Как заменить ядро windows 7
Windows – одна из наиболее многогранных и гибких ОС, она работает на совершенно разных архитектурах и доступна в разных вариантах. На сегодня она поддерживает архитектуры x86, x64, ARM и ARM64. Windows в своё время поддерживала Itanium, PowerPC, DEC Alpha и MIPS. Кроме того, Windows поддерживает целый набор SKU, работающих в различных условиях; от дата-центров, ноутбуков, Xbox и телефонов до встраиваемых версий для интернета вещей, например, в банкоматах.
Самый удивительный аспект состоит в том, что ядро Windows практически не меняется в зависимости от всех этих архитектур и SKU. Ядро динамически масштабируется в зависимости от архитектуры и процессора, на котором оно работает, так, чтобы пользоваться всеми возможностями оборудования. Конечно, в ядре присутствует определённое количество кода, связанного с конкретной архитектурой, однако его там минимальное количество, что позволяет Windows запускаться на разнообразных архитектурах.
В этой статье я расскажу об эволюции ключевых частей ядра Windows, которые позволяют ему прозрачно масштабироваться от чипа NVidia Tegra низкого потребления, работающего на Surface RT 2012 года, до гигантских монстров, работающих в дата-центрах Azure.
Менеджер задач Windows, работающий на пререлизной машине класса Windows DataCenter, с 896 ядрами, поддерживающими 1792 логических процессора и 2 Тб памяти
Эволюция единого ядра
Перед тем, как обсудить детали ядра Windows, сделаем небольшое отступление в сторону рефакторинга. Рефакторинг играет ключевую роль в увеличении случаев повторного использования компонентов ОС на различных SKU и платформах (к примеру, клиент, сервер и телефон). Базовая идея рефакторинга – позволить повторно использовать одни и тем же DLL на разных SKU, поддерживая небольшие модификации, сделанные специально под нужный SKU, не переименовывая DLL и не ломая работу приложений.
Базовая технология рефакторинга Windows – мало документированная технология под названием "наборы API". Наборы API – это механизм, позволяющий ОС разъединять DLL и место их применения. К примеру, набор API позволяет приложениям для win32 продолжать пользоваться kernel32.dll, притом, что реализация всех API прописана в другой DLL. Эти DLL с реализацией также могут отличаться у разных SKU. Посмотреть наборы API в деле можно, запустив обход зависимостей на традиционной Windows DLL, например, kernel32.dll.
Закончив это отступление по поводу строения Windows, позволяющего системе максимизировать повторное и совместное использование кода, перейдём к техническим глубинам запуска ядра по планировщику, являющегося ключом к масштабированию ОС.
Компоненты ядра
Windows NT – это, по сути, микроядро, в том смысле, что у него есть своё core Kernel (KE) с ограниченным набором функций, использующее исполняемый уровень (Executive layer, Ex) для выполнения всех политик высокого уровня. EX всё ещё является режимом ядра, так что это не совсем микроядро. Ядро отвечает за диспетчеризацию потоков, синхронизацию между процессорами, обработку исключений аппаратного уровня и реализацию низкоуровневых функций, зависящих от железа. Слой EX содержит различные подсистемы, обеспечивающие набор функциональности, который обычно считается ядром – IO, Object Manager, Memory Manager, Process Subsystem, и т.д.
Чтобы лучше представить себе размер компонентов, вот примерное разбиение по количеству строк кода в нескольких ключевых каталогах дерева исходников ядра (включая комментарии). В таблицу не вошло ещё много всего, относящегося к ядру.
Подсистемы ядра | Строк кода |
---|---|
Memory Manager | 501, 000 |
Registry | 211,000 |
Power | 238,000 |
Executive | 157,000 |
Security | 135,000 |
Kernel | 339,000 |
Process sub-system | 116,000 |
Более подробная информация об архитектуре Windows содержится в серии книг “Windows Internals”.
Планировщик
Подготовив таким образом почву, давайте немного поговорим о планировщике, его эволюции и том, как ядро Windows умеет масштабироваться на такое количество различных архитектур с таким большим количеством процессоров.
Поток – это базовая единица, исполняющая программный код, и именно её работу планирует планировщик Windows. Решая, какой из потоков запустить, планировщик использует их приоритеты, и в теории, поток с наивысшим приоритетом должен запускаться на системе, даже если это означает, что потокам с более низким приоритетам времени не останется.
У планировщика Windows изначально была одна очередь готовности, из которой он выбирал следующий, наивысший по приоритету поток для запуска. Однако с началом поддержки всё большего количества процессоров, единственная очередь превратилась в узкое место, и примерно в районе выхода Windows Server 2003 планировщик поменял работу и организовал по одной очереди готовности на процессор. При переходе на поддержку нескольких запросов на один процессор единую глобальную блокировку, защищающую все очереди, делать не стали, и разрешили планировщику принимать решения на основе локальных оптимумов. Это означает, что в любой момент в системе работает один поток с наивысшим приоритетом, но не обязательно означает, что N самых приоритетных потоков в списке (где N – число процессоров) работают в системе. Такой подход оправдывал себя, пока Windows не начала переходить на CPU с низким энергопотреблением, например, на ноутбуки и планшеты. Когда на таких системах поток с наивысшим приоритетам не работал (например, поток переднего плана интерфейса пользователя), это приводило к заметным глюкам интерфейса. Поэтому в Windows 8.1 планировщик перевели на гибридную модель, с очередями для каждого процессора для потоков, связанных с этим процессором, и разделяемой очередью готовых процессов для всех процессоров. Это не сказалось на быстродействии заметным образом благодаря другим изменениям в архитектуре планировщика, например, рефакторингу блокировки базы данных диспетчера.
В Windows 7 ввели такую вещь, как динамический планировщик со справедливыми долями (Dynamic Fair Share Scheduler, DFSS); это в первую очередь касалось терминальных серверов. Эта особенность пыталась решить проблему, связанную с тем, что одна терминальная сессия с высокой загрузкой CPU могла повлиять на потоки в других терминальных сессиях. Поскольку планировщик не учитывал сессии и просто использовал приоритет для распределения потоков, пользователи в разных сессиях могли повлиять на работу пользователей в других сессиях, задушивая их потоки. Также это давало несправедливое преимущество сессиям (и пользователям) с большим количеством потоков, поскольку у сессии с большим количеством потоков было больше возможностей получить процессорное время. Была сделана попытка добавить в планировщик правило, по которому каждую сессию рассматривали на равных с другими по количеству процессорного времени. Подобная функциональность есть и в ОС Linux с их абсолютно честным планировщиком (Completely Fair Scheduler). В Windows 8 эту концепцию обобщили в виде группы планировщика и добавили в планировщик, в результате чего каждая сессия попадала в независимую группу. Кроме приоритетов для потоков, планировщик использует группы планировщика как индекс второго уровня, принимая решение по поводу того, какой поток запускать следующим. В терминальном сервере все группы планировщика имеют одинаковый вес, поэтому все сессии получают одинаковое количество процессорного времени вне зависимости от количества или приоритетов потоков внутри групп планировщика. Кроме того, такие группы также используют для более точного контроля над процессами. В Windows 8 рабочие объекты (Job) были дополнены так, чтобы поддерживать управление процессорным временем. При помощи специального API можно решать, какую часть процессорного времени может использовать процесс, должно это быть мягкое или жёсткое ограничение, и получать уведомления, когда процесс достигает этих ограничений. Это похоже на управление ресурсами в cgroups на Linux.
Начиная с Windows 7, в Windows Server появилась поддержка более 64 логических процессоров на одном компьютере. Чтобы добавить поддержку такому большому количеству процессоров, в системе ввели новую категорию, «процессорная группа». Группа – неизменный набор логических процессоров количеством не более 64 штук, которые рассматриваются планировщиком как вычислительная единица. Ядро при загрузке определяет, какой процессор к какой группе отнести, и у машин с количеством процессорных ядер менее 64 этот подход практически невозможно заметить. Один процесс может разделяться на несколько групп (например, экземпляр SQL-сервера), единственный поток в один момент времени может выполняться только в рамках одной группы.
Но на машинах, где число ядер CPU превышает 64, Windows начала демонстрировать новые узкие места, не дававшие таким требовательным приложениям, как SQL-сервер, масштабироваться линейно с ростом количества ядер процессора. Поэтому, даже при добавлении новых ядер и памяти, замеры скорости не показывали её существенного увеличения. Одной из главных проблем, связанных с этим, был спор по поводу блокировки базы диспетчера. Блокировка базы диспетчера защищала доступ к объектам, работу которых необходимо было запланировать. Среди этих объектов – потоки, таймеры, порты ввода/вывода, другие объекты ядра, подверженные ожиданию (события, семафоры, мьютексы). Под давлением необходимости разрешения таких проблем, в Windows 7 была проделана работа по устранению блокировки базы диспетчера и замене её на более точные подстройки, например, пообъектную блокировку. Это позволило таким замерам производительности, как SQL TPC-C, продемонстрировать рост скорости на 290% по сравнению с предыдущей схемой на некоторых конфигурациях. Это был один из крупнейших взлётов производительности в истории Windows, случившихся благодаря изменению единственной особенности.
Windows 10 принесло другую инновацию, внедрив наборы процессоров (CPU Sets). CPU Sets позволяют процессу разделять систему так, что процесс может распределиться на несколько групп процессоров, не позволяя другим процессам пользоваться ими. Ядро Windows даже не даёт прерываниям устройств пользоваться процессорами, входящими в ваш набор. Это гарантирует, что даже устройства не смогут исполнять свой код на процессорах, выданных группе вашего приложения. Это похоже на низкотехнологичную виртуальную машину. Понятно, что это мощная возможность, поэтому в неё встроено множество мер безопасности, чтобы разработчик приложения не допустил больших ошибок, работая с API. Функциональность наборов CPU используется в игровом режиме (Game Mode).
Наконец, мы приходим к поддержке ARM64, появившейся у Windows 10. Архитектура ARM поддерживает архитектуру big.LITTLE, гетерогенную по своей природе – «большое» ядро работает быстро и потребляет много энергии, а «малое» ядро работает медленно и потребляет меньше. Идея в том, что малозначительные задачи можно выполнять на малом ядре, экономя таким образом батарею. Для поддержки архитектуры big.LITTLE и увеличения времени работы от батареи при работе Windows 10 на ARM, в планировщик добавили поддержку гетерогенной планировки, учитывающую пожелания приложения, работающего с архитектурой big.LITTLE.
Под пожеланиями я имею в виду то, что Windows старается качественно обслуживать приложения, отслеживая потоки, выполняющиеся на переднем плане (или те, которым не хватает процессорного времени), и гарантируя их выполнение на «большом» ядре. Все фоновые задачи, сервисы, другие вспомогательные потоки выполняются на малых ядрах. Также в программе можно принудительно отметить маловажность потока, чтобы заставить его работать на малом ядре.
Работа от чужого имени [Work on Behalf]: в Windows довольно много работы на переднем плане осуществляется другими сервисами, работающими в фоне. К примеру, при поиске в Outlook сам поиск проводится фоновым сервисом Indexer. Если мы просто запустим все сервисы на малом ядре, пострадает качество и скорость работы приложений на переднем плане. Чтобы при таких сценариях работы она не замедлялась на архитектурах big.LITTLE, Windows отслеживает вызовы приложения, поступающие к другим процессам, чтобы выполнять работу от их имени. В таком случае мы выдаём приоритет переднего плана потоку, относящемуся к сервису, и заставляем его выполняться на большом ядре.
На этом позвольте закончить первую статью о ядре Windows, дающую обзор работы планировщика. Статьи со сходными техническими подробностями о внутренней работе ОС последуют позже.
Читайте также: