Xf wifi tbs что это
Практически во всех выпускаемых ныне беспроводных адаптерах стандарта 802.11g можно встретить суффиксы "super G", "turbo", "plus" и т.д. Причем суффиксами дело обычно не ограничиваются. Производители (точнее их маркетологи) красочно рисуют на коробках цифры 108, а некоторые — аж 125 Мбит/сек.
125 — звучит заманчиво. Неужели беспроводные адаптеры работают быстрее старого доброго Fast Ethernet по проводам? Может ну их… в баню, эти "древние" Fast Ethernet адаптеры? Выкидываем надоевшие кабели и да здравствует радиоезернет? :)
Но, как говорится, семь раз отмерь, один — отрежь. Что в нашем случае означает, что не мешало бы поподробнее узнать, что же это за такие загадочные технологии, как они работают и какие на самом деле скорости обеспечивают (и самое главное — при каких условиях). Другими словами, не забываем анекдот про физиков и из сферических коней в вакууме. А так же делаем скидку маркетологам на то, что для них важнее всего — продать решения своей компании.
Различных вариантов "разгона" стандартного 802.11g существует довольно много. Точнее — у каждого производителя чипов оно свое (по крайней мере — называется по-разному). К сожалению, не все производители объясняют, что именно представляют из себя их технологии. Информацию по технологиям мне удалось найти лишь у компании Atheros и Texas Instruments. Но наиболее информативный ресурс оказался у Atheros — у них даже есть отдельный сайт, посвященный их технологиям Super G и Super AG.
Собственно, бОльшая часть статьи — это компиляция информации с сайтов Atheros и Texas Instruments и по мелочи — из других источников.
Переходим непосредственно к технологиям.
Для начала посмотрим на "чистый" 802.11g. Максимальная пропускная способность в этом режиме — 54 Мбит/сек. Думаю, большинство читателей знает, как перевести мегабиты в мегабайты? Правильно — делим мегабиты на восемь и получаем скорость 6.75 Мбайт/сек.
25 Мбит мы не получали. Так это же только половина от 54 Мбит! Куда делась вторая половина? Куда — это тема отдельной статьи, отмечу лишь, что на пользовательские данные действительно приходится примерно половина (в лучшем случае) пропускной способности канала.
Это первая плохая новость. Есть и вторая. Радиоволны (собственно, с помощью них и передается информация в беспроводных сетях) передаются во все стороны от источника сигнала (рассматриваем общий случай). Т.е. передающего слышат все. Эти "все" могут принимать данные или не принимать, это не важно. Главное — они не могут в этот момент что-либо передавать на той же частоте. Точнее говоря, попытаться то они могут, но сигналы обоих источников наложатся друг на друга, в результате чего информационная составляющая будет искажена и потеряна. Другими словами, в беспроводных сетях одновременно может передавать только один источник из нескольких, работающих на одной и той же частоте. Т.е. принцип рации — сначала говорим, потом молчим и слушаем.
Таким образом, щедро выделенные нам
25 Мбит делятся на всех участников беспроводной сети. Если количество клиентов составляет 5 хостов, то в момент интенсивной передачи данных с каждого, на одного придется канал пропускной способностью примерно 5 Мбит (а на самом деле даже чуть меньше).
Есть и третья плохая новость. Вторая "плохая новость" насчет "5 Мбит на 5 хостов" верна лишь в случае Ad Hoc сети, т.е. без точки доступа. Если брать более общий случай с точкой доступа, то эти жалкие 5 мбит придется поделить еще на два. Ведь в Infrastructure режиме беспроводной сети (с участием точки доступа) любой обмен с клиентами проходит через точку доступа. А она сначала должна принять данные, а потом ретранслировать их к получателю. В результате получаем по 2 с хвостиком мегабита на брата.
Теперь вернемся к цифрам 108 и 125, которые так любят крупным шрифтом рисовать на коробках производители. Ну, вы уже все поняли, да? :)
Смело делим на два (про сферического коня чуть позже). Получаем максимум 60мбит в случае одного клиента и соответственно в n-цать раз меньше, в случае N клиентов.
Для тех, кому надо было лишь выяснить, пора ли выкидывать провода или "еще погодить", дальнейшую часть статьи можно не читать. Ответ — выкидывать пока рано. Как минимум, надо дождаться WiMAX.
Теперь перейдем к более детальному рассмотрению рассмотрению технологий увеличения пропускной способности беспроводных сетей по сравнению со стандартным 802.11g режимом.
Полагаю, у всех производителей все их плюсы, турбо и т.д. представляют собой то же самое, что и у Atheros с TI, но с другим названием. Но детали реализаций могут различаться, поэтому не факт, что технологии различных производителей совместимы друг с другом.
Технология Atheros для 802.11g носит название Super G (есть еще одна — Super AG, это тоже самое, но для стандарта 802.11a, т.е. для сетей на 5 ГГц). Atheros Super G позволяет увеличить пропускную способность до 108 Мбит/сек. И, как честно заявляет Atheros, для пользователя скорость может достигать 60 Мбит.
Увеличение производительности достигается несколькими способами:
Atheros Super G / Super AG технологии:
- посылка большего количества кадров за тот же временной интервал
- увеличение пропускной способности за счет удаления части накладных расходов
- компрессия данных в реальном времени
- Lempel Ziv компрессия
- увеличение пропускной способности за счет предварительного сжатия информации
- центральный процессор компьютера не задействуется
- агрегация (объединение) кадров (размер кадров до 3000 байт) и манипуляции с временными интервалами
- увеличение пропускной способности за счет передачи большего количества данных в одном кадре и удаления межкадровых временнЫх пауз
- технология, аналогичная транкингу в ethernet-сетях, т.е. задействование одновременно двух каналов для передачи
- постоянный мониторинг окружения и подстройка скорости под текущие нужды
- максимальное увеличение пропускной способности за счет использования нескольких (двух) каналов передачи одновременно
У себя на сайте Atheros приводит красочную диаграмму, показывающую влияния различных технологий на скорость передачи данных:
рис.1, влияние различных технологий на производительность беспроводной связи
В базовом режиме 802.11g или 802.11a, в котором все расширенные технологии отключены, можно получить скорость до 22 Мбит (чистых, т.е. доступных пользователю). Добавляя технологии, которые возможно будут в будущем стандарте 802.11e (Bursting, Fast Frames, Compression), можно увеличить скорость до 40 Мбит включительно. Активируя Dynamic Turbo режим, т.е. задействуя два канала под передачу данных, можно довести скорость до теоретического максимума в 60 Мбит.
Разумеется, приведенные цифры — это лишь максимально возможная скорость в данном режиме работы (тот самый сферический конь в вакууме). В реальности все будет зависеть от таких условий, как удаленность клиента от точки доступа, количество одновременно работающих клиентов, радиообстановка в месте, где расположена беспроводная сеть и так далее.
У Texas Instruments технологии повышения производительности носят название G-Plus. Часть из них похожа на технологии Atheros, часть — присуще только TI.
Texas Instruments G-Plus технологии:
- объединение данных из нескольких пакетов — в один (размер пакета — до 4000 байт)
- увеличение пропускной способности за счет удаления служебной информации заголовков "лишних" кадров и удаления времени межкадрового ожидания
- аналогично технологии от Atheros
- аналогично технологии от Atheros
Подробно остановимся на каждой из перечисленных технологий — bursting, compression, fast frames, dynamic turbo. Примечательно то, что все четыре технологии работают независимо друг от друга, тем самым добиваясь максимально возможной производительности одновременно несколькими способами.
1. Bursting.
Frame Bursting — технология, заложенная в предварительный вариант стандарта 802.11e QoS. Frame Bursting позволяет увеличивать пропускную способность линка при обмене (точка-точка) между 802.11a, b или g устройствами за счет уменьшения накладных расходов, возникающих при передаче данных в беспроводных сетях. Причем хорошие результаты достигаются как в гомогенных (однородных), так и в смешанных беспроводных сетях.
На рисунке 2 приведен пример стандартной передачи (without bursting).
рис.2, стандартный режим 802.11a/b/g
В режиме стандартной передачи данных мы наблюдаем процесс передачи двух кадров (frame1 и frame2) во времени от источника Source к получателю Destination. Процесс передачи данных поделен на временные интервалы (по оси X — ось времени). Так как в любой момент времени передавать может лишь один источник, то каждая станция слушает эфир в течении времени DIFS (Distributed InterFrame Space), если она не услышала передачи другой станции, значит эфир свободен, можно передавать кадр. После передачи кадра (frame1), станция-передатчик ждет подтверждения об успешном приеме от получателя. Получатель обязан отослать подтверждение (ack), которое он отсылает практически сразу, после ожидания короткого промежутка времени SIFS — Short InterFrame Space (если подтверждения не было, то получатель считает, что кадр не был принят и должен перепослать его заново). После получения подтверждения передатчик опять обязан выждать интервал времени DIFS и только потом (если эфир по-прежнему свободен) начать отсылку второго кадра frame2. И так далее.
Таким образом, кадры ожидания DIFS отнимают достаточно существенную часть пропускной способности беспроводной сети.
Теперь посмотрим на картину передачи при использовании технологии Frame Bursting:
рис.3, задействование Frame Bursting
В этом режиме (рисунок 3), источник и получатель монопольно [по очереди] занимают канал под свою передачу. После передачи кадра frame1 и получения подтверждения об успешном приеме оного, передатчик не ждет положенный интервал времени DIFS. Передатчик выжидает лишь короткий временной интервал SIFS, после чего передает второй кадр данных и так далее. Тем самым, передатчик не дает возможности начать передачу другим станциям — им приходится ожидать окончания общего периода такой burst-передачи.
Разумеется, общий интервал передачи данных в таком режиме ограничен (а то передача нескольких гигабайтов данных полностью бы парализовала работу остальных клиентов той же беспроводной сети). Но удаление интервала DIFS позволяет за тот же период времени передать существенно бОльшее количество данных, тем самым экономя пропускную способность канала, т.е. увеличивая общую скорость передачи данных.
Atheros заявляет, что все ее продукты данную технологию поддерживают. Но очевидно, что устройства других производителей, в которых эта технология не встроена, могут и не понять такой "разрывной" режим работы. Поэтому, если подтверждение на посланный в начале burst-режима пакет не получено получателем, передатчик отключает bursting и переходит в базовый режим работы.
Реализация Bursting у TI аналогична технологии Atheros. TI приводит следующую картинку, иллюстрирующую работу их технологии (рис 4):
рис.4, Frame Bursting от Texas Instuments
TI тоже удаляют "длинный" временной фрейм ожидания, тем самым сокращая накладные расходу на передачу.
Информация о совместимости burst-технологий в реализациях от TI и Atheros на сайтах обеих компний отсутствует.
Подобная "bursing" технология, вероятно, присутствует и у других производителей. Но Atheros пошла дальше и расширила ее до "dynamic bursting". По ее заверениям, эта технология особенно эффектна в сетях с количеством работающих беспроводных клиентов больше единицы.
К примеру, в беспроводной сети две станции, одна расположена близко к точке доступа, другая удалена от нее. Разумеется, дальний клиент работает с точкой доступа на более низкой скорости (из-за расстояния). Поэтому для передачи данных определенного размера (для ближайшего клиента) ему потребуется больше времени, чем ближайшему — для приема этих данных. В этом случае активация bursting для дальней станции позволит ей сократить время передачи порции данных и, как ни странно, это же позволит ближайшей станции еще быстрее эти данные принять (так как она меньше будет ожидать на линии освобождения эфира). Интервалы, на которые клиенты могут занять эфир "burst"-передачей, также зависят от удаленности (точнее, скорости работы) клиентов. Ближайший клиент получит грант на более длинную burst-передачу, так как за единицу времени он передает больше данных (и быстрее освободит эфир).
Atheros Compression technology.
Вторая технология от Atheros, расширяющая стандарт 802.11 — аппаратная компрессия данных. Она встроена во все 802.11a,b,g чипсеты компании. Используемый алгоритм — Lempel Ziv. Этот же алгоритм используется в архиваторах gzip, pkzip, winzip. Данные "на лету" упаковываются перед пересылкой и распаковываются на принимающей стороне.
К сожалению, данные предварительно не анализируются, а сжимаются все кадры подряд. Тем самым, выигрыш достигается не всегда — например, пересылка уже упакованного файла может увеличить размер передаваемых по беспроводной сети данных.
С другой стороны, хорошо подверженные компрессии данные будут переданы кадрами меньшего размера, тем самым передатчик займет меньше эфирного времени на свою передачу. Это время может быть использовано для работы других беспроводных клиентов.
Atheros Fast Frames.
Технология Fast Frames предлагает слияние двух кадров в один, большего размера. Тем самым, мы избавляемся от служебной информации (в заголовке второго пакета — остается лишь один заголовок нового кадра) и временных пауз ожидания между кадрами:
рис.5, обычная передача данных
рис.6, Fast Frames активна
Причем размер полученного кадра-фрейма может достигать 3000 байт, что в два раза больше максимального размера кадра стандартного ethernet-пакета. Таким образом, даже если идет поток данных из проводной сети с пакетами максимального (1500 байт) размера, технология Fast Frames все равно будет работать, объединяя каждые два ethernet-пакета в один бОльшего размера. Как только FastFrames-алгоритм будет согласован между точкой доступа и станцией, все дальнейшие пересылки данных между этими двумя устройствами будут происходить с использованием таких, увеличенных вплоть до 3000 байт, кадров.
С учетом того, что Fast Frames может работать совместно с Frame Bursting, мы получаем очень неплохие результаты по скорости передачи. Кстати говоря, как заявляет Atheros, большинство производителей, реализовавших в своих чипах технологию Frame Bursting, тем не менее, не поддерживают Fast Frames. У Atheros тут все впорядке — их продукты держат и то и другое.
Технология Fast Frames — тоже часть черновой версии стандарта 802.11e. Тем не менее, ее совместимость с продуктами других производителей не гарантируется. С другой стороны, технология работает в рамках стандартных временных интервалов (в отличии от Frame Bursting, которая монопольно занимает полосу на некоторое время). Именно поэтому Fast Frames лучше вписывается в беспроводные сети, где используется оборудования различных производителей.
Texas Instruments Frame Concatenation
Технология Frame Concatenation, реализованная в продуктах компании Texas Instruments, использует те же принципы, что и Fast Frames у Atheros.
Но TI пошли дальше. У них объединению подвергаются два и более кадров (рисунок 7):
рис.7, технология Frame Concatenation
Тем самым, они выигрывают на удалении служебной информации и межкадровых интервалов ожидания от одного и более кадров. TI заявляет, что их технология Frame Concatenation будет работать с любыми 802.11b/b+/g продуктами от TI и (!)других производителей. Не совсем ясно, что они имели ввиду под другими производителями, если у последних поддержка этой технологии не будет реализована… Возможо имелась ввиду работа с кадрами, размер которых не превышал стандартного (1500 байт) размера.
В технологию Frame Concatenation заложен алгоритм, позволяющий упаковывать в мега-кадры не все пакеты подряд. Например, если в очереди отправки на заданное направление находится лишь один кадр, то он будет отослан незамедлительно. Другими словами, сливаться будут лишь те кадры, у которых одинаковый адрес получателя (destination address, в данном случае имеется ввиду MAC адрес получателя). Причем, алгоритм действует только на unicast-пакеты — широковещательные (multicast), а так же служебные пакеты отсылаются без изменений.
На данный момент, максимальный размер Concatenation-пакета может достигать 4096 байт (что косвенно говорит о том, что эта технология не совместима с подобной же технологией от Atheros).
Заключение.
Как видно, производители не дожидаются официального объявления стандартов (в данном случае 802.11e), а интегрируют новые технологии в свои продукты. В результате, с одной стороны, достигаются неплохие результаты в виде увеличения скорости, с другой — технологии различных производителей часто оказываются несовместимы друг с другом.
Не рассмотренной осталась технология агрегирования каналов у Atheros (Dynamic Turbo). Про нее — во второй части статьи.
А если к тому времени найдутся документы, описывающие реализации super/plus/etc технологий у других производителей беспроводных решений (или мне подскажут ссылки них в форуме (ссылка чуть ниже)), то обзор этих технологий также будет добавлен во вторую часть статьи.
В этом руководстве показано как настроить TBS Crossfire для работы с Taranis X9D Plus и Jumper T16. Я покажу вам как подключить приемник к полетному контроллеру и как настроить Betaflight. Аналогично можно настроить и другие передатчики с прошивкой OpenTX.
Содержание
Что особенного в Crossfire?
Frsky Taranis с двухантенными приемниками (R-XSR и X4R-SB) теоретически дает до 1,5 км, чего более чем достаточно для большинства пилотов мини-коптеров. Однако, иногда хочется полетать подальше, или иметь более надежное управление в условиях, когда есть много деревьев или зданий; вот тут-то и пригодится Crossfire.
Антенны для радиомодулей
Приёмники
Crossfire Micro RX | Crossfire Nano RX | Crossfire Diversity Nano RX |
Используются JST разъемы | Те же возможности, что и у Micro RX, но размер меньше! Подключение пайкой | Двойная антенна, лучше приём |
Amazon | GetFPV | GetFPV | Amazon | Amazon | RMRC | GetFPV |
Антенны для приёмников
Обновление прошивки
Обновляем OpenTX
Чтобы избежать ненужных проблем и багов, установите свежую версию OpenTX. Вот инструкция для Тараниса.
Не забудьте скачать содержимое SD карты, т.к. там есть файлы, которые нам понадобятся для настройки передатчика и приемника Crossfire (например, LUA скрипты), подробнее описано в руководстве, ссылка чуть выше.
Обновляем прошивку TBS Crossfire
Ставим радиомодуль Crossfire в Taranis
Радиомодуль просто вставляется в отсек позади пульта. Ставьте его аккуратно, не повредите контакты.
TBS Crossfire Micro Module установлен в Taranis X9D
Настраиваем Taranis для использования Crossfire
После того, как вы это сделали и вышли из меню, модуль Crossfire должен включиться (на нём загорятся светодиоды).
Подключаем приемник к полетному контроллеру
Помните, что практически все выходы в приёмнике можно программно переназначить. Это значит, что вы можете настроить их на любую функцию, поэтому есть куча способов подключения приёмника к полетному контроллеру.
Я покажу свой, можете сделать также:
- 5V к 5V
- GND к GND
- CH1 (Crossfire) к UART RX
- CH2 (Crossfire) к UART TX
На полетном контроллере можно использовать любой свободный последовательный порт (UART).
Можно подключить только CH1 и выбрать выход SBUS, но т.к. я хотел использовать протокол CRSF с телеметрией, то пришлось подключить оба провода.
Замечу, что протокол CRSF имеет обычный, не инвертированный сигнал (как у SBUS и SmartPort), следовательно нельзя использовать выделенные для SBUS/SmartPort разъемы, т.к. там есть встроенный инвертор. Однако всё это не важно, если у вас ПК на F3 или F7, т.к. инверсия настраивается программно.
Программная эмуляция последовательного порта работает не очень быстро, поэтому её нельзя использовать с Crossfire.
В примере ниже я подключаю RX приёмника к UART6 полетника Kakute F4 AIO V2 FC.
Crossfire Micro Receiver:
Crossfire Nano Receiver:
Привязываем приёмник Crossfire к передатчику
Привязка приёмников Crossfire делается очень просто (в большинстве случаев), активировать режим привязки можно при помощи LUA скрипта. Такие скрипты поставляются с OpenTX начиная с версии 2.2., так что ничего не придется качать. 🙂
TBS Crossfire “Full” Module установлен в Horus X10
- На следующем экране выбираем XF Micro TX
- Далее выбираем Binding (как показано на картинке)
Выходим из меню, нажав Exit. Переходим к настройке приёмника.
Настраиваем приёмник в Таранисе
Теперь настраиваем передающий радиомодуль.
Для типичной конфигурации коптера в большинстве случаев будет достаточно 250 мВт выходной мощности. А автоматическое изменение мощности (Dyn. power) можно отключить.
Начиная с версии 2.4. максимальная выходная мощность Micro-модуля увеличена со 100 мВт до 250 мВт (англ).
Настраиваем Betaflight для работы с Crossfire
Проверяем конечные точки (1000 и 2000), затем средние точки (1500), читаем тут про настройку.
Стики не двигаются? Возможно, включена инверсия сигнала. Попробуйте дать команду в консоли:
Если ничего не работает, возвращаемся к началу инструкции и проверяем провода, настройки Output Map, и параметры Betaflight.
На этом всё, Betaflight настроена для работы с Crossfire! 🙂
Устанавливаем антенну приемника
Чтобы добиться максимально возможного радиуса уверенного приема постарайтесь располагать антенну так, чтобы рама её не затеняла. Не сгибайте антенну и старайтесь правильно её ориентировать.
Антенну можно поставить практически в любое место на коптере, главное, чтобы её не повредили винты, все очень сильно зависит от рамы. Не забудьте поискать 3Д-печатный крепеж на Thingiverse.
Настраиваем LUA скрипты
На пульте можно запустить LUA скрипты для изменения кучи параметров Betaflight, например: PID, рейты, looptime, параметры фильтров, канал видеопередатчика и его выходную мощность!
Настраиваем LQ и RSSI в OSD и в предупреждениях Тараниса
Несколько наиболее популярных вопросов.
Сколько человек может одновременно летать, используя Crossfire?
В статье рассмотрены вопросы, касающиеся построения бесшовной Wi-Fi сети (беспроводной сети с бесшовным роумингом) в загородном доме. Бесшовная беспроводная сеть подразумевает создание единого информационного пространства, в состав которого входят от двух до нескольких десятков источников сигнала (точек доступа (ТД)) и в котором клиентские устройства (абоненты беспроводной сети: ноутбуки, смартфоны, планшеты и т.д.) могут перемещаться без потери связи. Переключение от одной ТД к другой происходит автоматически, при этом в качестве предпочтительной ТД выбирается та, сигнал которой лучше.
1. Стандарты WI-FI
1.1 Действующие стандарты Wi-Fi:
- IEEE 802.11a;
- IEEE 802.11b;
- IEEE 802.11g;
- IEEE 802.11n (Wi-Fi 4 – принятое упрощенное название);
- IEEE 802.11ac (Wi-Fi 5);
- IEEE 802.11ax (Wi-Fi 6, сертификация Wi-Fi Alliance вышла 16.09.2019).
Современные беспроводные сети строятся с использованием стандартов Wi-Fi 4 и Wi-Fi 5. При этом при использовании Wi-Fi 4 обеспечивается обратная совместимость с 802.11b и 802.11g, что позволяет использовать старые устройства для доступа в сеть. 802.11a имеет совместимость с Wi-Fi 5 и может пригодиться для подключения очень старого ноутбука к беспроводной сети.
Последнее время производители оборудования для построения беспроводных сетей отказываются от поддержки 802.11a. IEEE 802.11ac поддерживается не всеми клиентскими устройствами, включая современные смартфоны.
В таблице приведены основные характеристики стандартов Wi-Fi:
1.2. Фактическая полезная нагрузка
Существенная разница между скоростью подключения и фактической полезной нагрузкой обусловлена большим объемом служебной информации,полудуплексной природой Wi-Fi, потерями пакетов при передаче и как следствие затратами на повторную отправку, а также зависит от количества подключенных абонентов. Производители оборудования идут на хитрость и везде указывают скорость подключения.
Кроме того скорость Wi-Fi сети снижается пропорционально снижению уровня сигнала по мере удаления от точки доступа. Так даже на расстоянии более 50 метров скорость может снизиться до нескольких Мбит/с, а при наличии препятствий в виде толстых стен или железобетонных перекрытий уровень сигнала, а вместе с ним и скорость, могут снизиться до минимальных значений (1-2 Мбит/с) уже на расстоянии 10-15 метров. При еще большем снижении уровня сигнала, как правило, происходит разрыв связи.
2. MIMO/MU-MIMO
Как видно из таблицы выше существенный скачок скорости произошел с выходом стандарта Wi-Fi 4. Этого удалось добиться за счет применения технологии MIMO, которая обеспечивает поддержку приема и передачи с использованием нескольких антенн. (В MIMO как раз фишка в том, что передается несколько независимых уникальных потоков, которые формируются на отдельных радиотрактах. А несколько антенн – это всего лишь технология разнесенного приема-передачи, где при передаче один и тот же поток излучается с нескольких антенн, что повышает SNR на приемнике). Точка доступа с поддержкой Wi-Fi 4 может иметь по четыре передающих и принимающих антенны (MIMO 4x4). Чаще встречаются схемы MIMO 3x2 и MIMO 2x2. Клиентские устройства обычно используются MIMO 2x2 или MIMO 2x1.
Таким образом, ТД с MIMO 4x4 может обеспечить скорость до 600 Мбит/с.
Очередное повышение пропускной способности произошло с выходом стандарта Wi-Fi 5. В нем используется технология MU-MIMO, в которой может использоваться до 8 приемников и передатчиков (на точке доступа) и позволяет передавать данные нескольким пользователям в один момент времени, а также увеличена ширина канала (до 160 МГц).
Принцип работы MIMO и MU-MIMO показан на рисунке:
Технология MU-MIMO не завоевала рынок Wi-Fi и вот почему:
- Мало MU-MIMO клиентов. То есть почти нет клиентов, поддерживающих явное формирование диаграммы направленности, которое является обязательным требованием для MU-MIMO;
- MU-MIMO работает эффективно только при существенном разнесении клиентов в пространстве. В современных высокоплотных сетях обеспечить данное условие невозможно;
- Для MU-MIMO необходимо формировать диаграмму направленности при передаче. Это осуществляется с помощью предварительного обмена специальными кадрами. Если необходимо передать небольшой объем данных, то формирование луча может занять больше времени, нежели непосредственная передача данных.
Клиентские устройства Wi-Fi 5 могут поддерживать MIMO 4x4, но чаще всего встречаются схемы MIMO 3x2 и MIMO 2x2 и даже MIMO 2x1.
Стоит учитывать, что ноутбуки, поддерживающие MIMO 4x4, относятся к топовому сегменту, а смартфонов поддерживающих данную конфигурацию на момент написания статьи найти и вовсе не удалось.
Таким образом, максимальная фактическая полезная нагрузка канала связи может достигать 4500 Мбит/с для точки доступа и до 2250 Мбит/с для абонента (для конфигурации 4x4).
При этом, большинство устройств будут передавать данные с более низкой скоростью, примерно пропорциональной количеству антенн и ширине канала.
С учетом вышесказанного в большинстве случаев переплачивать за вот таких «крабов» смысла нет:
3. Диапазоны частот Wi-Fi
Важным отличием Wi-Fi диапазонов является радиус действия. В идеальных условиях радиус действия диапазона 5 ГГц меньше, чем у 2,4 ГГц. Серьезной помехой для более высокочастотного диапазона будет даже листва деревьев, дождь или туман, в то время как низкие частоты менее чувствительны к таким преградам. Поэтому в обычных условиях (дом/квартира) радиус действия примерно в 2 раза больше в пользу диапазона 2,4 ГГц. При этом стандарт 802.11ac, работающий в диапазоне 5 Ггц, поддерживает большую скорость передачи.
Зачастую современное оборудование для построения БЛВС (беспроводная локальная вычислительная сеть) поддерживает оба диапазона. При этом оно стоит в 1,5-2 раза дороже, чем аналогичное с поддержкой только 2,4 ГГц.
Некоторые материалы очень сильно поглощают и/или отражают сигнал, поэтому может сложиться такая ситуация с образованием «мертвых зон»:
4. Выбор диапазона для беспроводной сети
В квартирах диапазон 2,4 ГГц может быть зашумлен соседскими ТД. В загородном доме данная проблема отсутствует (но могут быть исключения в виде соседей, которые выкрутили мощность передатчика точки доступа на максимум), поэтому для организации беспроводной сети предпочтительнее использовать диапазон 2,4 ГГц. Это обеспечит большую зону покрытия и позволит обойтись меньшим количеством ТД. При этом за счет использования ТД с технологией MIMO можно обеспечить полезную скорость сети до 200 Мбит/с на точке доступа и 50-100 Мбит/с для клиентских устройств, чего будет достаточно в 95-99% случаев. Кроме этого стоит помнить, что диапазон 5 ГГц может не поддерживаться некоторыми клиентскими устройствами.
Эффективное расстояние сигнала для диапазона 2,4 ГГц при отсутствии препятствий и сильных помех составляет примерно 100 метров. При определении необходимого количества ТД учитывать данные о затухании сигнала из таблицы:
Например, при прохождении через 2 деревянные стены эффективный прием будет возможен на расстоянии около 9 метров (первое прохождение: 100*30%=30 метров, второе прохождение: 30*30%=9 метров).
По мере снижения уровня сигнала будет снижаться и скорость передачи.
Эффективное расстояние не является главным фактором при проектировании Wi-Fi сети. Существует проблема "скрытой станции" которая проявляется в том, что одно или несколько клиентских устройств могут слышать точку доступа, но не слышать другие клиентские устройства. Из-за особенности полудуплексного доступа к радиосреде (CSMA/CA) это приводит к увеличению количества повторно передаваемых пакетов, как следствие снижение пропускной способности сети. Если клиент слышит точку доступа через стену, то это не значит, то он слышит других клиентов, а это, как мы выяснили, снизит пропускную способность сети.
У всего Enterprise оборудования, которое я видел, есть функционал роуминга из 5 ГГц в 2.4 ГГц. То есть, когда клиент начинает слышать точку доступа хуже -70 dBm в 5 ГГц, он “роумится” на точку, которую слышно лучше и при этом она имеет тот же SSID, даже если она в 2.4 ГГц. Таким образом, нет необходимости держать два SSID под 2.4 и 5 ГГц, это раз. И два – роуминг из 5 ГГц в 2.4 ГГц это вообще не фокус, а обыденность.
!ПРИМЕЧАНИЕ: Если вы планируете использовать Wi-Fi сеть для создания системы видеонаблюдения, следует учесть, что большинство современных моделей беспроводных видеокамер поддерживают только 802.11n. При этом даже при использовании MIMO 4x4 на одну точку доступа можно подключить не более 4 видеокамер. И даже в таком случае возможны подвисания и потеря связи. На самом деле очень много зависит от самих камер видеонаблюдения, какой поток информации они транслируют, сколько мегапикселей матрицы и пр. В этих вопросах лучше проконсультироваться со специалистами.
Для видеонаблюдения лучше всего организовать проводное соединение. Беспроводные камеры можно применить, когда возможность протянуть кабель отсутствует (например, чтобы не портить ремонт).
5. Определение зоны покрытия сети
Перед покупкой оборудования для организации беспроводной сети с бесшовным роумингом нужно определить необходимую зону покрытия. Это может быть дом (часть дома) и двор (его часть) и т.д.
Для более точного определения зоны покрытия нужно понять, где и для чего будет использоваться беспроводная сеть: управление системой «Умный дом», взаимодействие внутри домашней локальный сети, выход в Интернет и т.д.
6. Диаграмма направленности
Важной характеристикой ТД является диаграмма направленности антенны:
- всенаправленная;
- секторная;
- направленная.
7.1 Всенаправленная ТД
Сигнал всенаправленной ТД распространяется равномерно во все стороны:
7.2 Секторная ТД
Диаграмма направленности секторной ТД выглядит следующим образом (сигнал распространяется в определенных направлениях):
7.3 Направленная ТД
ТД с узконаправленной антенной используются для передачи сигнала на расстояния от нескольких сотен метров до нескольких километров в прямой видимости, когда организация альтернативных каналов связи невозможна. При этом в дождь или туман связь будет пропадать. Диаграмма направленности ТД с направленной антенной выглядит так:
Точки доступа делятся на внутренние (для эксплуатации внутри помещений) и внешние (для эксплуатации вне помещений). Внешние точки доступа имеют более широкий температурный диапазон, а также лучше защищены от воздействия окружающей среды.
Зная типы ТД, особенности распространения и ослабления сигнала можно без проблем рассчитать необходимое количество точек доступа с учетом планировки дома и необходимой зоны действия сигнала. При этом рекомендуется располагать точки доступа на каждом этаже, а также установить ТД недалеко от межэтажного проема, т.к. перекрытие очень сильно снижает уровень сигнала.
7. WI-FI контроллер
При бесшовном роуминге во всей области действия Wi-Fi создается сеть с единым названием (идентификатором) и организуется централизованное управление точками доступа. Это обеспечивается посредством контроллера беспроводной сети (Wi-Fi контроллера). Обобщенная схема организации такого подключения выглядит так:
В качестве контролера может выступать специальное устройство или программа. У некоторых производителей в качестве контроллера может выступать одна из точек доступа, которой назначается данная роль.
Wi-Fi контроллер может устанавливаться на персональный компьютер, откуда и осуществляется управление оборудованием. При использовании в качестве контроллера специального устройства или одной из точек доступа управление осуществляется посредством веб-интерфейса (как правило) или специального ПО (консоли).
Кроме очевидных функций по созданию сети контроллер обеспечивает мониторинг радиосреды в зоне покрытия, что позволяет обнаруживать помехи и осуществлять необходимые корректировки в автоматическом режиме (смену каналов точек доступа, подстройку мощности сигнала и т.д.).
Точки доступа соединяются между собой через коммутатор стандартным сетевым кабелем (витая пара), как показано на схеме выше. При этом питание точек доступа осуществляется от самого коммутатора с использованием технологии PoE (коммутатор также должен поддерживать PoE). Применимые модели коммутаторов лучше уточнить у производителя выбранного Wi-Fi оборудования. Стоит учитывать, что длина сетевого кабеля для работы PoE ограничена и зависит от выбранного оборудования. Как правило, она указывается в характеристиках ТД и составляет порядка 60-100 метров.
Если по каким то причинам не получается запитать ТД доступа напрямую от коммутатора с поддержкой PoE или между коммутатором и ТД слишком большое расстояние, может использоваться промежуточный коммутатора или PoE-инжектор (идет в комплекте с некоторыми ТД). Схема использования PoE-инжектора:
Режимы работы WiFi (или топология сетей WiFi)
Выделяют три режима организации беспроводных сетей WiFi:
- Эпизодическая сеть (Ad-Hoc или IBSS – Independent Basic Service Set).
- Основная зона обслуживания Basic Service Set (BSS) или Infrastructure Mode.
- Расширенная зона обслуживания ESS – Extended Service Set.
Режим Ad-Hoc (Independent Basic Service Set (IBSS) или Peer-to-Peer).
Режим Ad-Hoc представляет собой п ростейшую структуру локальной сети, когда абонентские станции (ноутбуки или компьютеры) взаимодействуют непосредственно друг с другом. Такая структура удобна для срочного развертывания сетей. Для ее создания необходим минимум оборудования – каждая абонентская станция должна иметь в своем составе адаптер WLAN.
Рис. 1. Режим IBSS
Режим BSS ( Basic Service Set )
В режиме BSS узлы сети взаимодействуют друг с другом не напрямую, а через точку доступа (Access Point, AP).
В режиме BSS все узлы взаимодействуют между собой через одну AP, которая может играть роль моста для подключения к внешней кабельной сети.
Рис. 2. Топология BSS
Режим ESS (Extended Service Set)
Режим ESS позволяет объединить несколько точек доступа, т.е. объединяет несколько сетей BSS. В данном случае точки доступа могут взаимодействовать и друг с другом. Расширенный режим удобно применять тогда, когда необходимо объединить в одну сеть несколько пользователей или подключить несколько проводных или беспроводных сетей.
Рис. 3. Режим ESS
Как выбрать режим работы WiFi?
Одним из основных вопросов при организации WLAN-сетей является размер покрытия. На этот параметр оказывает влияние сразу несколько факторов:
1) Используемая частота (чем она больше, тем меньше дальность действия радиоволн).
2) Наличие преград между узлами сети (различные материалы по-разному поглощают и отражают сигналы).
3) Режим функционирования – Infrastructure Mode или Ad Hoc.
4) Мощность передающего оборудования и чувствительность принимающего оборудования.
Дальность действия WiFi
При идеальных условиях распространения радиоволн зона покрытия одной точки доступа будет иметь следующие значения:
- сеть стандарта IEEE 802.11a - 50 м,
- сети 802.11b, g, n - порядка 100 м.
Увеличивая количество точек доступа в режиме ESS, можно расширять зоны покрытия сети на всю необходимую область охвата.
О преимуществах совместной работы сетей мобильной связи с сетями WiFi и о других инновационных технологиях читайте в новой книге "Мобильная связь на пути к 6G".
Читайте также: