При наличии электрообогрева релейного шкафа термодатчик должен настраиваться на выключение обогрева

Обновлено: 22.01.2025

В зимнее время одной из причин отказов устройств СЦБ является образование ледяной пленки на контактах реле в напольных релейных шкафах. Эта пленка вызывает обрыв электрических цепей и появление на светофорах красного огня.
Для борьбы с накоплением влаги в шкафах можно использовать естественную вентиляцию и искусственный внутренний подогрев шкафов. Естественная вентиляция, усиливая воздухообмен в шкафу, препятствует образованию замерзающих конденсатов, снижает накопление влаги при изменении погоды, резком перепаде температуры воздуха днем и ночью. Закрывать вентиляционные отверстия, что часто делают электромеханики, не следует. Необходимо следить за исправностью защитных сеток вентиляционных отверстий и периодически очищать их от снега.

Применение вентиляции особенно полезно в тех районах, для которых характерны быстрые похолодания и устойчивая морозная погода, например районы Сибири и Урала. Однако в районах, где зимой часто бывают потепления, сопровождающиеся значительным увеличением влажности воздуха (например, Донбасс, некоторые центральные районы), применение одной вентиляции (без подогрева шкафов) не рекомендуется. В этих районах при резком потеплении вентиляция будет усиливать образование в шкафах инея или гололеда.
Эффективным средством борьбы с обмерзанием является внутренний подогрев шкафов. При похолодании подогрев задерживает остывание воздуха в шкафу до температуры наружного воздуха, значительно уменьшая вероятность влагообразования. Применение подогрева шкафов полезно во всех районах и при любых климатических условиях. Наиболее экономичным является подогрев шкафов с одновременной естественной вентиляцией.
Подогрев шкафов необходимо применять прежде всего на участках с автономной тягой, так как среди аппаратуры в этом случае нет приборов, выделяющих в процессе работы достаточного количества тепла. Для подогрева можно использовать лампы накаливания или резисторы. Суммарная мощность подогрева должна быть не менее 50 Вт для шкафов ЩМ-1, 75 Вт для ШМ-2 и не менее 100 Вт для ШМ-3. В шкафах ШРШ-4 и ШРШ-6 мощность подогрева должна составлять не менее 75 и 100 Вт соответственно. Приборы подогрева следует располагать преимущественно в нижней части шкафов.
На электрифицированных участках, оборудованных автоблокировкой, достаточный подогрев воздуха в шкафах обеспечивается теплом, выделяемым путевыми трансформаторами. Поэтому дополнительный подогрев здесь необходим лишь в тех случаях, когда зимой все же наблюдается обмерзание реле. С целью экономии энергии включать подогрев следует с наступлением устойчивой холодной погоды при температуре значительно ниже нуля. Подогрев релейных шкафов и их вентиляция являются основными мероприятиями по борьбе с обмерзанием реле. Для получения необходимого эффекта от этих мероприятий необходимо исключить попадание в шкафы снега через щели в дверях. При внешнем подогреве снег испаряется и влага попадает под кожух реле, вызывая обмерзание контактов, поэтому двери в шкафах нужно плотно закрывать.
Следует также исключить доступ в шкаф теплого влажного воздуха из земли по трубам, через которые вводятся кабели. Эти трубы должны быть тщательно заполнены песком, отверстия в дне шкафа для ввода кабелей заделаны заглушками и залиты компаундом.
ВНИИЖТ рекомендовал применять штепсельные реле с автономным обогревом. Эффективность такого обогрева очевидна, так как объем всех реле, смонтированных в релейном шкафу, в десятки раз меньше объема самого шкафа, что, в свою очередь, позволит более экономично расходовать электроэнергию для обогрева релейной аппаратуры.
В качестве нагревательного элемента используют резистор ПЭВ-15 сопротивлением 30 Ом. Резистор припаивают к наконечникам входных выводов КП-1а, которые закрепляют на колпаках реле. На выводы подают переменное напряжение не более 12 В.

Нагрев шкафов автоматики: когда это нужно?

В технической стандартизации и заводских инструкциях на шкафы управления и автоматики указаны пределы температур, при которых это оборудование может нормально функционировать. Например, по стандарту эксплуатации электрического реле в качестве расчетной работы для основных исполнений реле температура окружающей среды не должна выходить за диапазоны -20°С… +40°С, а в стандартных данных эксплуатации шкафов управления различного типа эти пределы не должны выходить за диапазон +5°С…+40°С или в отдельных случаях от -40°С до +40°С.

В зимний период при низких температурных значениях сопротивление трения подвижных частей резко увеличивается. Помимо этого, даже невысокая влажность, возникшая внутри шкафа автоматики, провоцирует их смерзание. Образование конденсата и замерзания системы приводят к отказу в работе воздушных клапанных блоков, находящихся в щитах распределения и автоматики, а также к выходу из строя проводов масляных выключателей, отделительных механизмов, короткозамыкателей, приводов разъединителей и реле. Именно по этим причинам в технической документации и инструкциях указаны температурные пределы функциональности шкафов управления и автоматики, или затребовано использование устройств подогрева.

Нагрев шкафов автоматики от компании Элемаг-ТПК

Бывает, что в клапанах воздушных выключателей возникает проблема утечки сжатого воздуха. В участке утечки резко падает давление и температура воздуха. В данной ситуации независимо от температуры окружающей среды (даже если это положительные значения) может также наблюдаться замерзание подвижных элементов.

Резкий спад давления и примерзание локальных участков оборудования имеют место и в клапанах редукторного типа, которые находятся в распределительных шкафах воздушных выключателей направленных на подачу воздуха в вентиляционную систему внутренних полостей опорной изоляции. По этой причине нагревательные приборы в щитах автоматики воздушных выключателей необходимо подключать уже при +5°С окружающей среды. Вторую секцию обогрева включают при падении температуры ниже -30 °С.

Требования к использованию обогревателей шкафов автоматики распространяется не только на аппаратуру, установленную на открытых площадках, но и на оборудование, помещенное в отдельно стоящие металлические шкафы (к примеру, КРУН).

Нагрев шкафов КРУН специальными обогревательными устройствами нужен также и для предотвращения выпадения росы на изоляционные поверхности находящиеся внутри шкафа. Выпадение росы на изоляционные материалы спровоцировали множество аварийных ситуаций, так как в КРУН обычно применяют внутреннюю изоляцию с уменьшенной сравнительно с изоляцией наружной установки длиной пути токов утечки на поверхности изолирующих материалов. Внутренняя изоляция априори не рассчитана на появление конденсата или выпадение росы, а металлический корпус оборудования обычно недостаточно герметичен и не имеет защиты от возникновения влаги попавшей извне. По этой причине, обогреватели шкафов автоматики требуется подключать даже при плюсовых температурах в периоды возможного выпадения росы и в условия повышенной влажности окружающей среды.

Включение в работу нагревателей может осуществляться в ручном режиме дежурным персоналом или за счет автоматических устройств управления. Температурные значения при которых нагревателей начинает функционировать определяются на основе местной инструкции и зависят от вида шкафа управления и автоматики, климатических условий и опыта эксплуатации.

Нагрев шкафов автоматики от компании Элемаг-ТПК

При снижении температуры масла боковых выключателей до - 25 °С наблюдается снижение двигательной скорости контактов при операции отключения на 20 %. Сильное снижение скорости движения контактов приводит к длительному обтеканию током шунтирующих резисторов, их поломке, перекрытию изоляции внутри бака и взрыву.

Существует масса случаев, при которых аварийные повреждения выключателей случались из-за перекрытий внутри баков. Обычно такой казус происходит при включении электрического подогрева через 5 и более часов в условиях -25 °С мороза. В таких условиях происходит скопление и замерзание влаги на дне бака и в процессе нагрева немного оттаявшие части льда всплывают на поверхность.

Влага в баки попадает из-за неплотно прилегающих крышек приводов, плохо уплотненных креплений приводных механизмов к бакам, выводов от трансформаторов тока.

Компания "ЭЛЕМАГ ТПК" предлагает высококачественные нагреватели шкафов автоматики и управления под заказ для любого типа оборудования. Наши специалисты на основе полученных данных при заказе проведут полный расчет нагревателя (ОША) под параметры конкретного шкафа и после утверждения заказчиком осуществят его сборку. Помимо стандартных решений обогревателей шкафов автоматики мы предлагаем рассмотреть нестандартные варианты оснастки отдельных элементов, с которыми можно ознакомиться у нас на сайте.

Заказать нагреватель шкафа автоматики и управления от "ЭЛЕМАГ ТПК" можно заполнив форму на сайте или прозвонив по указанным номерам телефона. Работаем со всеми регионами России.

Термостаты. Что такое термостат и как он работает?

Вам слишком жарко? Тогда вам захочется охладиться. Вам слишком холодно? Значит нужно согреться. Наши тела - это удивительные саморегулирующиеся механизмы, которые могут постоянно приспосабливаться, чтобы поддерживать температуру в пределах 37 ° C. Но остальной мир не так устроен. Если мы хотим, чтобы в наших домах поддерживалась более или менее постоянная температура, мы должны постоянно включать и выключать обогреватели - или, в качестве альтернативы, полагаться на умные устройства, называемые термостатами, которые сделают эту работу за нас. Что они собой представляют и как работают? Заглянем внутрь!

Простой механический термостат для ОША

На фото: простой механический термостат, устанавливаемый в шкафах управления и автоматики для контроля температуры нагрева воздуха от обогревателей ОША. На нем демонстрируется текущая температура в градусах Цельсия. После того, как вы установили температуру, термостат должен включать и выключать обогрев по мере необходимости, чтобы поддерживать в шкафу нужную температуру. На практике такой термостат не включается и не выключается при одной температуре, а переключается между небольшим диапазоном температур по обе стороны от установленного вами значения.

Что такое термостат?

Наверняка вы где-либо уже видели терморегулятор, размещенный на стене или бытовой технике для управления системой отопления . И хотя на самом устройстве указывается температура, это не термометр . Это называется термостатом , современным словом на основе два древних греческих: термо- (значение тепла ) и Статос (что означает стоячие и связанный с такими словами , как стаз, статус - кво, и статическим электричеством, означающим оставаться таким же). Уже по названию мы можем сказать, что термостат - это то, что «сохраняет тепло одинаково»: когда температура контролируемого отопления или технологического процесса слишком низкая, термостат включает отопление, поэтому температура быстро повышается; как только температура достигает установленного нами уровня, термостат отключает нагрев. Для контроля охлаждения термостат работает аналогично: пока температура больше установленной, охладители работают, как только достигается граничное значение, они отключаются.

Давайте просто проясним разницу: термометр - это то, что измеряет температуру; термостат - это то, что пытается поддерживать температуру (поддерживать ее примерно такой же).

Электронный термостат STC-1000

На фото: электронный термостат STC-1000 с цифровым показанием температуры. Этот работает немного иначе, чем механический на верхнем фото. Дисплей является частью программатора. Данные о температуре поступают с термопары, которая постоянно измеряет температуру в контролируемой среде, а затем терморегулятор включает и выключает нагрев или охлаждение, чтобы поддерживать его в пределах 1 ° C от установленной вами температуры.

Как работают термостаты

Так как же работает термостат? Большинство вещей становятся больше при нагревании и меньше при остывании (заметным исключением является вода : она расширяется при нагревании и при замерзании). Механические термостаты используют эту идею (которая называется тепловым расширением) для включения и выключения электрической цепи. В двух наиболее распространенных типах используются биметаллические ленты и газонаполненные сильфоны.

Биметаллические термостаты

Традиционный термостат состоит из двух частей, состоящих из разных металлов, скрепленных вместе, образуя так называемую биметаллическую полосу (или биметаллическую пластину). Пластина работает как мост в электрической цепи, подключенной к вашей системе нагрева. Обычно «мост не работает», пластина пропускает электричество по цепи, и нагрев включен. Когда пластина нагревается, один из металлов расширяется больше, чем другой, поэтому вся полоса очень немного изгибается. В конце концов, он так сильно изгибается, что разрывает цепь. «Мост установлен», мгновенно отключается электричество, отключается нагрев, и температура начинает снижаться.

Но что происходит потом? По мере охлаждения пластина тоже остывает и возвращается к своей первоначальной форме. Рано или поздно он снова включается в цепь и снова заставляет электричество течь, и нагрев снова включается. Регулируя шкалу температуры, вы изменяете температуру, при которой контур включается и выключается. Поскольку металлической полосе требуется некоторое время для расширения и сжатия, нагрев не включается и выключается постоянно каждые несколько секунд, что было бы бессмысленно (и весьма раздражающе). К примеру, при отоплении дома, в зависимости от того, насколько хорошо изолирован ваш дом и насколько холодно на улице, может потребоваться час или больше, чтобы термостат снова включился после того, как он выключился. А встроенные терморегуляторы в обогревателях шкафов управления ОША, которые служат для поддержания температуры нагревателя в безопасном диапазоне, могут включаться чаще.

Как биметаллический термостат включается и выключается

Анимация, показывающая, как работает термостат

  1. Внешний диск позволяет установить температуру, при которой термостат включается и выключается.
  2. Циферблат соединен цепью с датчиком температуры (биметаллическая полоса, показанная здесь красным и синим), который включает и выключает электрическую цепь путем изгиба.
  3. Биметаллическая («двухметаллическая») пластина состоит из двух отдельных металлических полос, скрепленных между собой: кусок латуни (синий) прикручен к железному элементу (красный).
  4. При нагревании железо расширяется меньше, чем латунь, поэтому биметаллическая полоса изгибается внутрь при повышении температуры.
  5. Биметаллическая пластина образует часть электрической цепи (серый путь). Когда полоска остыла, она прямая, поэтому она действует как мост, по которому может течь электричество. Включен контур и нагрев. Когда полоса более горячая, она изгибается и разрывает цепь, поэтому электричество не может течь. Теперь цепь отключена.

Газонаполненный сильфон

Проблема с биметаллическими пластинами заключается в том, что они долго нагреваются или охлаждаются, поэтому они не быстро реагируют на изменения температуры. Альтернативная конструкция термостата определяет изменения температуры быстрее с помощью пары металлических дисков с газонаполненным сильфоном между ними. Диски имеют большую площадь поверхности, поэтому они быстро реагируют на тепло, и они гофрированы (на них есть выступы), что делает их упругими и гибкими. Когда контролируемая среда нагревается, газ в сильфоне расширяется и раздвигает диски. Внутренний диск нажимает на микровыключатель в центре термостата, выключающий электрическую цепь (и нагрев). По мере охлаждения помещения газ в сильфоне сжимается, и металлические диски снова сжимаются. Внутренний диск отходит от микровыключателя, включение электрической цепи и повторное включение нагрева. Вы также можете найти термостаты с гофрированными сильфонами в других областях применения (например, в старых автомобилях), и вместо газа они иногда заполняются летучей (низкокипящей) жидкостью, такой как разбавленный спирт; точное химическое вещество внутри зависит от диапазона температур, в котором они должны работать.

Внутренняя часть газонаполненного сильфонного термостата

Фото: термостат регулирует температуру с помощью пары металлических дисков, разделенных газонаполненными сильфонами, которые нажимают на микровыключатель. При повороте шкалы температуры диски перемещаются ближе или дальше от микровыключателя в центре. Это означает, что газовый сильфон должен более или менее расшириться, чтобы включить или выключить электричество, эффективно повышая температуру, при которой срабатывает переключатель (и комнатную температуру).

Восковые термостаты

Подводя итог тому, что мы уже определили, вы можете увидеть, что все механические термостаты (все неэлектронные) используют вещества, которые изменяют размер или форму с повышением температуры. Таким образом, битметаллические термостаты полагаются на расширение металлов по мере их нагрева, в то время как газовые сильфоны работают за счет расширения газов. Некоторые термостаты идут дальше и используют изменение состояния вещества с жидкости на газ. Восковые термостаты, вероятно, являются наиболее распространенным примером, и вы найдете их в домашних радиаторных клапанах, автомобильных двигателях и душевых смесителях.. Они используют маленькую пробку воска внутри запечатанной камеры. При изменении температуры воск плавится (меняет состояние с твердого на жидкое), сильно расширяется и выталкивает стержень из камеры, который включает или выключает что-то (управление системой охлаждения двигателя в автомобиле или регулирование смеси горячего и холодной воды в душе, чтобы тело не закипело, как омар). Восковые термостаты имеют тенденцию быть более надежными и долговечными в экстремальных условиях внутри двигателя автомобиля.

Анимация, показывающая, как восковой термостат открывается и закрывается

Фото1: Как работает восковой термостат. Воск (синий) находится внутри запечатанной камеры (серый), в которой находится металлическая игла (серебряная). При повышении температуры воск плавится, расширяется и выталкивает иглу из камеры (желтые стрелки). Поднимающаяся стрелка включает или выключает любое устройство, которым управляет термостат. Пружина (не показано) тянет весь механизм снова, когда температура падает. Фото2: вот внутренняя часть регулятора душа со смесителем, показывающая, как на самом деле выглядит восковой термостат. Маленький черный цилиндр посередине - это восковой термостат, который перемещается внутрь и наружу, регулируя подачу горячей и холодной воды, поддерживая более или менее постоянную температуру смешанной воды (выходящей из душевой лейки). На этой фотографии показана пружина, которая отводит термостат назад, когда температура падает, а восковой термостат снова сжимается.

Термостатические радиаторные клапаны

Термостат клапана радиатора

На фото: этот термостатический клапан регулирует поток горячей воды через радиатор, предотвращая перегрев помещения. Если в комнате становится слишком жарко, срабатывает восковой термостат, который приводит в действие клапан, перекрывая поток воды через радиатор до тех пор, пока температура снова не упадет.

Температурные клапаны, установленные на радиаторах центрального отопления, обычно используют восковые термостаты. Когда радиаторы нагреваются до установленного вами уровня, восковые клапаны расширяются и уменьшают поток воды через радиатор, пока температура снова не упадет. В сочетании с комнатными термостатами такие клапаны могут защитить ваш дом от перегрева - и это хороший способ как сэкономить энергию и деньги, так и внести свой вклад в борьбу с глобальным потеплением .

Цифровые электронные термостаты

Более современные цифровые терморегуляторы не имеют подвижных частей, измеряющих температуру, и вместо этого они опираются на данные электронных температурных датчиков сопротивления – термопар.

Электронные терморегуляторы имеют жидкокристаллический дисплей, на который выводится температура текущая и запрограммированные параметры. Некоторые из них имеют кнопки для настройки или же сенсорный экран.

Для управления нагревом и охлаждением в цифровых электронных терморегуляторах используется реле или полупроводник, к примеру, симистор. Датчики температуры (термопары) обычно идут в комплекте с цифровыми терморегуляторами.

Недорогим и в то же время достаточно качественным примером цифрового терморегулятора является популярный современный терморегулятор STC-1000. Он очень прост в настройке, имеет жк дисплей и 4 кнопки для программирования параметров. Данные температуры поступают от термопары, которая также входит в комплект.

Есть терморегуляторы, которые функционируют на основе не одного, а нескольких термодатчиков, анализируя показатели температуры с них. К примеру, если вам нужно контролировать температуру радиатора для отопления в комнате, один из термодатчиков может быть настроен на поддержание батареи на определенном уровне температуры, а второй на определенную температуру воздуха в самой комнате. Таким образом можно не допустить как перегрева батареи, так и оптимальной температуры воздуха.

На сайте компании Элемаг вы найдете большой выбор терморегуляторов как механического, так и цифрового типов. Для подбора наиболее подходящего термостата для вашей системы нагрева или охлаждения обращайтесь к нашим специалистам по телефону и получите бесплатную квалифицированную консультацию по данной теме.

Способы регулирования температуры в шкафах управления

В современных условиях для промышленных процессов все больше внимания уделяется проблемам экологии и способам эффективного расхода электроэнергии. Поэтому теперь при выборе оборудования руководствуются также таким критерием, как энергоэффективность.

С развитием промышленности оборудование становится все более сложным и для контроля и управления им в распределительных шкафах используется более мощное оборудование. В связи с повышением тепловыделения от электроприборов в шкафу управления, задача обеспечения оптимального микроклимата становится все более значимой. В данной статье мы рассмотрим наиболее эффективные решения для обеспечения правильной температуры в распределительных шкафах автоматики.



Зачем нужен шкаф управления и автоматики?

Основной задачей электротехнического щита управления является защита электроприборов и компонентов оборудования от влияния температуры, влажности, пыли, агрессивных сред и прочих внешних факторов.

Если в шкафу управления недостаточная защита от негативного воздействия окружающей среды, электроприборы в нем могут выйти из строя, что приведет не только к необходимости обновления дорогостоящих компонентов, но и к поломке и остановке всей производственной линии. Поэтому главная задача щита управления – это обеспечение долгосрочной защиты электрооборудования и компонентов.

В зависимости от типа окружающей среды необходимо применять шкафы управления с определенными степенями защиты. Коды степеней защиты обозначаются цифрами, основные обозначения степеней защиты можно посмотреть в таблице:

Степени защиты IP от проникновения


Степени защиты IP от воды


Зачем нужно охлаждение электротехнического шкафа автоматики?

Наряду с отрицательным влиянием повышенной влажности и пыли, перегрев является наиболее частой причиной выхода из строя электронных компонентов в шкафах управления.

Если сравнивать современные шкафы автоматики и те, которые изготавливались несколькими годами ранее, сейчас тепловыделение отдельных элементов в шкафу управления становится намного меньше, чем раньше. Однако вместе с этим в щитах автоматики сейчас помещается намного большее количество различных компонентов, и из-за этого общее тепловыделение шкафа автоматики повысилось примерно на 50-60%.

При повышенном тепловыделении в шкафу повышается температура воздуха, что приводит к перегреву, уменьшению срока службы устройств. При превышении оптимальной температуры даже на 10 градусов, срок службы устройств уменьшается вдвое (смотрите уравнение Аррениуса).


Типы отвода тепла

Для обеспечения беспрерывной работы производственного оборудования очень важным является способ отвода тепла из электротехнического шкафа управления.

Есть такие варианты теплопередачи:

Наиболее частые типы передачи тепла, которые встречаются в шкафах управления, это конвекция и теплопроводность. Наличие данных типов теплопередачи зависит от типа шкафа управления (открытый или закрытый), его герметичности и прочих факторов.

В шкафах управления открытого типа избыточное тепло отводится при помощи воздушного потока за пределы шкафа, таким образом, это теплопроводность. Когда щит управления закрыт, то отвод тепла может осуществляться лишь через стенки корпуса – конвекцией.

Автоматика управления обогревом кровли

Датчик наличия осадков

В настоящее время правильно спроектированная система обогрева кровли и элементов водосточной системы является такой же важной составляющей нормального функционирования здания, как система вентиляции или водоснабжение. Верно подобранная система обогрева – гарантия не только долговечности кровли, труб и лотков, отсутствия проблем с водоотведением, но и безопасности людей, которая была бы под вопросом из-за намерзающихvсосулек.

Для обогрева кровли и водостоков используют системы на основе греющего кабеля. Принцип работы системы обогрева заключается в том, что кабель, нагревая поверхность, выполняет функцию её антиобледенения, то есть защиты от образования наледи на элементах кровли и водостоках.

Ошибка №1 . Греющий кабель нужен для того чтобы топить образовавшийся лед.

Это не так. Греющий саморегулирующийся кабель не растопит наледь или снег, его мощности в 30 или 40 Вт/м для этого попросту недостаточно. Задача кабеля предотвращать саму возможность образования льда на кровле и в водостоках, а также обеспечить беспрепятственный сток талой воды.

Чтобы добиться включения кабеля именно в те периоды, когда возникает опасность наиболее вероятного образования льда, требуется автоматическое управление, т.е. система управления обогревом.

Система автоматического управленияa обогревом кровли – это комплект устройств, обеспечивающих включение и отключение обогрева с целью установления оптимального режима работы антиобледенительной системы.

Система автоматического управления обогревом отслеживает температурные характеристики окружающей среды и наличие осадков и включает нагревательный кабель в периоды возможного обледенения.

Без автоматического управления эффективность работы греющего кабеля на элементах кровли и водосточной системы значительно снижается , так как даже самый внимательный пользователь, следящий за погодными изменениями, не всегда сможет поймать момент начала застывания воды в трубах. А постоянно работающий нагревательный кабель приведет к перерасходу электроэнергии и станет значительной статьёй расхода в бюджете.

Ошибка №2 . Для греющего саморегулирующегося кабеля не нужно управление.

Эффект саморегулирования заключается в свойстве кабеля изменять свою мощность при изменении температуры воздуха. Но самостоятельно включаться/отключаться кабель не может.

Назначение системы управления обогревом кровли

  • Правильной, надежной и эффективной работы системы электрообогрева;
  • Экономии электроэнергии;
  • Безопасности людей при эксплуатации обогрева за счет автоматов защиты от коротких замыканий и тока утечки, установленных в шкафу управления;
  • Защиты кровельного покрытия и водосточной системы от перегрева.

Состав системы управления обогревом кровли

Схема управления обогревом кровли

Состав системы электрообогрева кровли

Нагревательный элемент

Нагревательный элемент

Чаще всего это греющий саморегулирующийся кабель SRG 30-2CR-UV мощностью 30 Вт/м или Samreg 40-2CR-UV мощностью 40 Вт/м с оболочкой защищенной от ультрафиолетовых лучей, реже резистивная нагревательная секция Gulfstream ROOF. Подробную информацию о подборе греющего кабеля можно найти в нашей статье Греющий кабель для кровли и водостоков.

Ошибка №3 . Использование для обогрева водостоков саморегулирующийся кабель 10-16 Вт/м.

Так как водосточная система не теплоизолируется, это слишком маленькая мощность для обогрева кровли. Такой маломощный кабель нужно укладывать в несколько ниток, иначе он принесет больше вреда, чем пользы.

Распределительная силовая коробка

Это распаячная коробка уличного исполнения, назначение которой заключается в объединении секций греющего кабеля, а также подвод питания к ним.

Распределительная силовая коробка

Коробки отличаются друг от друга:

  1. назначением;
  2. размерами;
  3. количеством клемм;
  4. номинальным током клемм;
  5. количеством сальников для ввода кабеля.

Коробка для подключения одной нагревательной секции - КРОН-П1-1/1

Коробка для подключения одной нагревательной секции - КРОН-П1-1/1

  • Габариты 150х110х70, IP55
  • Клеммы 10 мм² – 4 шт.
  • Сальники MG25 – 2 шт.

Коробка для подключения трех нагревательных секций - КРОН-П2-1/3

Коробка для подключения трех нагревательных секций - КРОН-П2-1/3

  • Габариты 190х140х70, IP55
  • Клеммы 10 мм² – 7 шт.
  • Сальники MG25 – 4 шт.

Проходная коробка для подключения трех нагревательных секций - КРОН-П2-2/3

Проходная коробка для подключения трех нагревательных секций - КРОН-П2-2/3

  • Габариты 190х140х70, IP55
  • Клеммы 10 мм² – 7 шт.
  • Сальники MG25 – 5 шт.

Контрольная коробка

Это также распаячная коробка уличного исполнения, в которую подключается различные датчики: датчик температуры, датчик осадков, датчик воды. С одной стороны к коробке от шкафа управления подводится контрольный кабель типа КВВГнг 4х1 или КВВГнг 7х1 в зависимости от количества и типа подключаемых датчиков. С другой стороны к коробке на клеммы подключаются провода датчиков.

Коробка для подключения датчика температуры - КРОН-П0-1/1

Коробка для подключения датчика температуры - КРОН-П0-1/1

  • Габариты 100х100х50, IP54
  • Клеммы 2.5 мм² – 7 шт.
  • Сальники MG25 – 2 шт.

Коробка для подключения датчиков наличия осадков и воды - КРОН-П0-1/2

  • Габариты 100х100х50, IP54
  • Клеммы 2.5 мм² – 7 шт.
  • Сальники MG25 – 3 шт.

Силовые и контрольные кабели

Служат для передачи и распределения электрической энергии. В системе обогрева силовые кабели используют, во-первых, как «холодный конец» греющей секции, во-вторых, для подключения клеммных коробок к шкафу управления. Количество жил и сечение кабеля зависит от мощности греющей секции, количества фаз и способа подключения.

Типы часто применяемых силовых кабелей: ПВС 3х1.5, КГнг 3х2.5, ВВГнг 3х2.5, ВВГнг 5х4, ВВГнг 5х6

Контрольные кабели используют для подключения к шкафу управления контрольных коробок с датчиками.

Для подключения датчика температуры применяют кабель КВВГнг 4х1 или КВВГнг 4х1.5;

Для подключения датчика осадков и датчика воды (обычно подключаются в одну клеммную коробку) – кабель КВВГнг 7х1.

Датчик температуры

Датчик температуры KTY-81-110

Рис. Датчик температуры KTY-81-110

Служит для непрерывного измерения температуры окружающей среды. Принцип работы датчика основан на изменении сопротивления его чувствительного элемента в зависимости от температуры. Как правило, для обогрева кровли используются датчики типа KTY-81-110 (в составе терморегулятора АРТ19), TST01 (с метеостанцией РТМ-2000) или ST22 (с терморегулятором ICEFREE TS-16). Устанавливается датчик температуры воздуха в месте, защищенном от попадания прямых солнечных лучей. При выборе датчика нужно убедиться, что он подходит к используемому терморегулятору или термостату.

Ошибка №4 . Неправильная установка датчика температуры.

Система обогрева может работать некорректно из-за неправильной установки датчика температуры. Помимо защиты от прямого солнца датчик нельзя устанавливать в зоне действия вентиляции.

Датчик наличия осадков

Датчик осадков TSP02

Рис. Датчик осадков TSP02

Служит для определения наличия осадков на обогреваемой поверхности. При попадании на датчик осадков в виде дождя или снега контакты в терморегуляторе замыкаются, и происходит включение обогрева.

Обычно применяется датчик осадков TSP02, используется совместно с контроллером РТМ-2000.

Датчик воды

Датчик воды TSW01

Рис. Датчик воды TSW01

Служит для контроля наличия влаги на поверхности с обогревом. Датчик воды устанавливается в месте наиболее вероятного схода воды, то есть в углублениях, где возможно скопление дождевой воды или растаявшего снега, чаще всего – в лотках и желобах. При высыхании поверхности датчик подает соответствующий сигнал на контроллер РТМ-2000, который размыкает цепь и отключает обогрев.

Терморегулятор

Терморегулятор АРТ-19

Рис. Терморегулятор АРТ-19

Это основной управляющий орган в антиобледенительной системе. Терморегулятор (или термостата) представляет собой корпус с кнопками или ручками регулировки температурного диапазона и индикаторными светодиодами или дисплеем, внутри корпуса находится электронный блок, предохранитель, клеммники для подключения кабелей.

Терморегулятор включает нагрузку только внутри заданного диапазона температур, обычно это -10°С…+5°С. Именно этот температурный диапазон считается самым «благоприятным» для образования наледи. При более низких температурах снег не тает, поэтому обледенения не происходит.

Терморегулятор уличного исполнения АРТ-19 IP65

Рис. Терморегулятор уличного исполнения АРТ-19 IP65

Более сложные системы управления помимо температурного диапазона реагируют на наличие или отсутствие осадков, например контроллеры РТМ-2000 или TР-МЕТЕО, включая обогрев более избирательно, тем самым сводя на минимум нецелесообразную работу греющего кабеля и экономя тем самым электроэнергию.

Терморегулятор обычно устанавливается в шкафу управления вместе с контактором, диф.автоматом и вводным автоматическим выключателем.

По способу крепления различают терморегуляторы щитового исполнение – монтируются на дверцу ШУ, и din-реечного исполнения – установка в ШУ на din-рейку.

Для систем обогрева малой мощности допустимо использовать терморегуляторы уличного исполнения АРТ-19 IP65, или термостаты ICEFREE TS-16 (40). Такие терморегуляторы предназначены для эксплуатации во влажных помещениях или на открытом воздухе при температурах до -40°С, например непосредственно на крыше дома. Корпус прибора имеет степень защиты оболочки IP65 и полностью защищает внутренние элементы от попадания влаги и осадков.

Шкаф управления

Шкаф управления обогревом кровли
Корпус шкафа управления

Представляет собой корпус, внутри которого расположен контроллер и пуско-регулирующая аппаратура. Шкаф управления обогревом кровли состоит из:

  • корпуса;
  • вводного автомата;
  • диф. автомата или УЗО;
  • контактора;
  • терморегулятора;
  • реле;
  • переключателя;
  • индикационных ламп;
  • клемм для подключения кабелей.

Помимо основных элементов шкаф может включать в себя дополнительные приборы: например, обогреватель и термостат, если требуется обогрев шкафа при эксплуатации до -60°С, или устройства плавного пуска или реле времени, если требуется уменьшение пусковой мощности греющего кабеля.

Для систем обогрева кровли используются металлические или пластиковые щиты , в зависимости от места расположения шкафа.

В шкафах управления обогревом кровли реализована возможность выбора автоматического или ручного режима управления.

Каждый шкаф управления индивидуален и разрабатывается под конкретную систему обогрева. При поставке шкафа вы получаете его принципиальную или однолинейную схему, схему внешних подключений к шкафу, а также паспорт с инструкцией по эксплуатации ШУ.

Шкафы управления обогревом кровли

Шкаф управления ШУЭОк-1/1-Т911-160607

  • Способ установки: настенный
  • Назначение: кровля
  • Материал корпуса: пластик
  • Размещение: в помещении
  • Тип дополнительного оборудования: нет
  • Взрывозащита: нет

Особенности систем управления обогревом кровли

В зависимости от выдаваемой мощности системы обогрева кровли можно условно разделить на 3 группы, каждая из которых имеет свои особенности управления. Чтобы рассчитать нагрузку греющего кабеля на электросеть, или номинальную мощность обогрева, нужно количество греющего кабеля умножить на его мощность при температуре +10°С .

Системы обогрева малой мощности – до 2кВт

Для управления достаточно простейшего терморегулятора (термостата), к которому греющий кабель можно подключить напрямую. Возможно ручное управление с помощью автоматического выключателя, а в случаях, когда стартовый ток нагревательной секции не превышает 16А, допускается подключение кабеля в розетку. Энергопотребление таких систем схоже с бытовыми нагревательными электроприборами, такими как чайник или утюг.

Системы обогрева средней мощности – от 2 до 15 кВт

Управление осуществляется по температуре окружающего воздуха терморегулятором, как правило, установленным в ШУ совместно с другой пускорегулирующей аппаратурой. К терморегулятору нагрузка в виде греющих кабелей подключается уже не напрямую, а через контактор (магнитный пускатель). Дело в том, что исполнительное реле внутри терморегулятора способно коммутировать только небольшие токи, обычно не более 16А, что значительно меньше максимально допустимого тока греющей секции, особенно если учесть такое неприятное свойство саморегулирующихся кабелей, как 3-5кратный бросок тока при включении. Использование в цепи гальванической развязки, то есть контактора, снимает это ограничение и даёт возможность управления большими мощностями обогрева.

Из-за значительного энергопотребления таких систем возникает потребность в экономии электроэнергии. Для этого применяют контроллеры с многоканальным независимым управлением отдельными линиями обогрева, а также управление по температуре воздуха и наличию осадков. Это способы делают управление более точным и сокращают периоды нерациональной работы обогрева.

Системы обогрева большой мощности – от 15кВт и выше

Для таких систем характерно большое количество линий обогрева, контакторов, диф.автоматов, реле, контроллеров с независимыми каналами управления, а также различных датчиков температуры, осадков, воды, влажности. Управления строится по тем же законам, что и управление системой средней мощности, но появляются некоторые особенности.

При проектировании систем управления большой мощности важную роль играет уменьшение стартовых токов при включении обогрева. Большие пусковые токи приводят к удорожанию шкафа управления, возможному нарушению принципа селективности в электросети, скачкам тока, которые негативно сказываются на качестве электроэнергии и другим неприятным последствиям. К тому же часто мощность, выделенная на электрообогрев здания, ограничена электроснабжающей организацией или самим Заказчиком.

Для уменьшения пусковых мощностей системы электрообогрева кровли применяется два основных способа:

  • ступенчатое включение групп обогрева с временным интервалом;
  • использование устройств плавного пуска.

Подробнее о способах уменьшения пусковой мощности можно узнать в статье «Пусковой ток греющего кабеля».

Для систем управления большими мощностями обогрева кровли в техническом задании Заказчиком выставляются более строгие требования. Наиболее часто встречаются следующие требования:

Читайте также: