять как все эти механизмы связаны и работают, давайте рассмотрим запуск нового процесса. Мы запускаем новый процесс, и система загружает исполняемый файл. Как это происходит?
Система открывает бинарный файл с программой и … Нет, она не читает его. Она отображает файл в адресное пространство процесса — то есть создает записи (например)
Ну да, там всё сложнее — но нам сейчас главное понять идею.
С точки зрения системы, эти логические страницы принадлежат процессу, отображены на какой-то файл файловой системы и не сопоставлены никакой физической странице. И теперь, управление отдается процессу — например вызывается инструкция с какой-то страницы или читаются или записываются данные в страницу.
MMU обнаруживает ошибку — странице процесса не сопоставлена никакая физическая страница - ошибка, page fault! Ядро получает эту ошибку, смотрит на статус страницы:
процессу разрешен доступ
физической странице не сопоставлена (и это логично, иначе бы page fault не возник)
но сопоставлена сегменту файла
указанный фрагмент файла в кэше не обнаружен
В указанной ситуации, ядро берет свободную страницу, объявляет её страницей кэша и загружает в неё данные из файла с диска. Теперь это чистая страница кэша - clean page. Затем ядро добавляет ссылку «этой странице процесса сопоставлена эта физическая страница, принадлежащая кэшу и взятая из указанного места файла». Управление возвращается процессу, а проблемная операция завершается успешно. Ну а если это была операция модификации данных (и модификация допустима), то после записи данных страница помечается как измененная — и становится грязной страницей кэша - dirty page с точки зрения ядра.
Если же в кэше системы уже есть физическая страница, в которой лежат данные из файла в неизменном виде (найдена чистая страница кэша), то страница процесса просто начинает ссылаться на обнаруженную страницу кэша.
Точно такие же процессы происходят для разделяемых библиотек (бинарник программы, на самом деле, тоже фактически разделяемая библиотека, которая просто содержит специальную точку входа).
Примечание "на полях": на самом деле, когда файл разделяемой библиотеки загружается, он частично прочитывается (как минимум его заголовок и секция символов: описание расположения объектов (функций и переменных) содержащихся в файле разделяемой библиотеки) — но в большинстве случаев, целиком файл не читается, и подгружается в процессе работы программы по мере обращения к функциям и переменным, описанным в загруженных разделяемых библиотеках. Поэтому, после перезагрузки система может немного «подтупливать» - в том числе всё то время, пока кэш заполняется разделяемыми библиотеками.
Второе "примечание": механизмы работы с отображаемыми в память файлами намного сложнее и если за них браться, эта статья превратилась бы в многостраничный трактат. Но нам сейчас надо понять основные линии поведения системы в стрессовых условиях нехватки RAM
Откуда (и когда) начинается использование swap-файла?
Представим, что мы загрузили большой бинарник с большим количеством библиотек (привет, браузер!) в котором открыли сколько-то вкладок с документами, и исчерпали доступную физическую память. При этом, у нас образуется две больших группы страниц — чистые страницы кэша, сопоставленные разделяемым библиотекам — причем в этих страницах содержится использующийся код (мы ведь помним про то, что библиотеки загружаются «по мере необходимости») и приватные страницы процесса или страницы anonymous page cache (этот механизм часто используется для предварительной аллокации памяти). Но, в обоих случаях, мы можем рассматривать их как данные процесса.
Свободных страниц у нас нет — всё ушло на кэш и данные.
Теперь мы открываем еще одну вкладку, что при этом случается? Чтобы найти память, система вынуждена освободить часть чистых страниц кэша и отдать их под данные приложения — ведь данные которые там лежали, можно снова загрузить с диска (это ведь "чистые" страницы!).
Но в этих страницах был ИСПОЛЬЗУЕМЫЙ код — иначе бы они не подтянулись в кэш.
А это значит, что как только (и скорей всего через не самый долгий промежуток времени) программа пойдет в код, который был выгружен из памяти, она получит page fault — и система снова прочтет код из файла библиотеки с диска. В новую пустую страницу. Но чтобы её получить, надо сбросить другую чистую страницу кэша! И система входит в трэшинг - она постоянно вынуждена освобождать и снова погружать код, раз за разом, из одного файла за другим.
То есть фактически, в системе уже есть swap-файл, из которого постоянно ведется чтение — и это разделяемые библиотеки. Но система не может использовать его эффективно, поскольку он ограничен и фактически неуправляем - и скатывается в трэшинг
А если бы у нас был настоящий swap-файл?
На основе учета частоты обращения к различным страницам, система скорей всего не освободила бы страницу с кодом, а поместила в swap данные наиболее давно не использовавшихся вкладок. И вместо постоянного чтения с диска, у нас случились бы одна запись и одно чтение — причем именно в момент обращения к выгруженной в swap вкладке.
Для страницы, которая была поднята из swap-файла, применяются дополнительные изящные механизмы — она фактически считается «чистой страницей кэша» пока не изменена, но место в swap-файле за ней по-прежнему резервируется - и пока страница остается «чистой», она может быть при необходимости просто «забыта» без сохранения в swap аналогично обычным чистым страницам кэша.
Для этого, пока поднятая из swap-файла страница не поменялась, место, которое страница занимала в swap-файле, будет по возможности за ней удерживаться и не считается «освобожденным» пока страница не изменится. Это означает, что в случае, если у вас большой swap-файл, редко читаемые и не изменившиеся данные могут «уехать в swap» и многократно доставаться оттуда по мере надобности — то есть в нормальной ситуации, swap работает по принципу «одна запись, много чтений«.
А если swap-файл маленький, то начинается «веселье» с постоянным записью-чтением в swap-файл.
Таким образом, отключение / отсутствие swap-файла, равно как и его малый размер, отрицательно влияет на производительность в условиях начала нехватки памяти, не позволяя системе выгружать наименее используемые страницы и заставляя делать лишние записи там, где запись, на самом деле, не нужна — ведь вместо того, чтобы удержать код, к которому мы обращаемся часто, система вынуждена сохранять в памяти данные, к которым мы не обращаемся - потому что их негде больше сохранить.
Какие выводы можно сделать из всего вышеописанного?
Кэш (page cache) — это не только кэш данных! Кэш - это очень существенный компонент в схеме организации виртуальной памяти - и теперь мы понимаем неправильность вопроса «почему система ушла в свал а не освободила кэш». Ведь ответ очень прост - этот кэш на самом деле не просто кэш, а код. И если код используется чаще, чем данные - то в данном случае более важно сохранить в памяти код (сохранить кэш) чем удерживать в памяти данные!
Поэтому не надо бояться наличия swap-файла — если статистика не покажет необходимости - система не полезет в свап.
Swap-файл может считаться используемым даже если все данные из него уже подняты обратно в память.
Малый размер swap-файла вреден — он не позволяет системе работать эффективно, поскольку увеличивает объем непродуктивного I/O
Резюме?
Это прекрасно, когда объем оперативной памяти достаточно велик, чтобы вместить и весь необходимый кэш, и данные. Но если у вас бюджетная система с 8 … 16ГБ оперативной памяти (не говоря уж об ультрабюджетных ноутбуках с распаянными и нерасширяемыми 4GB), то swap достаточного объема (не менее 1 x ) это "то, что доктор прописал".
И достаточный размер swap-файла на быстром накопителе (кто сказал NVMe?) на бюджетном ноутбуке может очень хорошо увеличить производительность системы, особенно если вы любитель держать много открытых вкладок, документов, рисунков в графическом редакторе и т.д.
Не мешайте системе работать. Нет нужды бояться swap-файла. Если он не нужен — он не будет использован. И то, что вы видите, что он якобы использован - на самом деле совсем не значит, что он использован. Просто нам показали картинку «без подробностей».
Сегодня мы будем говорить о файле подкачки в Linux. Расскажем для чего он нужен, как создать, изменить размер или удалить. В общем, все, что вам может понадобиться при работе со swap .
В операционной системе Linux, как и в других ОС, файл подкачки нужен для страховки оперативной памяти. Когда установленный объем ОЗУ заканчивается, используется именно выделенная область из файла подкачки. Это может понадобиться в двух случаях:
- Для того чтобы при полной занятости и, как следствие, отсутствия свободной оперативной памяти, компьютер не тормозил.
- Для распределения приоритетов (важным процессам отдается физическая оперативная память, а второстепенным файл подкачки Linux).
Сам по себе swap - это отдельный логический раздел вашего диска либо просто файл на системном разделе. Чаще всего он создается именно при установке операционной системы. Но создать swap linux можно и после завершения инсталляции ОС.
В последних версиях операционной системы Ubuntu Linux файл подкачки создается автоматически вне зависимости от того, хотите вы этого или нет. При этом его размер составляет около 1 Гб.
Как посмотреть swap в Linux
Прежде чем приступить к процессу добавления, настройки или удаление файла подкачки , необходимо проверить его наличие. Для этого проще всего использовать приведенную ниже команду. В нашем случае она выглядит так:
Используемая команда отображает размер файла подкачки вашей операционной системы. Однако, по ее результатам мы не можем определить – это файл подкачки или раздел подкачки. Поэтому будем использовать дополнительный другую команду, чтобы посмотреть swap linux. Вводим в терминал следующее:
Как видите, в нашем случае под swap выделено 1.4 Гб и это файл. То есть, он находится не на отдельном разделе, а на том же диске, на котором установлена операционная система.
Если это будет отдельный логический том, то под надписью « TYPE » мы увидим слово «partition».
Если бы файл подкачки в вашей операционной системе отсутствовал, результат работы команды free - h выглядел бы примерно так:
То есть, вместо каких-либо данных о файле подкачки вы увидите нули.
Создание файла подкачки Linux
Если вы удостоверились в том, что файл подкачки отсутствует, можно переходить к его созданию. Пример, приведенный ниже, будет показан с использованием операционной системы Ubuntu 18.04, но работать это должно и на других дистрибутивах Linux.
Шаг 1: Создаем swap файл
Давайте создадим файл подкачки для нашей Ubuntu. Для примера его размер составит 1 Гб. Запустите терминал и введите команду, приведенную ниже:
sudo fallocate -l 1G /swapfile
Для обеспечения безопасности файла обязательно устанавливаем на него нужные права.
sudo chmod 600 /swapfile
При этом вместо «swapfile» мы можем указать любое другое название.
Шаг 2: Создание файловой системы
Создание swap linux ещё не завершено. Теперь необходимо указать нашей операционной системе, что созданный объект должен использоваться как файл подкачки. Для этого мы будем использовать команду, приведенную ниже:
sudo mkswap /swapfile
Если все сделано верно, результат будет выглядеть так:
Шаг 3: Активируем файл подкачки
Хорошо, теперь наш Linux понимает, что это файл подкачки, но этого недостаточно. Нам также необходимо включить SWAP :
sudo swapon /swapfile
Давайте проверим, все ли мы сделали правильно:
Отлично, операционная система распознала наш файл подкачки и начала его использовать. Мы видим тип в поле TYPE и размер в поле SIZE .
Шаг 4. Сохранение изменений после перезагрузки
Все операции, которые мы предприняли выше, временны. Как только компьютер будет перезагружен, они отменятся. Для того чтобы сделать изменения постоянными, нам необходимо дописать кое-какую информацию в /etc/fstab. Для этого поступаем так:
Прежде чем начать работать с файлом, о котором мы говорим, необходимо обязательно создать его резервную копию:
sudo cp /etc/fstab /etc/fstab.back
После этого можно переходить непосредственно к добавлению нужных нам данных. Нам надо добавить в файл такую строчку:
/swapfile none swap sw 0 0
Это реализуется через текстовый редактор, запущенный с правами суперпользователя, либо при помощи введенной в терминал команды:
echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab
Готово. Изменения сохранены и файл подкачки не сбросится после перезагрузки операционной системы.
Настройка swappiness
Дальше будет рассмотрена настройка swap linux. У файла подкачки существуют параметры, которые сообщают ОС, как часто его нужно использовать. Это явление называется «свопингом» и может иметь значение в пределах 0 - 100. Если это значение ближе к 100, ядро будет перемещать в раздел подкачки больше информации чтобы освободить память. При значениях ближе к нулю, система будет использовать подкачку только при крайней необходимости.
К примеру, в версии Ubuntu L inux для рабочего стола устанавливается параметр 60, а в серверных редакциях операционной системы - 1. Для того чтобы проверить, какой параметр используется в нашей ОС, вводим в терминал такую команду:
Как видите, в нашем случае «свопинг» установлен как 60. Если же вы хотите поменять swappiness, можете воспользоваться оператором, цифра в конце которого и будет новым значением:
sudo sysctl vm.swappiness=25
Как и в случае с конфигурацией файла подкачки, данный параметр изначально будет временным и обнулится при следующей перезагрузке. Для того чтобы сделать его постоянным, в самом конце файла /etc/sysctl.conf записываем значение vm.swappiness=25.
Для этого можно воспользоваться, например, текстовым редактором, запущенным с администраторскими полномочиями.
Размер swap файла в Linux
Существует сразу несколько вариантов, позволяющих увеличить файл подкачки linux или уменьшить его. Однако, прежде чем их рассмотреть, необходимо напомнить об одном очень важном моменте:
Когда вы полностью отключаете файл подкачки, ваша операционная система использует только ОЗУ и в случае ее нехватки это может привести к полной остановке работы компьютера. Система просто зависнет.
Для того чтобы этого не произошло, в тот момент, когда мы удаляем или изменяем основной файл подкачки, необходимо создать второй, временный swap. Если вы это сделали или уверены в том, что имеющейся оперативной памяти хватит, можно переходить непосредственно к процессу изменения размера файла подкачки. Для этого давайте сначала отключим его:
sudo swapoff /swapfile
Вторым этапом меняем размер файла подкачки, воспользовавшись командой, приведенной ниже. При этом размер вашего swap файла нужно указать вместо параметра 2G (2 гигабайта):
sudo fallocate -l 2G /swapfile
Теперь форматируем полученный файл в файловую систему swap:
sudo mkswap /swapfile
А затем включаем его обратно:
sudo swapon /swapfile
При этом операционная система Linux позволяет использовать сразу несколько swap.
Как удалить файл подкачки в Linux
Если по каким-то причинам файл подкачки вам не нужен, можете удалить его. Для этого сначала надо отключить swap linux:
sudo swapoff /swapfile
А потом удаляем:
sudo rm /swapfile
Не забудьте установить права на вновь созданный файл подкачки так, как мы описывали это выше.
В заключение
Надеемся теперь концепция файла подкачки в Linux ясна вам на 100%. Можете переходить к практике и проверять наличие swap на вашем компьютере или ноутбуке, его настройке, созданию или даже удалению. Если в результате у вас останутся какие-то вопросы, предложения или замечания, можете задать их нам, воспользовавшись формой комментирования ниже.
Нет похожих записей
Статья распространяется под лицензией Creative Commons ShareAlike 4.0 при копировании материала ссылка на источник обязательна.
Оцените статью:
(25 оценок, среднее: 4,60 из 5)Об авторе
18 комментариев
>> В последних версиях операционной системы Ubuntu Linux файл подкачки создается автоматически вне зависимости от того, хотите вы этого или нет. При этом его размер составляет около 1 Гб.
Конечно же это не так!
Есть приедложение: вставляй скриншоты именно тех окон, которые необходимы по ходу статьи а не ввесь скриншот твоего рабочего стола, для лучшей читабельности скриншота.
Вообще, автор несколько недоговаривает насчет свапа в GNU/Linux (вероятно, ввиду незнания). Дело в том, что свап нужен не столько для срочного получения памяти, сколько для ровного и эффективного высвобождения памяти. Использовать его в качестве "срочной памяти" в общем случае очень вредно.
И отключение swap не спасает от проблемы дискового ввода/вывода при конкуренции за память — дисковый I/O просто перемещается с анонимных страниц на файловые. Это не только может быть менее эффективным, поскольку остаётся меньший пул страниц, доступных для высвобождения, но и само по себе может способствовать появлению этой высокой конкуренции.
И включение свопа тоже не спасает от заполнения озу дисковым кэшем. На разных дистрибутивах периодически сталкиваюсь с одной и той же проблемой. ОЗУ забивается дисковым кэшем и система начинает тормозить, при том что своп есть, активен, но он не используется. Опытным путем пришел к выводу что система начинает юзать своп отталкиваясь не от параметра в графе "свободно", а от параметра в графе "доступно". Я не знаю верный ли вывод сделал, но со стороны все выглядит именно так. Имею на борту 8 гб ОЗУ. Во время работы системы постепенно дисковый кэш начинает увеличиваться в размере и занимает около 6гб, при этом под реальные нужды используется всего 1,5гб, в графе "свободно" указано около 500мб, в графе доступно около 6,5гб. Стоит только запустить какую-нибудь задачу, которая потребляет озу хотя бы 1,5 -3 гб (игра), как система идёт в штопор, количество свободной памяти уменьшается до минимума прописанного в ядре - 65мб, потом начинает высвобождаться дисковый кэш, но он его просто дропает, а не пишет в своп. Причем дропает примерно до размера чтобы в графе "свободно" было 150-180мб. И после этого система начинает балансировать на этих 180 мб. Всё, естественно, становится дерганным и лагучим. Своп по прежнему не используется. Опытным путем выяснено что своп начинает использоваться тогда, когда в графе "доступно" появляется значение сопоставимое с выставленным параметром swappiness. Мне интересно, так задумано или это баг?
Приходилось устанавливать минимальное количество свободной озу на 500мб вместо 65. Подбирать swappiness в соответствии с нуждами. Но сам по себе своппинг, тоже по сути зло. В момент доступа к диску все равно наблюдались микрофризы, хотя своп находится на ссд. Решением стала настройка и уменьшение дискового кэша. Конечно, это имеет и свою отрицательную сторону, но тут, как говорится, из двух зол выбирай меньшее.
Ещё забыл добавить, что если просто во время лагов вручную дропнуть кэш, то система оживает и работает хорошо до тех пор пока озу снова не забьётся кэшем.
Утилиты top/htop и free отображают общее количество свободной, занятой физической памяти, а так же SWAP на сервере. Как определить, какой процесс использует пространство подкачки в Unix/Linux?
Вы можете использовать любой из следующих методов (но имейте в виду, что из-за общих страниц, нет никакого надежного способа получить данную информацию):
Используйте «/proc/meminfo» – Утилита, которая покажет общие сведения об RAM/SWAP. Данная статистика используется с утилитой «free», чтобы сообщить количество свободной и используемой памяти (как физической, так и swap) в системе, а также общей памяти и буферов используемых ядром. Вы также можете использовать free, vmstat и другие инструменты чтобы узнать ту же информацию.
«/proc/$/smaps», «/proc/$/status» и «/proc/$/stat» — Используя эти утилиты, чтобы найти информацию о памяти, страницах и swap-е используемых каждым процессом( зная PID процесса).
Используя smem.
Какие процессы заняли SWAP в Unix/Linux
Можно добиться желаемого результата несколькими способами.
Находим идентификатор процесса (PID):
Альтернатива, использовать «pgrep» команду для поиска PID-а:
И так, одна из команд выведет подобный результат:
Чтобы увидеть сколько использует swap служба memcached можно следующим образом:
И так, я показал сколько используется swap-а по указанному процессу ( memcached), но это не совсем удобно т.к имеется и ряд других процессов которые могут или использует swap, по этому — я сейчас покажу как можно красиво использовать данные утилиты для проверки.
Введите следующую команду в терменале, чтобы увидеть использование свопа по каждому процессу:
Небольшая оптимизация — используем сортировку и вывод частями:
Нашел небольшой bash скрипт:
И прописываем в него:
Запускайте его от суперпользователя для того, чтобы иметь возможность собрать точные цифры. Скрипт будет работать и от любого другого пользователя в системе, но если у него не поулчится получить доступ к процессу которые не принадлежат вашему пользователю, то он не сможет показать данные по процессам. Например, чтобы найти процесс с большим использованием свопа, просто запустите скрипт вот так:
Данные скрипт покажет все процессы которые используют или не используют SWAP, но можно убрать ненужно ( отображать только те процессы, которые имеют обращение к свапу):
Выход будет в килобайтах.
Вот уже готовый, упрощенный скрипт:
Хочу показать отличную вариацию данного скрипта ( на мой взгляд — одно из самых лучших):
Вот еще один вариант использования:
Они все работают и их можно использовать для своих нужд. А можно использовать утилиту smem. О ней можно прочитать тут:
Установка smem для проверки RAM/SWAP активности в Unix/Linux
А на этом, у меня все! Статья «Какие процессы заняли SWAP в Unix/Linux» завершена.
Современные устройства, функционирующие на различных операционных системах, имеют файл подкачки. Он служит для подстраховки оперативной памяти компьютера. В этом вопросе ОС Linux не является исключением из правила.
Для чего это необходимо? Когда пользователь ПК загружает оперативную память под завязку, устройство получает дополнительный объем памяти из файла подкачки. В каких ситуациях это может потребоваться:
- Для сохранения нормальной производительности компьютера в том случае, если запас ОЗУ постепенно заканчивается. Без файла подкачки устройство начнет заметно притормаживать. Это отрицательно скажется на комфорте работы с ПК.
- Для оптимального распределения приоритетов (система определит, какой вид памяти будет выделен на те или иные процессы).
Эта информация пригодится всем, кто имеет дело со swap. Данный термин имеет следующее значение: swap – это файл в системном разделе или отдельный раздел диска. В большинстве своем его принято создавать в процессе установки ОС. Но если есть такая необходимость, можно создать swap в любой другой момент времени.
В отдельно взятых случаях желание пользователя относительно присутствия swap на ПК не учитывается. В некоторых версиях ОС Ubuntu Linux файл подкачки создается по умолчанию, и с этим уже ничего не поделать. Остается лишь принять это, как факт. Многие юзеры не довольны таким решением, поскольку файл подкачки на их компьютерах занимает порядком 1 Гб памяти.
Проверка на наличие файла подкачки в ОС Linux
Если swap есть на используемом устройстве, с ним можно проделывать множество различных действий. Однако прежде чем приступить к конкретной задаче, нужно хотя бы убедиться в наличии swap на конкретном ПК. А то вдруг окажется так, что swap и вовсе отсутствует.
Чтобы посмотреть swap в операционной системе Линукс, необходимо задать определенную команду. Она выглядит следующим образом:
- total - всего памяти.
- used - сколько используется в данный момент.
- free - свободная память, не используется.
К сожалению, данная команда показывает только общую информацию (total, used, free) и не может дать четкого определения тому, что это файл подкачки или смонтированный раздел. Именно поэтому для дополнительноой проверки воспользуемся другой командой - "swapon".
Как видно из скриншота выше, swap находится в разделе /dev/sda5, размером 2,8 gb и это не файл.
Давайте предположим следующий возможный вариант развития сценария: файл подкачки отсутствует на вашем компьютере. Как это выявить? Введите в терминале команду free -h, и ознакомьтесь с полученной информацией. Если в строке «Подкачка» стоят сплошные нули, то swap не создан в операционной системе Linux.
Создание swap Linux
Если файла подкачки нет, будет логичным приняться за его создание. Далее вы ознакомитесь с пошаговой инструкцией по созданию swap для Линукс.
Воспользуйтесь терминалом для реализации задуманного.
Примечание: 1 G – величина файла подкачки.
Чтобы защитить swap, необходимо установить на этот файл нужные права. Сделайте это при помощи:
Примечание: в конце этой строки стоит название swap файла. Наименование выбирается на свое усмотрение. Его можно поменять.
Права 600 означает - владелец может читать/писать, остальным все запрещено.
Нужный объект создан, но на данный момент ОС Linux не определяет его, как файл подкачки. Необходимо воспользоваться специальной командой для устранения этой проблемы:
По завершению операций, описанных выше, ОС Линукс начинает понимать, что новый объект возьмет на себя роль файла подкачки. Пришло время активировать его. Для этих целей введите в терминале следующее:
Как посмотреть, произошло ли распознание файла подкачки? Задайте в строке следующую команду:
При правильном следовании инструкции вы увидите тип файла и его величину в соответствующих полях.
Внесенные коррективы имеют временный характер – они утратят свою актуальность сразу же после перезагрузки устройства. Их нужно сделать постоянными, но к этому вернемся чуть позже. Для начала следует произвести другое важное действие. А теперь попробуем создать резервную копию swap. Для этих целей введите в строке:
Настройки будут сброшены после перезапуска компьютера. Чтобы избежать этого, необходимо вписать в файл некоторую информацию. Осуществите эту идею с помощью:
$ echo ’/swapfile none swap sw 0 0’ | sudo tee -a /etc/fstab
Дело сделано. Теперь можно смело перезапускать устройство. Сохраненные данные останутся на месте.
Как настроить Swapiness
ОС Linux может использовать swap с разной частотой. Частота использования может варьироваться от 0 до 100. Она задается в параметрах swap.
Значение, приближенное к «0» означает, что система начнет обращаться к файлу подкачки только в самых экстренных случаях (как страховочный вариант). Значение, приближенное к «100» означает, что система начнет освобождать физическую память, перемещая объекты в раздел подкачки.
Команда для проверки установленного параметра в устройстве:
Если указанное значение вам подходит, можно считать, что настройки завершены. В обратном случае нужно поменять это значение на более подходящий вариант. Например:
В приведенном примере «25» – новое значение. Вы можете выбрать число по собственному усмотрению. Главное, чтобы значение попадало в диапазон от 0 до 100. После внесения изменений нужно еще раз позаботиться о том, чтобы они не обнулились после перезапуска системы. Введите в строке терминала запрос:
Запустите текстовый редактор (обязательно с правами суперпользователя). С его помощью нужно прописать некоторую информацию в конце файла. Значение, которое нужно вписать:
vm.swapiness=25 (или любое другое значение, которое вас устроит).
Размер файла подкачки в ОС Линукс
Существует несколько способов увеличения/уменьшения swap файла в устройствах, функционирующих на ОС Linux. Перед тем, как разобраться с этим вопросом подробнее, следует уделить несколько секунд своего внимания важному напоминанию:
При отключении swap операционная система компьютера начинает использовать только ОЗУ. Если объем оперативной памяти закончится, устройство может зависнуть. Все рабочие процессы ПК остановятся.
Чтобы избежать подобных неприятностей, нужно создать запасной (временный) файл подкачки перед тем, как удалять или изменять swap. Обязательны ли эти действия к выполнению? Здесь нужно смотреть по ситуации. Если ОЗУ устройства достаточно велика, можно вполне обойтись и без создания второго swap файла. В этом нет ничего рискованного.
Теперь приступаем к следующему этапу настройки – корректировке величины файла. Чтобы все прошло безопасно, swap нужно отключить. Введите в строке запрос:
Чтобы изменить величину swap, введите в строке:
Вместо «2G» укажите подходящую для вас величину файла подкачки. Для его форматирования воспользуйтесь этой командой:
И последнее действие – включение файла подкачки. Попробуйте включить его при помощи:
Интересная информация: пользователь может создавать и использовать несколько swap файлов на устройстве с ОС Linux.
Удаление swap в операционной системе Линукс
Иногда бывают ситуации, когда пользователю устройства необходимо удалить файл подкачки. Это делается очень быстро, но для начала следует выключить swap, затем удалить.
Теперь можно спокойно приступать к удалению при помощи команды "rm".
Важное напоминание: при создании нового файла подкачки в ОС Линукс придется снова установить права на swap.
Итоги
Концепция swap для операционной системы Linux очень проста. Ознакомившись с нашей статьей, вы сможете проверить устройство на присутствие файла подкачки, создать его, правильно настроить и безопасно удалить.
Читайте также: