Linux максимальное количество соединений
Настройка ядра Linux для поддержки большего числа соединений, что обеспечит бесперебойную работу сервера и дополнительную защиту в случае DoS-атак.
Не принимать и не отправлять ICMP-пакеты перенаправления. ICMP-перенаправления могут быть использованы злоумышленником для изменения таблиц маршрутизации. Целесообразно выставить в «0». Единица имеет смысл только для хостов, использующихся в качестве маршрутизаторов.
Целочисленное значение параметра tcp_max_orphans определяет максимальное число допустимых в системе сокетов TCP, не связанных каким-либо идентификатором пользовательского файла (user file handle). При достижении порогового значения “осиротевшие” (orphan) соединения незамедлительно сбрасываются с выдачей предупреждения. Этот порог помогает предотвращать только простые атаки DoS. Не следует уменьшать пороговое значение (скорее увеличить его в соответствии с требованиями системы – например, после добавления памяти. Каждое orphan-соединение поглощает около 64 Кбайт несбрасываемой на диск (unswappable) памяти.
Параметр tcp_fin_timeout определяет время сохранения сокета в состоянии FIN-WAIT-2 после его закрытия локальной стороной. Партнер может не закрыть это соединение никогда, поэтому следует закрыть его по своей инициативе по истечении тайм-аута. По умолчанию тайм-аут составляет 60 секунд. В ядрах серии 2.2 обычно использовалось значение 180 секунд и вы можете сохранить это значение, но не следует забывать, что на загруженных WEB-серверах вы рискуете израсходовать много памяти на сохранение полуразорванных мертвых соединений. Сокеты в состоянии FIN-WAIT-2 менее опасны, нежели FIN-WAIT-1, поскольку поглощают не более 1,5 Кбайт памяти, но они могут существовать дольше.
tcp_keepalive_time Переменная определяет как часто следует проверять соединение, если оно давно не используется. Значение переменной имеет смысл только для тех сокетов, которые были созданы с флагом SO_KEEPALIVE . Целочисленная переменная tcp_keepalive_intvl определяет интервал передачи проб. Произведение tcp_keepalive_probes * tcp_keepalive_intvl определяет время, по истечении которого соединение будет разорвано при отсутствии откликов. По умолчанию установлен интервал 75 секунд, т.е., время разрыва соединения при отсутствии откликов составит приблизительно 11 минут.
Целочисленное значение в файле tcp_max_syn_backlog определяет максимальное число запоминаемых запросов на соединение, для которых не было получено подтверждения от подключающегося клиента. Если на сервере возникают перегрузки, можно попытаться увеличить это значение.
Целочисленное значение (1 байт) tcp_synack_retries определяет число попыток повтора передачи пакетов SYNACK для пассивных соединений TCP. Число попыток не должно превышать 255. Значение 5 соответствует приблизительно 180 секундам на выполнение попыток организации соединения.
Векторная (минимум, режим нагрузки, максимум) переменная в файле tcp_mem содержит общие настройки потребления памяти для протокола TCP. Эта переменная измеряется в страницах (обычно 4Кб), а не байтах.
Минимум: пока общий размер памяти для структур протокола TCP менее этого количества страниц, операционная система ничего не делает.
Режим нагрузки: как только количество страниц памяти, выделенное для работы протокола TCP, достигает этого значения, активируется режим работы под нагрузкой, при котором операционная система старается ограничивать выделение памяти. Этот режим сохраняется до тех пор, пока потребление памяти опять не достигнет минимального уровня.
Максимум: максимальное количество страниц памяти, разрешенное для всех TCP сокетов.
Векторная (минимум, по умолчанию, максимум) переменная в файле tcp_rmem содержит 3 целых числа, определяющих размер приемного буфера сокетов TCP.
Минимум: каждый сокет TCP имеет право использовать эту память по факту своего создания. Возможность использования такого буфера гарантируется даже при достижении порога ограничения (moderate memory pressure). Размер минимального буфера по умолчанию составляет 8 Кбайт (8192).
Значение по умолчанию: количество памяти, допустимое для буфера передачи сокета TCP по умолчанию. Это значение применяется взамен параметра /proc/sys/net/core/rmem_default , используемого другими протоколами. Значение используемого по умолчанию буфера обычно (по умолчанию) составляет 87830 байт. Это определяет размер окна 65535 с заданным по умолчанию значением tcp_adv_win_scale и tcp_app_win = 0 , несколько меньший, нежели определяет принятое по умолчанию значение tcp_app_win .
Максимум: максимальный размер буфера, который может быть автоматически выделен для приема сокету TCP. Это значение не отменяет максимума, заданного в файле /proc/sys/net/core/rmem_max . При “статическом” выделении памяти с помощью SO_RCVBUF этот параметр не имеет значения.
Векторная переменная в файле tcp_wmem содержит 3 целочисленных значения, определяющих минимальное, принятое по умолчанию и максимальное количество памяти, резервируемой для буферов передачи сокета TCP.
Минимум: каждый сокет TCP имеет право использовать эту память по факту своего создания. Размер минимального буфера по умолчанию составляет 4 Кбайт (4096)
Значение по умолчанию: количество памяти, допустимое для буфера передачи сокета TCP по умолчанию. Это значение применяется взамен параметра /proc/sys/net/core/wmem_default , используемого другими протоколами и обычно меньше, чем /proc/sys/net/core/wmem_default . Размер принятого по умолчанию буфера обычно (по умолчанию) составляет 16 Кбайт (16384)
Максимум: максимальное количество памяти, которое может быть автоматически выделено для буфера передачи сокета TCP. Это значение не отменяет максимум, заданный в файле /proc/sys/net/core/wmem_max . При “статическом” выделении памяти с помощью SO_SNDBUF этот параметр не имеет значения.
Целочисленной значение tcp_orphan_retries определяет число неудачных попыток, после которого уничтожается соединение TCP, закрытое на локальной стороне. По умолчанию используется значение 7, соответствующее приблизительно периоду от 50 секунд до 16 минут в зависимости от RTO. На сильно загруженных WEB-серверах имеет смысл уменьшить значение этого параметра, поскольку закрытые соединения могут поглощать достаточно много ресурсов.
Согласно рекомендациям разработчиков ядра, этот режим лучше отключить.
Максимальное количество соединений для работы механизма connection tracking (используется, например, iptables). При слишком маленьких значениях ядро начинает отвергать входящие подключения с соответствующей записью в системном логе.
Разрешает временные метки протокола TCP. Их наличие позволяет управлять работой протокола в условиях серьезных нагрузок (см. tcp_congestion_control ).
Разрешить выборочные подтверждения протокола TCP. Опция необходима для эффективного использования всей доступной пропускной способности некоторых сетей.
Протокол, используемый для управления нагрузкой в сетях TCP. bic и cubic реализации, используемые по умолчанию, содержат баги в большинстве версий ядра RedHat и её клонов. Рекомендуется использовать htcp.
Не сохранять результаты измерений TCP соединения в кэше при его закрытии. В некоторых случаях помогает повысить производительность.
Актуально для ядер 2.4. По странной причине в ядрах 2.4, если в рамках TCP сессии произошел повтор передачи с уменьшенным размером окна, все соединения с данным хостом в следующие 10 минут будут иметь именно этот уменьшенный размер окна. Данная настройка позволяет этого избежать.
Активируем защиту от IP-спуфинга.
Запрещаем маршрутизацию от источника.
Увеличиваем диапазон локальных портов, доступных для установки исходящих подключений.
Разрешаем повторное использование TIME-WAIT сокетов в случаях, если протокол считает это безопасным.
Разрешаем динамическое изменение размера окна TCP стека
Защищаемся от TIME_WAIT атак.
Запрещаем переадресацию пакетов, поскольку мы не роутер.
Не отвечаем на ICMP ECHO запросы, переданные широковещательными пакетами.
Можно вообще не отвечать на ICMP ECHO запросы (сервер не будет пинговаться)
Максимальное число открытых сокетов, ждущих соединения. Имеет смысл увеличить значение по умолчанию, для высоко-нагруженных серверов советуют значения в районе 15000-20000.
Параметр определяет максимальное количество пакетов в очереди на обработку, если интерфейс получает пакеты быстрее, чем ядро может их обработать.
Приглашаем всех желающих посетить открытый демо-урок «Практикум по написанию Ansible роли». На этом вебинаре участники вместе с экспертом будут писать, тестировать и отлаживать ansible роли. Это важно для тех, кто хочет автоматизировать настройку инфраструктуры, поскольку это один из инструментов, который это позволяет сделать. Сетевой стек — одна из самых запутанных вещей в Linux. И не только из-за сложности некоторых концепций и терминов, но и из-за изменения смысла некоторых параметров в разных версиях ядра. В этой статье приведена информация для ядра 2.2 и выше, а также, там где это возможно, указано различие между версиями вплоть до 5.5.
Очередь приема и netdev_max_backlog
Очередь ожидающих запросов на соединение и tcp_max_syn_backlog
Соединения создаются для SYN-пакетов из очереди приема и перемещаются в очередь ожидания (SYN Backlog Queue). Также соединение помечается как "SYN_RECV" и клиенту отправляется "SYN+ACK". Эти соединения не перемещаются в очередь установленных соединений ожидающих обработки accept() (accept queue) до тех пор, пока не будет получен и обработан соответствующий ACK. Максимальное количество соединений в этой очереди устанавливается параметром net.ipv4.tcp_max_syn_backlog .
Для просмотра очереди приема используйте команду netstat . На правильно настроенном сервере при нормальной нагрузке значение не должно быть больше 1. При большой нагрузке значение должно быть меньше размера очереди ожидания (SYN Backlog):
Если в состоянии "SYN_RECV" находятся много соединений, то можно также подстроить продолжительность нахождения SYN-пакета в этой очереди.
SYN Cookie
Повторы SYN+ACK
Что происходит, если SYN+ACK отправлен, но ответа ACK нет? В этом случае сетевой стек сервера повторит отправку SYN+ACK. Задержка между попытками вычисляется таким образом, чтобы обеспечить восстановление сервера. Если сервер получает SYN и отправляет SYN+ACK, но не получает ACK, то тайм-аут повторной передачи вычисляется по экспоненте (Exponental Backoff) и, следовательно, зависит от количества повторных попыток. Количество повторных попыток отправки SYN+ACK задается параметром ядра net.ipv4.tcp_synack_retries (по умолчанию равно 5). Повторные попытки будут через следующие интервалы: 1с, 3с, 7с, 15с, 31с. При шести попытках последняя будет примерно через 63 секунды после первой. Это позволяет удержать SYN-пакет в очереди ожидания более 60 секунд до истечения времени ожидания пакета. Если очередь SYN backlog мала, то не требуется большого количества соединений, чтобы возникла ситуация, когда полуоткрытые соединения никогда не завершатся и тогда никакие соединения не смогут быть установлены. Установите количество повторных попыток SYN+ACK равным 0 или 1, чтобы избежать такого поведения на высоконагруженных серверах.
Повторы SYN
Несмотря на то что повторные SYN-пакеты отправляются клиентом во время ожидания SYN+ACK, они могут влиять и на высоконагруженные серверы, работающие с прокси-соединениями. Например, сервер nginx, устанавливающий несколько десятков прокси-соединений к бэкенд-серверу, из-за всплесков трафика может на некоторое время перегрузить сетевой стек, а повторные попытки создадут дополнительную нагрузку на бэкэнд как в очереди приема, так и в очереди ожидания (SYN backlog). Это, в свою очередь, может повлиять на клиентские соединения. Повторные попытки SYN контролируются параметром net.ipv4.tcp_syn_retries (по умолчанию 5 или 6 в зависимости от дистрибутива). Ограничьте количество повторных попыток SYN до 0 или 1, чтобы не было долгих повторных попыток отправки в течение 63–130 с.
Более подробно о проблемах с клиентскими соединениями при обратном прокси-сервере читайте в статье Linux Kernel Tuning for High Performance Networking: Ephemeral Ports.
Очередь установленных соединений ожидающих принятия (accept queue) и somaxconn
Очередь запросов на соединение создает приложение, используя listen() и указывая размер очереди в параметре "backlog". Начиная с ядра 2.2 поведение этого параметра изменилось с максимального количества неоконченных запросов на соединение, которое может удерживать сокет, на максимальное количество полностью установленных соединений, ожидающих, пока они будут приняты. Как описано выше, максимальное количество неоконченных запросов на соединение теперь задается с помощью параметра ядра net.ipv4.tcp_max_syn_backlog .
somaxconn и параметр backlog в listen()
Хотя за размер очереди для каждого слушателя отвечает приложение, есть ограничение на количество соединений, которые могут находиться в очереди. Размером очереди управляют два параметра: 1) параметр backlog в функции listen() и 2) параметр ядра net.core.somaxconn , задающий максимальный размер очереди.
Значения по умолчанию для очереди
Значение по умолчанию для net.core.somaxconn берется из константы SOMAXCONN, которая в ядрах Linux вплоть до версии 5.3 имеет значение 128, но в 5.4 она была увеличена до 4096. Однако, на момент написания этой статьи, ядро 5.4 еще не очень распространено, поэтому в большинстве систем значение будет 128, если вы не модифицировали net.core.somaxconn.
Часто приложения для размера очереди по умолчанию используют константу SOMAXCONN, если этот размер не задается в конфигурации приложения. Хотя некоторые приложения устанавливают и свои значения по умолчанию. Например, в nginx размер очереди равен 511, который автоматически усекается до 128 в ядрах Linux до версии 5.3.
Изменение размера очереди
Многие приложения позволяют указывать размер очереди в конфигурации, указывая значение параметра backlog для listen() . Если приложение вызывает listen() со значением backlog , превышающим net.core.somaxconn, то размер очереди будет автоматически усечен до значения SOMAXCONN.
Потоки
Соединения и файловые дескрипторы
Системные ограничения
Любое сокетное соединение использует файловый дескриптор. Максимальное количество дескрипторов, которые могут быть созданы в системе, задается параметром ядра fs.file-max. Посмотреть количество используемых дескрипторов можно следующим образом:
Пользовательские ограничения
Помимо системного ограничения количества файловых дескрипторов, у каждого пользователя есть свои лимиты. Они настраиваются в системном файле limits.conf (nofile) или, при запуске процесса под управлением systemd, в unit-файле systemd (LimitNOFILE). Чтобы увидеть значение по умолчанию запустите:
Для systemd (на примере nginx):
Настройка
Для настройки системных ограничений установите параметр ядра fs.max-file в максимальное количество файловых дескрипторов, которое может быть в системе (с учетом некоторого буфера). Например:
Для настройки пользовательского лимита установите достаточно большое значение, чтобы хватило сокетам и файловым дескрипторам рабочих процессов (также с некоторым буфером). Пользовательские ограничения устанавливаются в /etc/security/limits.conf, в conf-файле в /etc/security/limits.d/ или в unit-файле systemd. Например:
Количество worker'ов
Аналогично файловым дескрипторам, количество worker'ов или потоков, которые может создать процесс, ограничено как на уровне ядра, так и на уровне пользователя.
Системные ограничения
Процессы могут создавать рабочие потоки. Максимальное количество потоков, которые могут быть созданы, задается параметром ядра kernel.threads-max . Для просмотра максимального и текущего количества потоков, выполняющихся в системе, запустите следующее:
Пользовательские ограничения
Есть свои ограничения и у каждого пользовательского процесса. Это также настраивается с помощью файла limits.conf (nproc) или unit-файла systemd (LimitNPROC). Для просмотра максимального количества потоков, которое может создать пользователь запустите:
Для systemd (на примере nginx):
Настройка
Как и в случае с nofile , ограничения для пользователей ( nproc ) устанавливаются в /etc/security/limits.conf, в conf-файле в /etc/security/limits.d/ или в unit-файле systemd. Пример с nproc и nofile :
Обратный прокси и TIME_WAIT
При большом всплеске трафика прокси-соединения, застрявшие в "TIME_WAIT", суммарно могут потреблять много ресурсов при закрытии соединения. Это состояние говорит, что клиент получил последний FIN-пакет от сервера (или вышестоящего worker'а) и находится в ожидании для корректной обработки пакетов. Время нахождения соединения в состоянии "TIME_WAIT" по умолчанию составляет 2 x MSL (Maximum Segment Length — максимальная длина сегмента), что составляет 2 x 60 с. В большинстве случаев это нормальное и ожидаемое поведение, и значение по умолчанию в 120 с вполне приемлемо. Однако много соединений в состоянии "TIME_WAIT" может привести к тому, что приложение исчерпает эфемерные порты для соединений к клиентскому сокету. В этом случае следует уменьшить FIN тайм-аут.
Управляет этим тайм-аутом параметр net.ipv4.tcp_fin_timeout . Рекомендуемое значение для высоконагруженных систем составляет от 5 до 7 секунд.
Собираем все вместе
Очередь приема (receive queue) должна быть рассчитана на обработку всех пакетов, полученных через сетевой интерфейс, не вызывая отбрасывания пакетов. Также необходимо учесть небольшой буфер на случай, если всплески будут немного выше, чем ожидалось. Для определения правильного значения следует отслеживать файл softnet_stat на предмет отброшенных пакетов. Эмпирическое правило — использовать значение tcp_max_syn_backlog, чтобы разрешить как минимум столько же SYN-пакетов, сколько может быть обработано для создания полуоткрытых соединений. Помните, что этот параметр задает количество пакетов, которое каждый процессор может иметь в своем буфере, поэтому разделите значение на количество процессоров.
Размер SYN очереди ожидания (SYN backlog queue) на высоконагруженном сервере должен быть рассчитан на большое количество полуоткрытых соединений для обработки редких всплесков трафика. Здесь эмпирическое правило заключается в том, чтобы установить это значение, по крайней мере, на максимальное количество установленных соединений, которое слушатель может иметь в очереди приема, но не выше, чем удвоенное количество установленных соединений. Также рекомендуется отключить SYN cookie, чтобы избежать потери данных при больших всплесках соединений от легитимных клиентов.
Очередь установленных соединений, ожидающих принятия (accept queue) должна быть рассчитана таким образом, чтобы в периоды сильного всплеска трафика ее можно было использовать в качестве временного буфера для установленных соединений. Эмпирическое правило — устанавливать это значение в пределах 20–25% от числа рабочих потоков.
Параметры
В этой статье были рассмотрены следующие параметры ядра:
И следующие пользовательские ограничения:
Заключение
Все параметры в этой статье приведены в качестве примеров и не должны вслепую применяться на ваших продакшн-серверах без тестирования. Есть и другие параметры ядра, которые влияют на производительность сетевого стека. Но в целом, это наиболее важные параметры, которые я использовал при настройке ядра для высоконагруженных систем.
Вот опции, что необходимо добавить в конец /etc/sysctl.conf
А теперь о каждой опции более детально.
Целочисленное значение параметра tcp_max_orphans определяет максимальное число допустимых в системе сокетов TCP, не связанных каким-либо идентификатором пользовательского файла (user file handle). При достижении порогового значения “осиротевшие” (orphan) соединения незамедлительно сбрасываются с выдачей предупреждения. Этот порог помогает предотвращать только простые атаки DoS. Не следует уменьшать пороговое значение (скорее увеличить его в соответствии с требованиями системы – например, после добавления памяти. Каждое orphan-соединение поглощает около 64 Кбайт несбрасываемой на диск (unswappable) памяти.
Параметр tcp_fin_timeout определяет время сохранения сокета в состоянии FIN-WAIT-2 после его закрытия локальной стороной. Партнер может не закрыть это соединение никогда, поэтому следует закрыть его по своей инициативе по истечении тайм-аута. По умолчанию тайм-аут составляет 60 секунд. В ядрах серии 2.2 обычно использовалось значение 180 секунд и вы можете сохранить это значение, но не следует забывать, что на загруженных WEB-серверах вы рискуете израсходовать много памяти на сохранение полуразорванных мертвых соединений. Сокеты в состоянии FIN-WAIT-2 менее опасны, нежели FIN-WAIT-1 , поскольку поглощают не более 1,5 Кбайт памяти, но они могут существовать дольше.
tcp_keepalive_time Переменная определяет как часто следует проверять соединение, если оно давно не используется. Значение переменной имеет смысл только для тех сокетов, которые были созданы с флагом SO_KEEPALIVE . Целочисленная переменная tcp_keepalive_intvl определяет интервал передачи проб. Произведение tcp_keepalive_probes * tcp_keepalive_intvl определяет время, по истечении которого соединение будет разорвано при отсутствии откликов. По умолчанию установлен интервал 75 секунд, т.е., время разрыва соединения при отсутствии откликов составит приблизительно 11 минут.
Целочисленное значение в файле tcp_max_syn_backlog определяет максимальное число запоминаемых запросов на соединение, для которых не было получено подтверждения от подключающегося клиента. Если на сервере возникают перегрузки, можно попытаться увеличить это значение.
Целочисленное значение (1 байт) tcp_synack_retries определяет число попыток повтора передачи пакетов SYNACK для пассивных соединений TCP. Число попыток не должно превышать 255. Значение 5 соответствует приблизительно 180 секундам на выполнение попыток организации соединения.
Векторная (минимум, режим нагрузки, максимум) переменная в файле tcp_mem cодержит общие настройки потребления памяти для протокола TCP. Эта переменная измеряется в страницах (обычно 4Кб), а не байтах.
Минимум: пока общий размер памяти для структур протокола TCP менее этого количества страниц, операционная система ничего не делает.
Режим нагрузки: как только количество страниц памяти, выделенное для работы протокола TCP, достигает этого значения, активируется режим работы под нагрузкой, при котором операционная система старается ограничивать выделение памяти. Этот режим сохраняется до тех пор, пока потребление памяти опять не достигнет минимального уровня.
Максимум: максимальное количество страниц памяти, разрешенное для всех TCP сокетов.
Векторная (минимум, по умолчанию, максимум) переменная в файле tcp_rmem содержит 3 целых числа, определяющих размер приемного буфера сокетов TCP.
Минимум: каждый сокет TCP имеет право использовать эту память по факту своего создания. Возможность использования такого буфера гарантируется даже при достижении порога ограничения (moderate memory pressure). Размер минимального буфера по умолчанию составляет 8 Кбайт (8192).
Значение по умолчанию: количество памяти, допустимое для буфера передачи сокета TCP по умолчанию. Это значение применяется взамен параметра /proc/sys/net/core/rmem_default , используемого другими протоколами. Значение используемого по умолчанию буфера обычно (по умолчанию) составляет 87830 байт. Это определяет размер окна 65535 с заданным по умолчанию значением tcp_adv_win_scale и tcp_app_win = 0 , несколько меньший, нежели определяет принятое по умолчанию значение tcp_app_win .
Векторная переменная в файле tcp_wmem содержит 3 целочисленных значения, определяющих минимальное, принятое по умолчанию и максимальное количество памяти, резервируемой для буферов передачи сокета TCP.
Минимум: каждый сокет TCP имеет право использовать эту память по факту своего создания. Размер минимального буфера по умолчанию составляет 4 Кбайт (4096)
Значение по умолчанию: количество памяти, допустимое для буфера передачи сокета TCP по умолчанию. Это значение применяется взамен параметра /proc/sys/net/core/wmem_default , используемого другими протоколами и обычно меньше, чем /proc/sys/net/core/wmem_default . Размер принятого по умолчанию буфера обычно (по умолчанию) составляет 16 Кбайт (16384)
Целочисленной значение tcp_orphan_retries определяет число неудачных попыток, после которого уничтожается соединение TCP, закрытое на локальной стороне. По умолчанию используется значение 7, соответствующее приблизительно периоду от 50 секунд до 16минут в зависимости от RTO . На сильно загруженных WEB-серверах имеет смысл уменьшить значение этого параметра, поскольку закрытые соединения могут поглощать достаточно много ресурсов.
Согласно рекомендациям разработчиков ядра, этот режим лучше отключить.
Максимальное количество соединений для работы механизма connection tracking (используется, например, iptables). При слишком маленьких значениях ядро начинает отвергать входящие подключения с соответствующей записью в системном логе.
Разрешает временные метки протокола TCP. Их наличие позволяет управлять работой протокола в условиях серьезных нагрузок (см. tcp_congestion_control ).
Разрешить выборочные подтверждения протокола TCP. Опция необходима для эффективного использования всей доступной пропускной способности некоторых сетей.
Протокол, используемый для управления нагрузкой в сетях TCP. bic и cubic реализации, используемые по умолчанию, содержат баги в большинстве версий ядра RedHat и ее клонов. Рекомендуется использовать htcp .
Не сохранять результаты измерений TCP соединения в кеше при его закрытии. В некоторых случаях помогает повысить производительность.
Актуально для ядер 2.4. По странной причине в ядрах 2.4, если в рамках TCP сессии произошел повтор передачи с уменьшенным размером окна, все соединения с данным хостом в следующие 10 минут будут иметь именно этот уменьшенный размер окна. Данная настройка позволяет этого избежать.
Активируем защиту от IP-спуфинга.
Увеличиваем диапазон локальных портов, доступных для установки исходящих подключений
Разрешаем повторное использование TIME-WAIT сокетов в случаях, если протокол считает это безопасным.
Разрешаем динамическое изменение размера окна TCP стека
Запрещаем переадресацию пакетов, поскольку мы не роутер.
Не отвечаем на ICMP ECHO запросы, переданные широковещательными пакетами
Можно вообще не отвечать на ICMP ECHO запросы (сервер не будет пинговаться)
Максимальное число открытых сокетов, ждущих соединения. Имеет смысл увеличить значение по умолчанию.
Параметр определяет максимальное количество пакетов в очереди на обработку, если интерфейс получает пакеты быстрее, чем ядро может их обработать.
Решить ограничение максимального числа одновременных соединений сокетов под Linux, TCP по умолчанию 1024 соединения
В последнее время при подключении к промежуточному программному обеспечению Memcached всегда возникает следующая ошибка:
Позже было обнаружено, что допустимого количества сокетов, установленных на стороне сервера, было недостаточно. По умолчанию в Linux разрешено только 1024 запроса на подключение. Обратитесь к соответствующим документам в интернете, вам нужно установить это значение немного больше.
По умолчанию ulimit системы linux имеет доступ 1024. Максимальное количество программ, которые пользователи могут открыть. Как правило, самое высокое соединение порта от 2 до 16-го уровня 65535
С помощью этой команды ulimit -n вы можете увидеть значение по умолчанию 1024
- Первым шагом является изменение файла /etc/security/limits.conf, добавление в файл следующей строки (* относится к имени пользователя системы), изменение мягких и жестких ограничений на количество открытых файлов для пользователей в системе Linux:
soft nofile 65535
hard nofile 65535
- Второй шаг - изменить файл /etc/pam.d/login и добавить в него следующую строку:
session required /lib/security/pam_limits.so
Если это 64-битная система, она должна быть:
session required /lib64/security/pam_limits.so
- Третий шаг - изменение файла /etc/sysctl.conf. В этом файле (очистите исходное содержимое файла (или добавьте его на исходной основе, я сделал это)) добавьте следующую строку (измените ограничения ядра сети для соединений TCP ):
- Четвертый шаг - выполнить следующую команду (чтобы вышеуказанные настройки вступили в силу):
- Пятый шаг - выполнить следующую команду (после оптимизации системы Linux сеть должна увеличить количество открытых файлов для поддержки большого параллелизма, и по умолчанию 1024 недостаточно):
- Шестой шаг - перезагрузить компьютер (когда я поэкспериментирую, он вступит в силу без перезапуска, поэтому этого шага следует избегать).
Благодаря модификации tcp может достигать 65536 соединений без каких-либо проблем.
С помощью этой команды ulimit -n вы можете видеть, что значение изменено на 65536, что означает, что теперь поддерживается не более 65536 соединений через сокет TCP.
Посмотрите, сколько TCP-соединений в настоящее время подключено к текущей серверной команде:
Читайте также: