Номинальный ток шкафа это

Обновлено: 07.01.2025

Монтаж и конструкция распределительных щитов и устройств защиты

Электрическая сеть любого типа (производственных, общественных, административных и других зданий) имеет важнейшую составую часть, называемую распределительным щитом. В этом устройстве сосредоточены все автоматические выключатели, устройства защитного отключения и прочая дополнительная аппаратура.

1. Распределительные щиты, общие сведения

Распределительные устройства современных конструкций — вводные устройства, пульты, щитки и др. — являются законченными полнокомплектными устройствами для приема и распределения электроэнергии, управления и защиты от перегрузок и коротких замыканий. В их комплектность входят коммутационные и защитные аппараты, измерительные приборы, иногда аппаратура автоматики и вспомогательные устройства. При использовании комплектных устройств значительно сокращаются трудозатраты на монтаж оборудования и повышаются рабочие качества сетей.

Щиты бывают: распределительные, управления, релейные, сигнализации и контроля. Это металлические конструкции, скомплектованные из отдельных панелей, пультов или шкафов, где размещены приборы и аппараты, предусмотренные проектом, а также сборные шины и проводки вторичных цепей для присоединения установленной аппаратуры. Рассмотрим некоторые виды щитов.

Распределительные щиты применяются для приема и распределения электроэнергии в сетях напряжением до 1000 В. В зависимости от конструкции они делятся на однои двухстороннего обслуживания, панельные и шкафные.

Распределительные щиты одностороннего обслуживания (прислонного типа) устанавливаются непосредственно у стен электропомещения и обслуживаются с лицевой стороны, то есть все приводы и рукоятки управления вынесены на фасадную часть. Для осмотра, обслуживания и ремонта на обратной стороне панели имеется одностворчатая дверь. По сравнению с иными конструкциями прислонные щиты занимают меньшую площадь и более экономичны.

Подобные щиты (ЩО) выпускаются нескольких типов и изготовляются в открытом и закрытом исполнениях. Щиты первого типа собирают из панелей и устанавливают в специальных электротехнических помещениях, второго — из шкафов с уплотнениями и размещают непосредственно в рабочих помещениях, например в цехах. Щиты одностороннего обслуживания комплектуют из стандартных панелей, которые делятся на линейные, вводные и секционные. Линейные предназначены для присоединения к сборным шинам потребителей электроэнергии, вводные — для присоединения шинных и кабельных вводов, секционные — для секционирования (разобщения) сборных шин на номинальные токи присоединений. Боковые стороны крайних панелей щита закрывают торцевыми панелями с дверью, выполняющей защитные и декоративные функции.

Панели всех видов обладают единым каркасом из гнутых стальных листов толщиной 2–3 мм. На нем устанавливают защитные и коммутационно защитные аппараты, а также измерительные приборы. Все детали для крепления аппаратов тоже изготавливают из стальных гнутых профилей. Ошиновку выполняют плоскими алюминиевыми изолированными шинами, размещенными в верхней части щита. Основные типовые панели выпускают шириной 800, высотой 2160 (без съемного карниза 1950) и глубиной 550 мм.

Рубильники и предохранители на линейных панелях монтируют на общей плите, причем нижние стойки рубильника должны быть совмещены с верхними стойками предохранителей. Это сокращает размер плиты по высоте. Такие плиты с аппаратами до 400 А устанавливаются в два ряда. Рукоятки приводов размещаются на стойках панели по обе стороны дверного проема, а рукоятки автоматов выводятся на фасад щита через прямоугольные отверстия в двери панели.

В настоящее время широко используют щиты ЩО-70 (рис. 1, а, б), панели и шкафы которых могут иметь разнообразные схемы, позволяющие монтировать предусмотренные проектом распределительные устройства. Как панели, так и шкафы ЩО-70 имеют габаритные размеры 2200 × 600 × (800–1100) мм и максимальный ток присоединения 2000 А.

Распределительные щиты двустороннего обслуживания (свободностоящие) удобнее в эксплуатации. Правда, они требуют больше места для размещения. Массово применяются щиты из панелей ПРС (см. рис. 1, в). Эти щиты не имеют защиты сверху и сзади, поэтому их устанавливают только в электропомещениях. Панели ПРС по высоте, глубине и внешнему виду аналогичны панелям щитов управления и защиты, что облегчает их совместное комплектование на подстанциях и в машинных залах. Они выпускаются шириной 600 и 800, высотой 2400 и глубиной 550 мм.

Распределительные щиты двухстороннего обслуживания напряжением до 1000 В комплектуют из типовых панелей ПРС. Маркировку панелей, например ПРС-1-15, расшифровывают так: панель распределительная свободностоящая, устойчивость ошиновки 1, схема панели номер 15. Обслуживание, ремонт и присоединение аппаратуры производят с задней стороны панелей, за исключением панелей с автоматами, которые снабжены одностворчатой дверью. В панелях с аппаратами на номинальные токи 600 и 1000 А и автоматами на 400 А предусмотрены шинные сборки для присоединения нескольких кабелей.

Распределительные щиты двухстороннего обслуживания комплектуют также из типовых панелей ПД и шкафов ШД. Панели ПД более экономичны по расходу материалов, их удобнее изготавливать и обслуживать. Открытые сверху и сзади панели ПД устанавливают в электропомещениях, а шкафы ШД (рис. 2), защищенные сверху и сзади, — непосредственно в производственных помещениях. Щиты из панелей ПД и шкафов ШД являются комплектными устройствами, полностью скоммутированными и налаженными по требуемым схемам. Из этих панелей и шкафов можно комплектовать распределительные устройства для КТП. Сборные шины монтируют в верхней части с целью облегчения непосредственного присоединения к ним боковых выводов от трансформаторов. Аппараты защиты отходящих линий находятся на фасаде по высоте панелей в три ряда.

Панели ПД и шкафы ШД по назначению подразделяются на линейные, вводные и секционные. Высота всех панелей и шкафов — 2200, глубина — 550, ширина — 600, 800 и 1000 мм. Панели комплектуются блоками предохранитель — выключатель БПВ, выключатель БВ и автоматами на номинальные токи присоединений от 100 до 2000 А. В вводных и секционных панелях в закрытом шкафу размещают релейную аппаратуру АВР. Блок предохранитель — выключатель (рис. 3, а, б) является трехфазным коммутационно-защитным аппаратом, рассчитанным на номинальные токи до 1000 А с двойным разрывом цепи, выполненным совместно с приводом в виде одного аппарата — БПВ и БВ.


Рис. 1. Панели ЩО-70: a — на четыре присоединения, б — вводная с АВМ-20; в — ПРС: 1, 3 — рубильники с предохранителями; 2 — трансформатор тока; 4 — траверсы с изоляторами; 5 — переключатель; 6 — сигнальная лампа; 7 — карниз; 8 — выключатель АВМ


Рис. 2. Линейный шкаф серии ШД

В блоках БПВ включение и отключение осуществляется патронами предохранителей ПН-2. Они вмонтированы в рычажный привод так, что при движении последнего патронам сообщается прямолинейное движение. В блоке БВ вместо патронов-предохранителей установлены медные ножи. Корпус блока, выполненный из тонколистовой стали, состоит из фасадного обрамления (1) с дверцей, двух боковин и плиты (6) для установки изоляторов (5) со стойками (4) предохранителей (2). Привод размещен на корпусе.

Ящики и шкафы снабжены блокировкой, исключающей открывание дверцы при включенном положении и включение при открытой дверце. Предусмотрена также деблокировка блокировочного устройства, разрешающая включать и отключать предохранители для осмотра и проверки при открытой дверце.


Рис. 3. Блок предохранитель — выключатель серии БПВ: а — вид спереди; б — вид сбоку; 1 — фасадное обрамление с дверцей; 2 — предохранители; 3 — рукоятка привода; 4 — контактная стойка; 5 — изолятор; 6 — плита

Вводно-распределительные устройства (ВРУ) предназначены для приема и распределения электроэнергии и защиты отходящих линий в сетях трехфазного тока 380/220 В с глухозаземленной нейтралью. Наиболее распространены устройства ВРУ-70, панели и шкафы которых рассчитаны на различные схемы, позволяющие собирать предусмотренные проектом распределительные устройства.

Вводно-распределительные устройства имеют вид щитов однои двухстороннего обслуживания, а также бывают шкафного типа. Виды комплектации серий ВРУ весьма многообразны, например, в одной из серий имеются три типа вводных и 28 типов распределительных шкафов.

Типовой вводный шкаф представляет собой металлоконструкцию размером 1700 × 800 × 500 мм, на каркасе которой укреплена рама с аппаратурой. В типовом распределительном шкафу в отдельном отсеке в верхней части размещены аппаратура учета, коммутационные аппараты и управление освещением. Ввод проводов и кабелей осуществляется снизу, вывод — как снизу, так и сверху через верхнюю съемную крышку. В основании, на котором устанавливают ВРУ, прокладывают кабельные каналы или приямки. В нижних рамах каждой панели имеется по четыре отверстия для крепления болтами, штырями и т. п.

Панели между собой соединяют также болтами. После установки, проверки и окончательного закрепления панелей и устройства в целом корпуса панелей заземляют присоединением нулевых жил питающих кабелей к общей для всех панелей нулевой шине.

Вводно-распределительные устройства ВРУ-70, габаритные размеры которых 2000 × 500 × (450–1100) мм, имеют некоторые особенности. В них не предусмотрены верхнее и заднее закрытия. Панели ВРУ-70 (рис. 4) устанавливают в электропомещениях прислонно к стене и в производственном помещении снабжают запирающейся передней дверью и задней стенкой.


Панель ВРУ-70 с двумя переключателями: 1 — переключатель ПБ; 2 — предохранитель ПН-2; 3 — трансформатор тока; 4 — счетчик; 5 — испытательный щиток

Групповые распределительные щитки для освещения — это комплектные устройства для коммутирования и защиты осветительных сетей. Промышленность выпускает щитки для жилых зданий и общего назначения, используемые для производственных и гражданских зданий. Щитки для жилых зданий (этажные, квартирные и совмещенные) изготовляются в различных модификациях.

Этажный щиток (рис. 5) делают в виде рамы с шасси и дверью. На шасси укреплены защитные и коммутационные аппараты и зажимы с выполненными в пределах щитка соединениями. Квартирные щитки снабжены счетчиками и аппаратами защиты групповых линий квартирной сети, если они не вынесены на этажные щитки.


Рис. 5. Этажный щиток

Для электроустановок предприятий и общественных зданий выпускают: групповые щитки серии СУ-9400 (рис. 6, а), пункты С-9500 и распределительные пункты ПР-9000 (рис. 6, б) с однои трехполюсными установочными автоматами в защищенном исполнении, осветительные щитки серии ОП, ОЩ и ОЩВ в защищенном исполнении с автоматами на 6 и 12 групп, щитки серии УОЩВ на 6 и 12 однофазных групп, предназначенные для приема и распределения электроэнергии и защиты от перегрузок и токов короткого замыкания линий осветительных сетей 380/220 В с глухозаземленной нейтралью.

Щиток имеет вид стального ящика, внутри которого на съемном шасси смонтирована аппаратура.


Рис. 6. Щиток с установочными автоматами СУ-9400 (а) и силовой распределительный пункт ПР-9000 (б)

Рукоятки автоматов выведены на фасад щитка и закрыты дверцей. На боковой стенке корпуса есть болт для присоединения к сети заземления. Верхняя и нижняя крышки съемные. При вводе кабеля или трубы снимают крышку и продавливают в ней отверстия.

Силовые распределительные шкафы СП и ШРС служат для распределения электроэнергии и защиты цепей от перегрузок и коротких замыканий. На вводе шкафа предусматривают один либо два рубильника или рубильник с предохранителями, на отходящих линиях — предохранители.

1. Основные параметры щитков

Ниже приведены основные параметры распределительных щитов для различных потребителей согласно нормативным документам, действующим в настоящее время.

‰ Основные параметры щитков должны соответствовать указанным в табл. 1 и приводиться в технических условиях на щитки конкретных типов.

‰ По согласованию с потребителем изготовитель может поставлять отдельно оболочки квартирных щитков, рассчитанные на последующую установку в них потребителем защитных аппаратов и приборов тех типов, с которыми они были испытаны. Оболочки щитков должны сопровождаться подробной инструкцией по их заполнению, составленной на основе данных по испытанию щитков в аналогичных оболочках в объеме требований стандарта.

‰ Значения номинальных рабочих токов вводных аппаратов квартирных щитков и вводных аппаратов квартир в этажных щитках, а также защитных аппаратов линий групповых цепей должны устанавливаться в технических условиях на щитки конкретных типов в соответствии с нормативами (см. разд. 3 .

Большая Энциклопедия Нефти и Газа

Номинальные токи шкафов , указанные в заводском паспорте, соответствуют номинальному току установленных в шкафу выключателей, штепсельных разъединителей и ошиновке. Предельно допустимая нагрузка шкафа определяется номинальными данными установленных трансформаторов тока. [1]

Номинальные токи шкафов КРУН указаны при температуре окружающей среды до плюс 25 С. При температуре окружающей среды выше плюс 25 С максимальная токовая нагрузка шкафов должна быть снижена на 1 5 % на каждый градус повышения температуры сверх плюс 25 С. [2]

Номинальные токи шкафов СП и СПУ определяются номинальными токами аппаратов вводной части. [3]

КРУ с вакуумными выключателями серий КВ-1, K - W1, рассчитанные на номинальный ток шкафа до 1600 А и ток сборных шин до 3200 А, имеют значительно меньшие габариты, чем другие типы КРУ, и являются наиболее перспективными. [5]

КРУ с вакуумными выключателями серий КВ-1, К - Ю1, рассчитанные на номинальный ток шкафа до 1600 А и ток сборных шин до 3200 А, имеют значительно меньшие габариты, чем другие КРУ, и являются наиболее перспективными. [6]

Новые серии КРУ с маломасляным колонковым выключателем ВК-10 выпускаются типов КМ-1 и К-104 на номинальный ток шкафа до 1600 А и ток сборных шин до 3200 А. В шкафах этих серий применена частичная изоляция твердыми диэлектриками токоведущих частей и отсеков друг от друга. Шкафы имеют меньшие размеры и меньшую металлоемкость по сравнению с другими КРУ на такие же параметры. [7]

Новые серии КРУ с масляным колонковым выключателем ВК-10 с малым количеством масла выпускаются типов КМ-1 и К - Ю4 на номинальный ток шкафа до 1600 А и ток сборных шин до 3200 А. [8]

В качестве выключателей ввода применяются: ВА57 - 39 ( ВА52 - 39) с номинальным током - 630, 500, 400, 320 А, при этом номинальный ток шкафа - 500, 400, 320 и 250 соответственно; ВА57Ф35 с номинальным током - 250, 200, 160, 125, 100 А, при этом номинальный ток шкафа - 200, 160, 125, 100, 80 А соответственно. [10]

За ними следуют наборы цифр, которые расшифровываются так: первые - номинальное напряжение ( 6 или 10 кВ); вторые - номер схемы соединений главной цепи; третьи - номинальный ток шкафа , А; четвертые ( через дробь) - номер схемы вторичных соединений. [11]

Обозначение КРУЭ-6Э-400-10У2 ( ХЛ2) - расшифровывается следующим образом: К - комплектное; Р - распределительное; У - устройство; Э - для экскаваторов; 6 - номинальное напряжение, кВ; Э - электромагнитный привод вакуумного выключателя; 400 - номинальный ток шкафа , А; 10 - номинальный ток отключения выключателя, кА; У ( ХЛ) - климатическое исполнение; 2 - категория размещения. [13]

В качестве выключателей ввода применяются: ВА57 - 39 ( ВА52 - 39) с номинальным током - 630, 500, 400, 320 А, при этом номинальный ток шкафа - 500, 400, 320 и 250 соответственно; ВА57Ф35 с номинальным током - 250, 200, 160, 125, 100 А, при этом номинальный ток шкафа - 200, 160, 125, 100, 80 А соответственно. [15]

Что такое номинальный ток: определение и правила расчета

Фото 1

Важнейшая характеристика любого электрического устройства — номинальный ток (Iн).

С учетом его величины подбирают сечение токоведущих жил и автоматы защиты. Ниже речь пойдет о способах определения Iн и о том, как эта величина в дальнейшем используется.

Что это такое?

Iн (по ПУЭ — допустимый длительный ток) — это максимальная сила тока, допускающая сколь угодно работу электроустройства, не ограниченную во времени, то есть не приводящая к перегреву его токоведущих частей.

При протекании Iн соблюдаются два условия:

Фото 2

  1. уравновешиваются выделение тепла в проводниках и его отвод в окружающее пространство;
  2. выделяемое тепло не вызывает нарушения механических и химических свойств материалов, необходимых для работы устройства.

При превышении номинальной величины наблюдается дисбаланс в пользу выделения тепла: возрастает температура токопроводящих частей с последующим расплавлением изоляции.

Это чревато возгоранием и коротким замыканием. Металлические элементы теряют прочность и деформируются. Все составляющие системы электроснабжения, от генератора или источника тока до потребителя — при проектировании рассчитываются на определенный Iн. Это относится не только к устройствам, но и к проводам, соединительным элементам и пр.

Величина Iн указана в паспорте оборудования. Также этот параметр наряду с другими наиболее важными, часто проставляют на корпусе или шильдике устройства. Наиболее предпочтительны: 1; 1,6; 2,5; 4; 6,3 А и кратные им.

Фото 3


Помимо приведенных в нормативном документе значений, допускается использовать:

  • для трансформаторов: 15, 30, 60, 75, 120 А и кратные им;
  • для существующих устройств (по договоренности между заказчиком и изготовителем): 1400, 2240 А;
  • для преобразователей и трансформаторов для них (также по договоренности между изготовителем и заказчиком): 37,5, 75 и 150 кА.

Значения Iн стандартизированы и прописаны в ГОСТ 6827-76.

Принцип определения

Iн для жил проводов и кабелей определяют по таблицам «Правил устройства электроустановок», справочников и прочей специализированной литературы, в них учитываются:

Фото 4

  1. материал проводника (в основном указываются данные для меди и алюминия). Металлы и сплавы имеют разное сопротивление, а от него зависит баланс между выделением тепла (Q = I2 * R, где I — сила тока, R — электросопротивление проводника) и его отводом;
  2. площадь поперечного сечения жилы: от этого также зависит величина R;
  3. способ прокладки (открыто или в канале), число жил в кабеле и материал изоляции.

Для вычисления площади поперечного сечения жилы, измеряют штангенциркулем ее диаметр D, затем производят расчет по формуле: S = (3.14 * D2) / 4. Определив номинальный ток провода, сопоставляют его с номинальным током нагрузки.

Если последний окажется больше, берут провод с большей площадью сечения жил. Для определения номинального тока нагрузки, если таковая не указана на информационной табличке, необходимо знать формулы.

Приборы для измерения величин

Измерения электротехнических величин производятся специальными устройствами. Ток измеряется амперметром, напряжение — вольтметром, а мощность можно померить ваттметром, либо вычислить ее по формуле из значений первых двух значений.

С помощью онлайн-калькулятора можно вычислить не только ток при известной мощности потребителей, но и сечение нужных для электропроводки проводов.

Вычисление силы тока и параметров проводки по мощности потребителей электроэнергии — очень важная часть проектирования здания или квартиры, поэтому нужно подойти к этому взвешенно и ответственно.

Формула расчета

Далеко не на всех устройствах, особенно бытовых, прописывают значение номинального тока. Но вот мощность, как правило, известна. К примеру, на лампочке накаливания написано: 60W, 230 V.
Номинальный ток потребителей с активным сопротивлением (лампы накаливания, электрочайники, бойлеры и обогреватели) определяется из формулы расчета мощности: W = U * I, отсюда: I = W / U

Для однофазной сети U = 220 В, следовательно, номинальный ток 60-ваттной лампы составляет: I = 60 / 220 = 0,27 А Аналогично рассчитывают номинальный ток предохранителя — на его корпусе также указывается мощность.

Номинальный ток группы потребителей рассчитывают с учетом коэффициента неодновременности «к». Такой подход обусловлен тем, что приборы никогда не работают одновременно в течение продолжительного периода.

К примеру, если на кухне имеются следующие электроприборы:

Фото 5

  • плита: 2000 Вт;
  • чайник: 1500 Вт;
  • микроволновка: 800 Вт;
  • кофеварка: 1000 Вт.

И коэффициент неодновременности принят равным к = 0,7 (устанавливается для разных ситуаций нормативными документами), то номинальный ток группы потребителей составит: I = (2000 + 1500 + 800 + 1000) * 0,7 / 220 = 3710 / 220 = 16,86 А.

Несколько сложнее определяется номинальный ток потребителей с индуктивным сопротивлением, основную часть которых составляют трансформаторы (блоки питания, стабилизаторы) и электродвигатели (холодильник, пылесос и пр.).

Полная потребляемая электрическая мощность Wпол в техдокументации на оборудование не указывается — только механическая на валу двигателя (ГОСТ Р 52776-2007, п. 5.5.3.).

Чтобы определить Wпол, следует обратить внимание на два параметра, приводимые на шильдике:

Фото 6

  • коэффициент полезного действия (КПД). Параметр, характеризующий величину потерь на трение в подшипниках, перемагничивание магнитопровода и прочее. Представляет собой отношение выходной мощности Wвых (именно ее указывают в паспорте) к активной мощности Wа: n = Wвых / Wа;
  • cosϕ определяет долю активной мощности Wа в полной потребляемой мощности Wпол. В потребителях со всевозможными катушками (обмотки двигателей, трансформаторов и т.д.) часть мощности (реактивная) тратится на преодоление индуктивного сопротивления. Суть этого явления состоит в возникновении ЭДС самоиндукции, направленной против тока. Поскольку cosϕ = Wа / Wпол, то Wпол = Wа / cosϕ.

Таким образом, полная потребляемая мощность Wпол при известной выходной мощности Wвых определяется по формуле: Wпол = Wвых / (КПД * cosϕ). Выходную мощность Wвых принято измерять в привычных ваттах (Вт), а полную Wпол, чтобы не было путаницы, — в вольт-амперах (ВА).

К примеру, на шильдике компрессора холодильника указаны такие характеристики:

  • мощность: 2 кВт;
  • КПД: 0,85;
  • cosϕ: 0,8.

Значит, полная потребляемая мощность составит: Wпол = 2 000 / (0,85 * 0,8) = 2941 ВА. Тогда потребляемый холодильником номинальный ток составит: I = Wпол / 220 = 2941 / 220 = 13,4 А. В случае с 3-фазным двигателем Iн определяют так: I = Wпол / (1,73 * U).

Фото 7

Трёхфазная система электроснабжения

Wпол рассчитывается так же, как для однофазного, напряжение U принимается равным:

  • при подключении к 3-фазной сети: U = 380 В;
  • к 1-фазной — U = 220 В.



Мощность тока через катушку

Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :

Для мгновенной мощности получаем:

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).

Формула мощности по току и напряжению схемы

Напряжение на катушке и сила тока через неё.

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

Выбор автоматов защиты

Поскольку возрастание силы тока свыше номинального значения (перегрузка) влечет за собой нарушения в работе устройств, на этот случай требуется предусмотреть обесточивание цепи.

Задачу выполняют такие аппараты защиты:

Фото 8

  • предохранители: содержат легкоплавкую вставку — при перегреве она расплавляется и цепь размыкается;
  • выключатели автоматические (ВА).

ВА состоит из двух частей:

  1. тепловой расцепитель. Биметаллическая пластина, размыкающая контакты при нагреве. Время срабатывания может составлять десятки минут;
  2. электромагнитный расцепитель (катушка с соленоидом). Срабатывает практически мгновенно (0,02 с) при достижении силой тока определенного значения.

Порог срабатывания электромагнитного расцепителя для разных потребителей также требуется индивидуальный. Некоторые выходят из строя даже при самой незначительной перегрузке, другие выдерживают 14-кратное превышение Iн. Потому выпускают 4 класса ВА, отличающиеся настройкой электромагнитного приспособления размыкания цепи (уставка тока отсечки): A, B, C и D.

Класс подбирается соответственно виду потребителей:

  1. полупроводниковые элементы. Класс А, наиболее чувствительный: ток отсечки — в 2 раза выше номинального;
  2. розетки, осветительные цепи и прочие, где пусковые токи отсутствуют или невелики. Класс В: ток отсечки — в 3 раза больше номинального;

Фото 9


вводные устройства бытовых электросетей. Класс С: ток отсечки — в 5 раз выше номинального. Такие ВА в одиночку не применяются: они обеспечивают безопасность сети в целом, тогда как каждая группа (розетки, освещение) дополнительно защищается ВА класса В. То есть ВА класса С страхует автоматы класса В, но при этом в случае перегрузки в одной из групп вся сеть не обесточивается (селективность);

При перегрузке менее уставки тока отсечки по цепи какое-то время протекает ток свыше номинального (до срабатывания теплового расцепителя).

Это учитывают, например, при выборе УЗО, официально именуемого «выключателем дифференциального тока». Это еще один аппарат защиты, обесточивающий цепь при обнаружении утечки тока и предотвращающий тем самым электротравму пользователя.

УЗО подбирают с номинальным током, на ступень превышающим соответствующий параметр защищающего его ВА.

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :

График зависимости мгновенной мощности от времени.

Формула мощности по току и напряжению схемы

Мощность переменного тока через конденсатор.

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний.

Формула мощности по току и напряжению схемы

Напряжение на конденсаторе и сила тока через него.

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Номинальный ток шкафа это

Сайт технической поддержки

филиал ЗАО “НПО Севзапспецавтоматика”

Подбор шкафа управления по номинальному току электродвигателя

Номинальный ток шкафа (I ном ) выбирается по току управляемых электродвигателей из расчёта выполнения двух условий:

Условие 1: I ном > I р ;

Условие 2: I ном > I п / K x , где:

I р - рабочий (номинальный) ток электродвигателя, А

I п - пусковой ток электродвигателя, А

К х - коэффициент время-токовой характеристики автоматического выключателя шкафа, принимающий значения:

К х = 5 – для время-токовой характеристики “C”,

К х = 10 – для время-токовых характеристики “D” и “МА”.

Примечание: Автоматические выключатели с характеристикой “C” в шкафах управления двигателями систем противопожарной защиты сейчас практически не используются.
Автоматические выключатели с характеристикой “МА” (без теплового расцепителя) используются в шкафах управления исполнительными механизмами систем противодымной защиты (вентиляторами и клапанами).
Автоматические выключатели с характеристикой “D” используются в шкафах управления другими двигателями систем противопожарной защиты (насосами и задвижками).

Электродвигатель вентиляторного агрегата имеет номинальный рабочий ток (I р ) = 29,8А и кратность пускового тока (I п / I р ) = 12
(Отсюда пусковой ток I п = 29,8 × 12 = 357,6А).

Для управления вентилятором проектировщик уже выбрал тип шкафа, например ШК1101-ХХ-А2
(для использования в составе системы пожарной сигнализации .

Необходимо подобрать для выбранного шкафа исполнение по номинальному току.

По условию 1: I ном > I р ; I ном > 29,8А

В шкафах выбранного типа ШК1101-ХХ-А2 автоматические выключатели имеют время-токовую характеристику “МА” (из паспорта шкафа, раздел "характеристики электропитания"), отсюда К х = 10

По условию 2: I ном > I п / K x ; I ном > 357,6 / 10; I ном > 35,8А.
Из условий 1 и 2 следует, что I ном > 35,8А.

Поправка на температуру окружающей среды:

Номинальный ток автоматических выключателей нормируется для температуры внутри оболочки шкафа 30°С. При повышении температуры номинальный ток выключателя снижается, и для неотключения при протекании тока близкого к номинальному необходимо использовать автоматический выключатель с номинальным током бОльшей величины.

Принимаем, что из-за работы аппаратуры температура внутри шкафа может превысить наружную на 5°С. Если максимальная температура в помещении установки шкафа управления не будет превышать 25°С, то поправку на температуру окружающей среды можно не вводить.

Для эксплуатации оборудования при температуре окружающей среды выше 25°С, при расчёте необходимо увеличивать I ном на 1% на каждый градус Цельсия (°С) выше 25°С.

Пусть в нашем случае температура в помещении может достигать 35°С, тогда необходимо увеличить I ном на (35 - 25) = 10%.
Отсюда I ном > 35,8А × 1,10; I ном > 39,4А

Примечание:На практике расчёт температурной поправки обычно заменяют использованием коэффициента запаса 15-20%.
Точный расчёт возможен только при знании температурных характеристик конкретного применяемого типа автоматического выключателя.
Для автоматических выключателей с характеристикой “МА” температурную поправку можно не делать (т.к. нет теплового расцепителя).

По таблице вариантов исполнения из графы номинального тока шкафа ШК1101-ХХ-А2 (также см. гл. 3 паспорта шкафа):
…, 20А, 25А, 32А, 40А, 50А, 63А, … выбираем ближайшее большее значение, принимая I ном = 40А.

Значению тока I ном = 40А соответствует вторая цифровая группа 36 в наименовании шкафа.
Соответственно, по таблице вариантов исполнения, выбираем исполнение шкафа ШК1101-36-А2

Для автоматизации расчёта номинального тока можно воспользоваться калькулятором

Примечание: Данная методика подбора шкафов по соответствию тока вводного автомата току двигателя, не подходит для подбора шкафов со встроенным блоком питания, для управления приводами постоянного тока, и шкафов со встроенным преобразователем частоты.

Выбор защитной и коммутационной аппаратуры. Расчет номинального тока.

Любая электроустановка должна быть защищена устройствами автоматического отключения в случае появления сверхтоков или недопустимых токов утечки. Под сверхтоком понимается любой ток, превышающий номинальный. В основном сверхтоки появляются вследствие перегрузки или короткого замыкания.

Устройства защиты должны выбираться с учетом параметров электроустановки, ожидаемых токов короткого замыкания, характеристик нагрузки, условий прокладки и тепловых характеристик проводников.

В соответствии с ПУЭ для электроустановок напряжением до 1 кВ и с системой заземления TN, характеризующейся глухозаземленной нейтралью источника питания и присоединением открытых токопроводящих частей к глухозаземленной нейтрали источника посредством нулевых защитных проводников, принятой для жилых зданий, в целях обеспечения электробезопасности время автоматического отключения не должно превышать значений, указанных ниже:

Номинальное фазное напряжение, В

Время отключения, с

В качестве защитной аппаратуры автоматического отключения применяются плавкие предохранители и автоматические выключатели.

Плавкий предохранитель - это коммутационный аппарат, который вследствие расплавления одного или более специально спроектированных и калиброванных элементов размыкает цепь, в которую он включен, и отключает ток, когда он превышает заданную величину в течение достаточного времени.

Автоматический выключатель - это механический коммутационный аппарат, способный включать, пропускать и отключать токи при нормальном состоянии цепи, а также включать, выдерживать в течение заданного времени и автоматически отключать токи в аномальном состоянии цепи, такие как токи короткого замыкания.

Учитывая, что электроустановки жилища повышенной комфортности и коттеджей в последние годы оснащаются в основном автоматическими выключателями, ниже рассматривается только этот вид защитной аппаратуры.

В основу выбора защитной аппаратуры в зависимости от величины токов КЗ положено, что кривая время-токовой характеристики, соответствующая допустимой тепловой нагрузке защищаемой электросети, должна лежать выше зоны время-токовой характеристики устройства защиты для всех возможных токов КЗ между минимальным и максимальным значениями.

Под время-токовой характеристикой подразумевается кривая, отражающая взаимосвязь времени и ожидаемого тока в определенных условиях эксплуатации. Указанный принцип проиллюстрирован на рис. 4.1.

Для установленного времени срабатывания защиты кривая допустимых значений I2t (интеграл Джоуля) защищаемого проводника должна лежать выше кривой I2t защитного устройства, так как кривая характеристики I2t устройства защиты характеризует максимальные рабочие значения I2t как функцию ожидаемого тока КЗ. Значения I2t аппаратов защиты приводятся в технических данных предприятиями-изготовителями.

Время отключения полного тока КЗ в любой точке цепи не должно превышать времени, в течение которого температура проводников достигает допустимого предела. Это время для защищаемого проводника может быть приблизительно вычислено по формуле


время, в течение которого температура проводников достигает допустимого предела

где t - продолжительность, с;

S - сечение проводника, мм2;

I - действующее значение тока КЗ, А;

K = 115 или 135 - для медных проводников (115 - с поливинилхлоридной изоляцией, 135 -с резиновой изоляцией и с изоляцией из сшитого полиэтилена);

К = 74 и 87 - для алюминиевых проводников (74 - с поливинилхлоридной изоляцией, 87 - с резиновой изоляцией и изоляцией из сшитого полиэтилена).

K = 115 - для соединений пайкой медных проводников.

Предельно допустимые значения температуры нагрева проводников приводятся в ПУЭ.

Автоматическая защита от перегрузки предназначена для отключения электросети при протекании по проводникам тока перегрузки раньше, чем такой ток мог бы вызвать повышение температуры проводников, опасное для изоляции, соединений, зажимов или среды, окружающей проводники.


Характеристики автоматического выключателя и защищаемого проводника

Рис. 4.1. Характеристики автоматического выключателя и защищаемого проводника

С - кривая характеристики допустимого Ft;

D - I2t характеристика автоматического выключателя;

КЗ - максимальный ток КЗ, при котором обеспечивается защита автоматическим выключателем.

Рабочая характеристика любого защитного устройства, защищающего кабель от перегрузки, должна отвечать условиям:

где Ip - рабочий ток цепи; Iд - допустимый длительный ток кабеля; Iн - номинальный ток устройства защиты (устройства защиты с регулируемыми характеристиками номинальным током Iн является ток выбранной уставки); Iз - ток, обеспечивающий надежное срабатывание устройства защиты.

Практически Iз принимают равным:

- току срабатывания при заданном времени срабатывания для автоматических выключателей;

- току плавления плавкой вставки при заданном времени срабатывания для предохранителей.

Для выполнения защитных функций автоматические выключатели оснащаются различными расцепителями.

В общем виде расцепитель - это устройство, механически связанное с автоматическим выключателем (или встроенное в него), которое освобождает удерживающее устройство в механизме автоматического выключателя и вызывает автоматическое срабатывание выключателя.

В автоматических выключателях бытового назначения применяются: максимальный расцепитель тока, максимальный расцепитель с обратнозависимой выдержкой времени, максимальный расцепитель тока прямого действия и расцепитель перегрузки.

Максимальный расцепитель тока - расцепитель, вызывающий срабатывание автоматического выключателя с выдержкой времени или без нее, когда ток в этом расцепителе превышает заданное значение.

Максимальный расцепитель тока с обратнозависимой выдержкой времени - максимальный расцепитель тока, срабатывающий после выдержки времени, находящейся в обратной зависимости от значения сверхтока.

Максимальный расцепитель тока прямого действия - максимальный расцепитель тока, срабатывающий непосредственно от протекающего тока в главной цепи автоматического выключателя.

Расцепитель перегрузки - максимальный расцепитель тока, предназначенный для защиты от перегрузок.

В соответствии с СП31-110-2003 во внутренних сетях жилых зданий, как правило, следует применять автоматические выключатели с комбинированными расцепителями.

Номинальные токи комбинированных расцепителей автоматических выключателей для защиты групповых линий и вводов квартир, включая линии к электроплитам, должны выбираться в соответствии с расчетными нагрузками.

Уставки аппаратов защиты для взаиморезервируемых линий должны выбираться с учетом их послеаварийной нагрузки.

Автоматические выключатели характеризуются также включающей и отключающей способностью, предельной наибольшей отключающей способностью, рабочей наибольшей отключающей способностью и током отключения.

Так как наибольшие значения сверхтоков определяются токами короткого замыкания защищаемой цепи, при выборе выключателей в процессе проектирования необходимо учитывать указанные параметры.

В случаях последовательного соединения двух автоматических выключателей возникает проблема селективности их срабатывания, которая заключается в обеспечении отключения защищаемой цепи выключателем со стороны нагрузки до того, как отключение начнет второй выключатель со стороны питания.

Селективность характеризуется предельным током. Предельный ток селективности - это предельное значение тока:

- ниже которого при наличии двух последовательно соединенных аппаратов защиты от сверхтоков аппарат со стороны нагрузки успевает завершить процесс отключения до того, как его начнет второй аппарат (т.е. обеспечивается селективность);

- выше которого при наличии двух последовательно соединенных аппаратов защиты от сверхтоков аппарат со стороны нагрузки может не успеть завершить процесс отключения до того, как его начнет второй аппарат (т.е. селективность не обеспечивается).

Величина предельного тока селективности определяется координатой точки пересечения времятоковой характеристики в зоне наибольшей отключающей способности защитного аппарата на стороне нагрузки и время-токовой характеристикой расцепителя другого аппарата.

В табл. 4.1 приведены предпочтительные значения номинального напряжения автоматических выключателей, выпускаемых в соответствии с указанным ГОСТом.

Таблица 4.1 Предпочтительные значения номинального напряжения

Цепь питания выключателя

Номинальное напряжение, В

Однофазная (фаза с нейтралью)

Однофазная (фаза с нулевым заземленным проводом или фаза с нейтралью)

Однофазная (фаза с нейтралью) или трехфазная (три однополюсных автоматических выключателя) (трех- или четырехпроводная)

Однофазная (фаза с фазой)

Однофазная (фаза с фазой, трехпроводная)

Трехфазная (трех- или четырехпроводная)

К предпочтительным значениям номинального тока, установленного ГОСТом, относятся: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100 и 125 А.

Стандартные значения номинальной частоты 50 и 60 Гц.

Стандартные значения номинальной отключающей способности: 1500, 3000, 4500, 6000, 10 000 А. Стандарт определяет три типа характеристик мгновенного расцепления: В, С и D. Ниже приведены диапазоны мгновенного расцепления выключателя в зависимости от кратности сверхтока по отношению к номинальному Iн:

Тип защитной характеристики

Свыше 3 Iн до 5 Iн включительно

Свыше 5 Iн до 10 Iн включительно

Свыше 10 Iн до 14 Iн включительно

В электроустановках жилых зданий в основном используются автоматические выключатели с характеристиками типов В и С. Расцепление типа В рационально применять для защиты розеточных линий, типа С - для линий, питающих светильники, теплые полы и стены, сауны и т.п. При выборе автоматического выключателя необходимо учитывать предполагаемую температуру окружающей среды в месте его установки.

В каталогах приводится номинальный ток выключателя для температуры окружающей среды 30 0С. Повышение температуры сверх 30 0С приводит к преждевременному срабатыванию теплового расцепителя, так как его температура достигает уровня срабатывания при меньших значениях тока. Поэтому при установке автоматических выключателей в местах, где температура окружающей среды превышает номинальную, равную 30 0С, номинальное значение тока выключателя уменьшается:


номинальное значение тока выключателя

где Iн - допустимый ток при температуре окружающей среды 1°С, отличной от номинальной tо.с.н = 30 C;

Iн.а - номинальный ток автоматического выключателя при номинальной (расчетной) температуре окружающей среды;

Oн - превышение температуры срабатывания теплового расцепителя над номинальной расчетной температурой окружающей среды tосн = 30 оС, Оt = tср - tо.с.н;

- температурный коэффициент, учитывающий уменьшение (увеличение) допустимого тока автоматического выключателя в зависимости от температуры окружающей среды в месте его установки.

Здесь Ot- превышение температуры срабатывания tcp теплового расцепителя над температурой окружающей среды, Оt = tср - tо.с;

Для выключателей бытового назначения ориентировочные значения величины Kt в зависимости от температуры окружающей среды в месте установки приведены ниже:

toc. 20 30 35 40 45 50 55 60

Kt . 1,05 1 0,97 0,95 0,92 0,89 0,87 0,84

Кроме того, для модульных автоматических выключателей бытового назначения устанавливаемых в шкафах рядом друг с другом на рейках, следует использовать величину 0,8Kt.

Выбор автоматических выключателей в тех случаях, когда температура окружающей среды больше или меньше стандартной контрольной, при которой определялись его номинальные данные, производится с использованием температурного коэффициента Kt по формуле

где Iн.р - номинальный ток расцепителя.

1. Максимальный расчетный ток нагрузки Iрас.mах = 20 А.

2. Температура окружающей среды в месте установки toc = +55 0С при этом Iрас.mах=Iнt Номинальный ток автоматического выключателя при нормальных условиях должен быть:

По приведенным выше данным Kt для 55 0С равен 0,87.

Принимаем автоматический выключатель с номинальным током 25 А.

Если выключатель установлен в ряд с другими автоматами, в металлическом шкафу, то его номинальный ток определяется по формуле


номинальный ток выключателя

Принимаем к установке автоматический выключатель с номинальным током Iн.а = 32 А.

4.2. Принципы выбора коммутационной аппаратуры

К коммутационным аппаратам относится достаточно широкий спектр электрооборудования, с помощью которого осуществляется включение-отключение как основных токовых цепей, так и цепей управления.

Для коммутации основных токовых цепей наряду с рассмотренными выше автоматическими выключателями используются рубильники, переключатели, контакторы, магнитные пускатели и т.п.

Для коммутации цепей управления используются различные реле, как мгновенного действия, так и реле с выдержкой времени на замыкание и размыкание контактов, кнопки и ключи (переключатели) управления и пр.

Аппаратура для коммутации цепи управления может содержать аппарат для цепи управления и связанные с ним устройства, например световые индикаторы.

Аппарат для цепей управления может содержать один или несколько коммутационных элементов и механизм передачи усилия переключения. Коммутационный элемент может быть контактным или полупроводниковым.

Выбор при проектировании аппаратов из рассматриваемой группы определяется следующими основными параметрами:

- номинальным напряжением и потребляемым током катушек;

- коммутационной способностью контактов или выходных полупроводниковых цепей

(номинальное напряжение, номинальный ток коммутируемый цепи);

- для реле с выдержкой времени - диапазоном выдержки времени.

Не менее важными факторами являются способ установки аппарата (под винт, на DIN-рейку) и присоединение проводов (переднее, заднее).

Читайте также: