Тип компаний в зависимости от их целей коммутаторы
Корпоративная сеть – это структурная сеть какой-либо организации, главной целью которой является создание эффективной внутренней и внешней работы этой организации. По сути это взаимосвязанная совокупность локальных сетей под влиянием глобальной сети. Пользователями данной сети являются исключительно сотрудники данной организации. Часто корпоративная сеть включает в себя также офисы, отделения, подразделения и иные структуры организации в различных городах и странах.
Организация объединенной корпоративной сети
Локальные корпоративные сети каждого отделения связаны друг с другом опорной (транспортной) сетью. При масштабной организации, когда отделения и офисы компании находятся в разных городах и странах, в качестве опорных сетей могут использоваться уже существующие глобальные сети передачи данных, а именно сети Интернет. Основной обмен данных осуществляется в локальных сетях, а опорная сеть предназначена для согласования проектных результатов, получаемых в разных офисах организации. Этому способствует иерархическая структура сети, тем самым снижая трафик в каналах передачи данных.
Канал передачи данных включает в себя опорную транспортную сеть в роли линии связи для обмена данными между отделениями, оконечную аппаратуру приема-передачи данных, коммутационное оборудование на маршруте передачи данных.
Первая задача для организации объединенной корпоративной сети –каналы связи. Есть несколько вариантов организации каналов связи между отделениями:
- Собственный физический канал связи
- VPN
В первом варианте каналы строятся между отделениями. Это может быть медный кабель, коаксиал, оптический кабель, радиосвязь и прочее.
К достоинствам данного метода можно отнести:
- Гибкость (при предъявляемых требованиях канал возможно развернуть)
- Контроль и безопасность
- Развертывание
- Обслуживание
- Приемлемо для небольших расстояний – для организации связи между отделениями в других городах и странах лучше воспользоваться уже существующими сетями, а прокладка кабелей будет актуальна лишь в пределах небольшой территории, ограниченной несколькими километрами, или, например, между соседними зданиями.
Во втором варианте организации используются уже существующая глобальная сеть обмена данными между отделениями - поверх существующей сети организуется VPN .
Существуют 2 метода организации единой объединенной корпоративной сети организации через VPN:
- С помощью использования интернет-провайдера;
- С помощью использования собственного оборудования.
В первом случае, если главный офис и отделения организации подключены к сети Интернет через 1-ого интернет-провайдера, то, при наличии у него услуги VPN, можно рассчитывать на аренду выделенных линий (в том числе высокоскоростных) у интернет-провайдера.
Достоинства данного метода:
- Простота в использовании, так как обслуживание полностью возлагается на провайдера
- Универсальный размер канала – скорость передачи не может быть ниже заявленной
Недостатки данного метода:
- Бесконтрольность - организация не несет ответственность за оборудование, которое находится на стороне провайдера
- Дороговизна - при большой удаленности отделений друг от друга стоимость аренды каналов может значительно возрасти
Во втором случае, если отделения организации располагаются в разных странах и не могут пользоваться услугами одного провайдера, возможно, придется организовывать объединение отделений на основе собственного оборудования.
Достоинства данного метода:
Недостатки данного метода:
Некоторые интернет-провайдеры так же могут предоставлять не только транспортные услуги корпоративным пользователям, но и информационные, как, например, услуги хостинга, переноса собственных серверов, веб-сайтов и баз данных организаций на территории провайдера, который будет осуществлять их обслуживание и эффективную работу, а также обеспечивать быстрый доступ к ним. Распространение облачных сервисов усиливает эту тенденцию. Использование облачной инфраструктуры для корпоративной сети будет подробнее раскрыто в следующих разделах.
В данной статье будет рассматриваться вариант организации корпоративной сети c соединениями между разными отделениями посредством собственных VPN-шлюзов. Это также поможет для дальнейшего доступа к облачной инфраструктуре.
Технологии VPN
Такие технологии VPN-туннелирования как OpenVPN , L2TP/IPse защищают узлы корпоративной сети посредствам связи.
- PPTP – протокол, который создает соединение с компьютером посредством специального туннеля в стандартной сети. Главным его минусом является слабая защищенность – он может быть быстро взломан как для хороших намерений (например, государства), так и для плохих (например, кибератаки). Тем не менее, главными плюсами является ни что иное как отсутствие необходимости установки дополнительного ПО, а также высока скорость работы.
- L2TP/IPsec – протокол, который в компьютерных сетях используется как туннельный, нужен для поддержки частный сетей. Главным достоинством по сравнение с предыдущим протоколом является его высокая защищенность. Но из этого вытекает главным недостаток – слабая скорость: сначала создается IPsec-туннель, затем данные передаются через L2TP.
- OpenVPN – протокол, использующий для защиты соединений такие методы как «точка-точка» и «сайт-сайт». Решение использует OpenSSL библиотеку для обеспечения шифрования, которая имеет в составе такие криптографические алгоритмы, как 3DES, AES, RC5 и Blowfish.
Способ объединения локальных сетей разных офисов организации посредством VPN называется «site-to-site VPN», подразумевающий наличие двух устройств, между которыми создается VPN-туннель. Роль этих устройств играет VPN-шлюз. Данный способ соединения является наиболее оптимальным для организации корпоративной сети.
Firewall и VPN-шлюз
Находясь внутри организации, сотрудники часто могут подключиться к незащищенным точкам доступа, что несомненно может повлечь за собой плохие последствия. Удаленный доступ решает эту проблему безопасности и позволяет без проблем устанавливать соединение к корпоративной сети. Для того, чтобы защитить данные пользователей используются вышеназванные протоколы наподобие IPsec и L2TP.
Локальная сеть организации
Выделим основные элементы корпоративной сети:
- Рабочие станции
- Сетевое оборудование
- Серверы
- Почтовый сервер
- Сервер печати
- Сервер базы данных
- Файловый сервер
- Терминальный сервер (MS Office, 1С, Skype и т.д.)
- Web-сервер
- Сервер резервного копирования
- Другие серверы
Рабочая станция – доступный компьютер с подключенной сетью, открывающий пользователю доступ к ресурсам корпоративной сети. В качестве рабочих станций могут выступать «сетевые компьютеры» (Net PC). Рабочая станция на основе обычного компьютера оснащена собственной операционной системой и набором программных компонентов для выполнения расчетных, графических, инженерных и других работ и может работать как в локальном или сетевом режиме.
Сетевое оборудование – устройство, предназначенное для работы компьютерных сетей. Оно разделяется на активное и пассивное.
Серверы – многопользовательский компьютер, предоставляющий общий доступ другим рабочим станциям к своим системным ресурсам (вычислительным мощностям, базам данных, программному обеспечению, принтерам и т.д.) и распределяющий эти ресурсы. На него может быть установлена своя ОС, на которой возможно функционирование и других сетевых компьютерах.
В зависимости от конечных целей серверы делят на:
- Файловые – обеспечивают универсальный доступ к общим данным организации.
- Терминальные – создают удаленные сессии заранее установленных на сервере приложений для доступа к ним сотрудников с их рабочих станций по сети предприятия.
- Электронной почты – фильтрация, скачивание и обработка на сетевом компьютере.
- Резервного копирования – служат для создания резервных копий данных с других серверов.
- Печати – служат для совместного доступа к печатному оборудованию.
- Базы данных – обслуживают и управляют базой данных.
- Web-сервера – для приема и обработки запросов от клиентов к сайту в сети.
Таким образом, общая структура корпоративной сети будет выглядеть так, как представлено на рисунке.
Соответствуют ли ваши коммутаторы требованиям, которые постоянно меняются? Если вы поймете различия между сетевыми коммутаторами разных типов, то сможете выбрать подходящее решение, которое будет полезно и сейчас, и в будущем. При выборе коммутаторов вам нужно оценить разные категории коммутаторов, а также их особые преимущества.
Сетевые Ethernet-коммутаторы делятся на две основные категории: с модульной и с фиксированной конфигурацией. По мере развития этой сферы появляются новые разновидности сетевых коммутаторов, однако основные категории остаются неизменными.
Модульные коммутаторы
Модульные коммутаторы — это коммутаторы, к которым по мере необходимости можно добавлять модули расширения. Это гибкое решение для тех, кто хочет расширять свою сеть. Модули расширения могут подключаться в виде приложений (межсетевой экран, беспроводная связь, сетевой анализ) и модулей для дополнительных интерфейсов, источников питания или вентиляторов для охлаждения.
Сетевые Ethernet-коммутаторы с фиксированной конфигурацией
Коммутаторы с фиксированной конфигурацией — это коммутаторы с фиксированным количеством портов. Как правило, возможность расширения у таких коммутаторов отсутствует.
Коммутаторы с фиксированной конфигурацией, в свою очередь, делятся на неуправляемые коммутаторы, интеллектуальные коммутаторы и управляемые коммутаторы уровня 2 и уровня 3.
Неуправляемые коммутаторы
Неуправляемый коммутатор достаточно подключить к источнику питания — и он сразу начнет работать. Выполнять предварительную настройку не требуется. Обычно неуправляемые коммутаторы подходят для подключения, к которому предъявляются базовые требования. Их часто используют для домашних сетей или там, где требуется всего несколько дополнительных портов, например на рабочем месте, в лаборатории или конференц-зале.
Коммутаторы этой категории — самые бюджетные: понадобятся только базовая коммутация второго уровня и подключение. Это оптимальное решение, например, если нужно несколько дополнительных портов на рабочем месте, в лаборатории, конференц-зале или даже дома.
На рынке представлены неуправляемые коммутаторы, которые также выполняют диагностику кабеля, обнаруживают петли трафика, назначают приоритеты трафику с помощью настроек QoS по умолчанию, помогают экономить на электроэнергии благодаря технологии Energy Efficient Ethernet (EEE) и даже PoE (Power over Ethernet). Но, как понятно из названия, управлять и изменять конфигурации таких коммутаторов практически невозможно. Достаточно их подключить — и они сразу, без предварительной настройки, готовы к работе.
Интеллектуальные коммутаторы
Коммутаторы этой категории продолжают развиваться. В целом эти коммутаторы поддерживают некоторые функции управления, контроля качества обслуживания и безопасности, при этом они хуже масштабируются и предлагают меньше возможностей по сравнению с управляемыми коммутаторами. Но интеллектуальные коммутаторы более доступны по цене. Выполнять их развертывание можно по периметру большой сети (если в ее основе — управляемые коммутаторы), в инфраструктуре небольших сетей или для несложных функций.
Возможности этой категории интеллектуальных коммутаторов значительно различаются. Все эти устройства оснащены интерфейсом для управления, который обычно проще, чем у управляемых коммутаторов.
Интеллектуальные коммутаторы позволяют сегментировать сеть на рабочие группы, создавая сети VLAN, но количество таких сетей и узлов (MAC-адресов) меньше, чем у управляемого коммутатора.
Также они обеспечивают определенную степень защиты, например с помощью аутентификации конечных точек по протоколу 802.1x (в некоторых случаях с ограничением списка контроля доступа), хотя уровни управления и детализации не отличаются от тех, что предоставляет управляемый коммутатор.
Более того, интеллектуальные коммутаторы достаточно универсальны: они поддерживают базовые функции обеспечения качества обслуживания (QoS), что упрощает распределение приоритетов для пользователей и приложений на основании протокола 802.1q/TOS/DSCP.
Полностью управляемые коммутаторы уровней 2 и 3
Управляемые коммутаторы предоставляют самый широкий спектр функций и гарантируют самую удобную работу с приложениями, самый высокий уровень безопасности, самый точный контроль и управление сетью, а коммутаторы с фиксированной конфигурацией — максимальную масштабируемость. Именно поэтому управляемые коммутаторы часто внедряют в качестве коммутаторов агрегации/доступа в очень крупных сетях или в качестве коммутаторов уровня ядра в относительно небольших сетях. Управляемые коммутаторы должны поддерживать и коммутацию второго уровня, и IP-маршрутизацию третьего уровня, хотя некоторые из них поддерживают только коммутацию второго уровня.
В плане безопасности управляемые коммутаторы защищают на уровне передачи данных (при перенаправлении пользовательского трафика), контроля (при передаче трафика между сетевыми устройствами, чтобы пользовательский трафик достигал места назначения) и управления (трафик, используемый для управления самой сетью или устройством). Кроме того, управляемые коммутаторы осуществляют контроль насыщения сети, защиту от DoS-атак и другие функции.
Функции списка контроля доступа позволяют настроить отбрасывание пакетов, ограничение скорости, зеркалирование или внесение данных о трафике в журнал по адресам второго уровня, адресам третьего уровня, номерам портов TCP/UDP, типу разъема Ethernet, флагам ICMP или TCP и т. д.
Управляемые коммутаторы поддерживают множество функций, с помощью которых они обеспечивают свою защиту и защиту сети от намеренных или непреднамеренных DoS-атак. К таким функциям относятся динамическая проверка ARP, перехват DHCP-трафика для сетей IPv4, защита на уровне первого транзитного перехода для сетей IPv6 с функцией RA Guard, обнаружение соседа, установка связи между соседями и т. д.
Среди других возможностей обеспечения безопасности — частные сети VLAN для защиты сообщества пользователей или изоляции устройств, а также безопасное управление (загрузки через SCP, веб-аутентификация, авторизация и учет по протоколу Radius или TACACS и т. д.). Назначение политик для уровня управления (CoPP) с целью защиты ЦП коммутатора и более обширной поддержки протокола 802.1x (учет времени, назначение динамической VLAN, уровень порта/хоста и т. д.).
У этих устройств много вариантов масштабирования, поэтому вы можете, к примеру, создавать множество сетей VLAN (для рабочих групп), устройств (таблицы MAC-адресов), IP-маршрутов и политик ACL для безопасности и функций QoS на основе потоков.
Для обеспечения максимальной доступности сети и времени бесперебойной работы управляемые маршрутизаторы поддерживают резервирование третьего уровня по протоколу VRRP (протокол резервирования виртуального маршрутизатора), большое количество групп агрегации каналов (для масштабируемости и отказоустойчивости), а также функции защиты второго уровня, например STRG и BPDU.
А возможности обеспечения качества обслуживания (QOS) и многоадресной рассылки намного шире, чем у интеллектуальных коммутаторов. Управляемые коммутаторы поддерживают отслеживание IGMP и MLD с функциями оптимизации многоадресного трафика IPv4/v6 в локальной сети, предотвращение перегрузок TCP, 4 или 8 очередей для сортировки трафика по важности, настройку или маркирование трафика по второму уровню (802.1p) или третьему уровню (DSCP/TOS), а также ограничение трафика по скорости.
Другие особенности
Помимо различий в категориях коммутаторов стоит учитывать и другие особенности, в том числе скорость передачи данных сетевого коммутатора, количество портов, питание через Ethernet и возможности стекирования.
Скорость передачи данных сетевого коммутатора
Сетевые коммутаторы могут различаться по скорости передачи данных. Доступны коммутаторы с фиксированной конфигурацией стандарта Fast Ethernet (10/100 Мбит/с), Gigabit Ethernet (10/100/1000 Мбит/с), Ten Gigabit (10/100/1000/10000 Мбит/с) и даже 40/100 Гбит/с. На некоторых коммутаторах также доступна многогигабайтная технология. Она обеспечивает скорость передачи более 1 гигабайта, если используются кабели категории 5e/6. У коммуникаторов есть несколько портов каскадирования и портов нисходящего канала. Порты нисходящего канала устанавливают подключение к конечным пользователям, а порты каскадирования — к другим коммутаторам или сетевой инфраструктуре.
Количество портов
Сетевые коммутаторы различаются по размеру. Коммутаторы с фиксированной конфигурацией обычно оснащены 5, 8, 10, 16, 24, 28, 48 и 52 портами. Это может быть комбинация разъемов SFP/SFP+ для подключения оптоволоконного кабеля, но чаще используются медные порты с разъемами RJ-45 спереди для установки подключения на расстоянии до 100 метров. Оптоволоконные модули SFP позволяют установить подключение на расстоянии до 40 километров.
Поддержка технологии электропитания по сети Ethernet
Технология питания через Ethernet (PoE) обеспечивает питание устройства (например, IP-телефоны, IP-камеры видеонаблюдения или точки беспроводного доступа) по тому же кабелю, что и для передачи данных. Одно из преимуществ технологии PoE — это гибкость: вы можете разместить конечные устройства в любой части помещения, даже там, где сложно подвести питание через розетку. Например, точку беспроводного доступа можно разместить прямо в стене или потолке.
Коммутаторы подают питание по нескольким стандартам: IEEE 802.3af подает питание до 15,4 Вт на порт коммутатора, а IEEE 802.3at (также известный как PoE+) подает питание до 30 Вт на порт коммутатора. Для большинства конечных устройств подходит стандарт 802.3af, но для некоторых устройств (например, видеотелефонов и точек доступа с несколькими радиомодулями) требуется более высокая мощность. Некоторые модели коммутаторов Cisco также поддерживают технологию универсального питания PoE (UPoE) или PoE 60 Вт, которая подает мощность до 60 Вт на порт коммутатора. Новый стандарт PoE 802.3bt обеспечивает более высокую мощность для работы приложений нового поколения.
Чтобы выбрать подходящий коммутатор, определите, какая мощность вам нужна. При подключении к настольным компьютерам или устройствам другого типа, не требующим технологии PoE, самым выгодным решением будут коммутаторы без поддержки PoE.
Стекируемые и автономные коммутаторы
По мере расширения сети вам понадобится больше коммутаторов, чтобы обеспечить сетевое подключение для устройств, количество которых увеличивается. Если вы используете автономные коммутаторы, каждый из них нужно контролировать и настраивать по отдельности.
В отличие от них стекируемые коммутаторы облегчают управление и улучшают доступ к сети. Вместо того, чтобы настраивать, контролировать и устранять неполадки каждого из восьми коммутаторов с 48 портами, вы можете использовать стекируемые коммутаторы, которые позволят контролировать все восемь устройств как одно. Если все восемь коммутаторов (всего 384 порта) являются стекируемыми, они работают как один коммутатор с одним агентом SNMP/RMON, одним доменом связующего дерева, одним интерфейсом командной строки или веб-интерфейсом, то есть одним уровнем управления. Вы также можете создать группы агрегации каналов, которые охватывают несколько устройств в стеке и зеркалируют порты для передачи трафика от одного устройства в стеке к другому, либо настроить охват ACL/QoS для всех устройств. Такой подход дает значительные преимущества при эксплуатации.
Обратите внимание: некоторые продукты, представленные на рынке, называются стекируемыми, но поддерживают только один интерфейс пользователя или интерфейс централизованного управления для доступа по отдельности к каждому коммутатору. То есть это не стекирование, а кластеризация. В таком случае вам придется настраивать каждую функцию (ACL, QoS, зеркалирование портов и т. д.) на каждом коммутаторе отдельно.
Стекирование дает и другие преимущества. Вы можете подключить компоненты стека в кольцо: если порт или кабель выйдет из строя, стек автоматически выполнит перенаправление, чтобы обойти неработающий элемент. Чаще всего это занимает всего микросекунду. Вы также можете добавлять или отключать компоненты стека, автоматически распознавать их и добавлять в стек.
Региональные представители:
Глава 41 : Коммутаторы (Свитчи)
Сегодня, как и раньше, среду передачи данных технологии Ethernet продолжают обвинять в ненадежности и низкой степени стабильности. Во многом это не далеко от истины, ведь алгоритм CSMA/CD остается неизменным при любых типах программных решений. Чтобы ликвидировать часть указанных недочетов в 1990 году была разработана технология коммутации сегментов Ethernet, предложенная фирмой Kalpana. Спустя несколько лет данную компанию приобрела корпорация Cisco. В результате применения этой технологии разделяемая среда больше не разграничивалась маршрутизаторами и мостами - она была полностью ликвидирована.
Такое изобретение не являлось принципиально логическим. Способ функционирования этой технологии основывался на труднодостижимом в то время принципе - одновременной обработке входящих кадров разными портами. Это означало то, что мосты обрабатывали кадр за кадром, последовательно. В результате коммутаторы Kalpana могли обрабатывать кадры между парой портов вне зависимости от других портов. Так идея отказа от разделяемой среды получила реальное воплощение.
Сущим везением для технологии Ethernet можно считать то, что появление коммутаторов опередило внедрение технологии АТМ. Выражалось оно в том, что у пользователей появилась хорошая альтернатива, которая давала возможность повысить качество сети без существенных финансовых затрат. Для реализации этого преимущества достаточно было просто заменить концентраторы коммутаторами, или же, в некоторых случаях, внедрить коммутаторы с целью разделения сегментов растущей сети. Таким образом, большое число уже применяемого оборудования конечных узлов, концентраторов, кабельных систем и повторителей не подлежало замене. В итоге происходила значительная экономия финансов, делающая переход на какую-нибудь новую технологию нерентабельным.
Маршрутизаторы не распознают протоколы сетевого уровня. Такой подход дал возможность не изменять главный принцип работы сетей между собой.
Укажем так же, что на рост популярности коммутаторов оказала влияние легкость их установки и простата настройки. Данное устройство относится к категории "самообучающихся", что позволяет отказаться от его конфигурирования. Для его работы достаточно просто грамотно подключить кабельную систему к свитчу. Дальнейшее его функционирование может происходить без контроля со стороны администратора сети без потери в качестве выполнения поставленных задач.
Как и ранее на сегодняшний день коммутаторы остаются самым универсальным, удобным и мощным классом оборудования для ЛВС. В одной из простейших своих вариаций устройство является многопортовым мостом Ethernet. Однако технический прогресс оставил свой отпечаток и на этом оборудовании - его свойства значительно изменились и дополнились. В результате главный принцип работы и назначение коммутаторов стало весьма сложно разглядеть среди этих дополнений.
Техническая реализация коммутаторов.
С технической точки зрения принцип работы коммутатора не очень сложен. Объяснить его можно следующим образом: входящий кадр сначала попадает в source port, а затем направляется destination port. При этом активный портом, принявшив кадр, будет только тот, к которому подсоединено устройство с МАС-адресом, совпадающим с адресом назначения полученного кадра.Таким образом, первая задача, которую решает данная технология - это соответствие MAC-адресов портов коммутатора подключенным устройствам. Для этих целей коммутатор формирует специальную таблицу соответствия - САМ (content-addressable memory). Данная таблица появляется в течение процесса самообучения коммутатора. Принцип ее создания будет следующим: когда порт получает отзыв от устройства с физическим адресом Х, он заносит в content-addressable memory запись об этом соответствии.
При поступлении кадра с адресом, указанном в такой таблице, он отправляется на соответствующий порт. Если кадр был предназначен для всех узлов или адрес пункта назначения коммутатору еще не известен, то такой кадр попадает на все активные порты. На протяжении рабочего периода подключенного оборудования его физический адрес может измениться. В таком случае коммутатор делает новую запись в таблице. В случае отсутствия места для новой записи происходи стирание самой старой записи - работает принцип вытеснения.
Если какие-то из записей не используются длительное время, они автоматически стираются. Этот подход освобождает место в таблице САМ и, таким образом, увеличивается скорость выборки нужного адресата.
Стоит заметить, что такой жесткий подход используется только в неуправляемых коммутаторах Dumb. Dumb - это простое и не дорогое сетевое оборудование. Такие коммутаторы практически полностью сместили хабы в несложных сетях. Обычно эти модели обладают средними техническими параметрами, имеют небольшое число портов, в них отсутствует возможность управления со стороны администратора.
На порядок выше, в техническом плане, стоят настраиваемые коммутаторы - Smart. Данная модель дает возможность администратору сети изменять важные настройки работы порта. Для этих целей может использоваться микро-клавиатура, Ethernet или порт RS-232. Внесенные изменения считываются при загрузке и только один раз. Обычно изменение в конфигурации необходимо чтобы отключить возможность коммутатора самостоятельно составлять статическую таблицу соответствия портов МАС-адресам. Эту функцию применяют так же для установки фильтров, назначения скорости и других целей.
Лидером по числу дополнительных возможностей среди коммутаторов является управляемые Intelligent. Эти модели обладают собственной памятью и управлять ими можно с помощью компьютера. Изменение параметров и контроль над этими устройствами происходит без перезагрузки. Данная модель позволяет отслеживать проходящие пакеты, измерять трафик и прочее.
Здесь стоит указать на то, что последний рассмотренный вид коммутатора значительно дороже предыдущих, но принцип его работы тот же. К каждому из узлов подведен отдельный канал со своей полосой пропускания (но это только в том случае, если нет одновременного обращения нескольких устройств к данному). В таких условиях узлы имеют возможность функционировать не зависимо друг от друга. Опасность для сети, организованной с помощью этого оборудования, представляют "бродкастовые" штормы. "Бродкастовый" шторм - это лавинообразно растущая перегрузка сети широковещательными кадрами. Но и эта проблема вполне разрешима: управляемые коммутаторы позволяют разделить одну крупную сеть на несколько виртуальных подсетей. Кроме того, возникновение такого шторма возможно только в очень крупных компьютерных сетях.
Теперь становится отчетливо видно, что основные свойства и ограничения разделяемой среды передачи данных Ethernet не могут быть применимы к сетям, организованным с помощью коммутаторов. Ведь в таких сетях нет коллизий, нет ограничений на количества подключенных устройств и максимальной длины линии.
К примеру, на практике могут применяться линии из оптического волокна, протяженностью в сотни километров, по которым передаются кадры Ethernet. В тоже время локальные сети позволяют объединить тысячи работающих серверов или станций.
Классификация коммутаторов.
Чтобы процессор коммутатора определил порт назначения для кадра Ethernet, он должен иметь доступ к его заголовку. Эта информация попадает в буфер. На этом основании коммутаторы разделяют по способу продвижения кадра:1. cut-through - на лету;
2. Store-and-Forward - с буферизаций.
При первом способе коммутации (на лету) входящие кадры не направляются в быфер целиком. Помещение их в буфер целиком происходит только в ситуации, когда занята шина или порт, а так же если необходимо согласовать скорости передачи. В результате при больших размерах трафика основная часть данных будет подлежать буферизации в различной степени.
Проще говоря, коммутатор "смотрит" только на адрес пункта назначения пакета в его заголовке, а затем сверяет его с САМ-таблицей. Далее, согласно таблице, он отправляет кадр в нужный порт. Сверка с таблицей занимает от 10 до 40 мкс. К числу обычных относится ситуация, когда кадр еще полностью не был передан на входящий порт, но его заголовок уже начал передаваться через выходящий.
При втором методе - Store-and-Forward (полной буферизации) каждый кадр подлежит полной записи, и только после этого процессор порта передает его или отфильтровывает. Такой способ продвижения кадра имеет отрицательную сторону - время задержки достаточно велико. К положительным сторонам относятся поддержка разнородных сетей и уничтожение испорченного кадра. Основная масса современных коммутаторов работает именно по этому второму принципу.
Существует ряд еще более сложных моделей, которые могут автоматически адаптироваться (изменять механизм работы). На то какой режим стоит применять в той или иной ситуации влияет ряд факторов, среди которых, например, объем трафика и масса испорченных кадров.
Кроме описанной выше классификации коммутаторов их так же делят по виду внутренней логической архитектуры:
1. коммутационная матрица;
2. многовходовая разделяемая память;
3. общая шина.
Коммутационная матрица.
Это был самый скоростной промышленный коммутатор. Принцип работы состоит в следующем: вначале процессор порта анализирует заголовок поступившего кадра, затем в этот заголовок добавляется номер порта назначения, который определяется согласно таблице коммутации. После этого кадр оказывался в двухмерной матрице логических переключателей. Управляли этими переключателями определенные биты из номера порта назначения.Сама коммутационная матрица устанавливала путь следования до нужного порта. Таким образом, если это было возможно, кадр попадал в нужный порт, последовательно пройдя через ряд переключателей.
Если на момент поступления кадра нужный порт был занят, то он останавливался в буфере входного порта. Тем временем коммутационная матрица создавала новый путь, который ожидал процессор.
Здесь нужно обратить внимание на одну особенность таких коммутаторов - этот вид коммутирует физические каналы. При таком подходе если возникает ситуация, когда на один и тот же порт попадают несколько кадров одновременно, то пройти переключатель матрицы они смогут только последовательно. Еще один недостаток таких коммутаторов - чем больше портов, тем выше сложность. Другими словами - такое решение плохо масштабируемо. В результате сейчас оно почти не применяется на практике.
Многовходовая разделяемая память.
В этом виде коммутаторов входные и выходные блоки соединяются через общую память. Подключением к блокам памяти занимается менеджер очередей выходных портов. Данный менеджер так же формирует в памяти очереди данных, число которых равно числу портов. Тем временем входные блоки посылают менеджеру запросы на запись данных в определенную очередь для соответствующего исходящего порта.
Использование такого подхода предполагает наличие очень дорогой и быстродействующей памяти, а сама система получается достаточно сложной. Ее преимущества не достаточно весомы, по сравнению с гораздо более дешевой шинной архитектурой. В итоге, как и предыдущий вид, эти коммутаторы не нашли широкого применения.
Архитектура с общей шиной.
В данном случае процессоры портов связываются одной шиной. Чтобы система имела высокие показатели производительности, ее скорость должна быть выше скорости поступления кадров в порт коммутатора (примерно в C/2 раза, где C это сумма скоростей всех портов).
Коммутация с использованием общей шины
Кроме скорости большое значение имеет сам способ передачи кадров по шине. Здесь очевидно то, что передавать кадр сразу полностью не эффективно. Связано это с тем, что во время данного процесса все остальные порты будут простаивать. Для ликвидации такого ограничения используется метод, схожий с АТМ. Суть его в следующем: сначала кадр разбивается на блоки, длиной в несколько десятков байт, а потом эти части передаются "почти" параллельно сразу нескольким портам.
Другими словами этот подход использует метод временной коммутации частей кадров (ячеек, как в АТМ). Такие системы надежны и легко масштабируемы. Описанные преимущества обеспечили данной архитектуре лидирующие позиции на рынке подобных устройств.
Следующий признак, согласно которому коммутаторы можно условно разделить на группы - это область применения:
1. настольные коммутаторы;
2. коммутаторы для рабочих групп
3. магистральные коммутаторы
Коммутаторы для рабочих групп.
Коммутаторы данного типа служат для объединения в единую сеть настольных коммутаторов (или концентраторов 10/100Base-T) с ее дальнейшим подключением к магистральной СПД. Чтобы выполнять данные функции разрабатывается специальная большая таблица маршрутизации, насчитывающая нескольких десятков тысяч MAC-адресов на коммутатор. Кроме того необходимы эффективные средства мониторинга трафика, фильтрации и построения виртуальных сетей. В таких системах обязательна возможность удаленного управления. Здесь так же распространен протокол SNMP.
Эти коммутаторы обычно включают порты 1000baseT либо условия для создания транковых соединений. Порты 1000baseT служат для подключения серверов или соединения нескольких свитчей между собой. Так же используются встроенные модули для оптического волокна и прочие конвертеры физических сред.
Цена такого решения составляет $30-100 за один порт 10/100baseT. Более дешевые модели это Surecom EP-716X и SVEC FD1310. Самые популярные и более дорогие модели это 3com 4400 и Cisco 2950.
Магистральные коммутаторы.
Предназначены для объединения ЛВС в сети передачи данных. Чаще всего имеют модульное исполнение, сложную и мощную конструкцию. Обладают рядом дополнительных возможностей настройки, которая может включать маршрутизацию на III уровне по модели OSI. Так же эти коммутаторы могут содержать резервные источники питания, поддерживать приоритезацию и протоколы Spanning Tree, 802.1q.
Цена на такие магистральные коммутаторы в расчете на один порт колеблется в пределах от 100$ до 1000$. Самым популярным оборудованием этого класса являются тяжелые коммутаторы серии Cisco Catalyst.
Как следует из названия, корпоративные коммутаторы обычно развертываются в сети с большим количеством коммутаторов и соединений, также известных как коммутаторы локальной сети кампуса. Этот термин не имеет ничего общего с определенными типами коммутаторов, но рекомендуется проектировать сетевую среду для сетевых коммутаторов. В этой статье будут рассмотрены три уровня корпоративных коммутаторов и различия между корпоративными коммутаторами, коммутаторами центров обработки данных и коммутаторами, используемыми в домашних сетях.
Корпоративные коммутаторы в иерархическом межсетевом дизайне
В современных корпоративных сетях обычно применяется трехуровневая схема межсетевого взаимодействия, в которой LAN делится на три уровня: уровень ядра, уровень распределения и уровень доступа. Это пример многоуровневой модели FS сетевых коммутаторов.
Рисунок 1: Модель трехуровневой корпоративной сети
Каждый уровень имеет свои особенности и функциональность, что приводит к тому, что устройства на трех уровнях по-разному.
Коммутатор уровня ядра - это магистральный коммутатор большой емкости, обычно расположенный в центре уровня ядра сети и используемый в качестве шлюза в глобальную сеть (WAN) или Интернет.
Коммутаторы уровня распределения как мост и связь между коммутаторами уровня ядра и коммутаторами уровня доступа, показанными на рисунке выше, также называются коммутаторами агрегации. Это гарантирует, что пакеты правильно маршрутизируются между подсетями и VLAN в сети.
Коммутаторы доступа, которые также называются граничными коммутаторами, являются самым низким и самым фундаментальным уровнем в иерархической модели межсетевого взаимодействия из трех уровней. Они облегчают подключение устройств конечного узла, таких как точки доступа и проводные устройства к сети.
На следующем рисунке показано сравнение коммутаторов уровня ядра , коммутаторов уровня распределения и коммутаторов доступа, что поможет вам лучше понять эти корпоративные коммутаторы.
Сравнение коммутатора | Коммутатор уровня ядра | Коммутатор уровня распределения | Коммутатор доступа |
Рабочий уровень | Уровень ядра | Уровень распределения | Уровень доступа |
Функции | Коммутаторы уровня 3, высочайшая надежность, функциональность и пропускная способность | Коммутаторы уровня 3, более высокая надежность, функциональность и пропускная способность | Коммутаторы уровня 2, относительно низкая надежность, функциональность и пропускная способность |
Количества коммутаторов в сети | Наименее (обычно один или два) | Обычно между двумя другими числами | Большинство |
Поддержка основных функций | Очень высокая скорость пересылки, QoS, избыточные компоненты и т. д. | Фильтрация пакетов, QoS, шлюзы приложений и т. д. | Безопасность портов, VLAN, Fast Ethernet/Gigabit Ethernet, PoE и т. д. |
Стоимость | Самый высокий | Выше | Relatively Lower |
Пример | 25G коммутатор, 40G коммутатор, 100G коммутатор | 10G коммутатор | Гигбитный коммутатор |
Коммутатор ЦОД vs Корпоративный коммутатор vs Сетевой коммутатор для дома
Вы можете получить обзор корпоративных коммутаторов из текста выше. Затем в этом разделе будут дополнительно представлены корпоративные коммутаторы путем сравнения с коммутаторами ЦОД и коммутаторами домашней сети. Поставщики коммутаторов предоставляют сетевые коммутаторы, предназначенные для различных сетевых сред, таких как FS коммутаторы серии N, предназначенные для высокопроизводительных сред ЦОД, и идеальные FS коммутаторы S3900 серии для сетей малого и среднего бизнеса, сетей предприятий и кампусов и других домашних сетей. Следующее сравнение поможет вам узнать больше о корпоративных коммутаторах.
Коммутатор ЦОД
Сегодняшняя архитектура ЦОД меняется с многоуровневой модели на конечную модель, в которой коммутаторы позвоночника являются ядром сети, а конечные коммутаторы предоставляют точки сетевого подключения для серверов, коммутаторы ЦОД всегда характеризовались высокой плотностью портов и высокой пропускной способностью. Для обработки трафика север-юг (трафик между пользователями вне ЦОД на сервер центра обработки данных или трафик с сервера ЦОД в Интернет) и трафика восток-запад (трафик между серверами ЦОД).
Корпоративный коммутатор
В отличие от коммутаторов ЦОД конечные пользователи подключаются к сети независимо от того, какие их устройства используются, например PC, ноутбуки, принтеры и т. д. Таким образом, корпоративные коммутаторы обязаны отслеживать и отслеживать пользователей и конечные устройства, чтобы защитить каждую точку подключения от проблем безопасности. Для удовлетворения конкретных сетевых сред некоторые корпоративные коммутаторы имеют особые возможности, такие как функция PoE. Благодаря технологии PoE сетевые коммутаторы предприятия могут управлять энергопотреблением многих конечных устройств, подключенных к коммутаторам.
Коммутатор домашней сети
По сравнению с ЦОД и корпоративной сетью объем трафика в домашних сетях невелик, несмотря на то, что масштаб домашней сети варьируется, что означает, что требования к коммутатору намного ниже. В большинстве случаев коммутатор берет на себя ответственность только за расширение сетевых подключений и передачу данных с одного устройства на другое без необходимости обработки перегрузки данных. Неуправляемые коммутаторы типа «включай и работай» обычно используются для домашних сетей в качестве идеального решения благодаря простому управлению без необходимости настройки и более низкой стоимости, чем управляемые коммутаторы. Как правило, для офиса SOHO с количеством пользователей менее 10 достаточно одного 16-портового коммутатора Ethernet. Но для тех технических специалистов, которые любят создавать быстрые и безопасные домашние сети, часто предпочитают управляемые коммутаторы.
Следует ли использовать коммутаторы ЦОД или корпоративные коммутаторы в сети предприятия?
Когда на предприятии существует сложная сеть с большим количеством серверов, виртуализация сети необходима для оптимизации скорости и надежности сети. По сравнению с традиционными корпоративными коммутаторами локальных сетей коммутаторы центров обработки данных, поддерживающие более богатые функции, помогут успешно развернуть среды виртуальных машин высокой плотности и лучше обрабатывать трафик восток-запад, выросший благодаря виртуализации.
Начнем, пожалуй, с самых основ, чтобы разобраться, откуда вообще возникло понятие уровня сетевого устройства.
В системе OSI присутствует 7 градаций обработки информации.
Расшифруем, что это значит, применительно к различного рода системам и приложениям.
- Физический — элементарная передача «нулей» и «единиц», а также света, тока, радиоволн от источника к получателю. Ни о какой фильтрации и защите сигналов речи не идет.
- Канальный — на этом этапе информация передается фрагментарно, кадрами, при помощи идентификаторов передачи — МАС-адресов, состоящих из 48 бит.
- Сетевой на этом этапе к функционалу добавляется «маршрутизация», с назначением источнику и получателю IP-адресов. Чтобы перекодировать IP в MAC и наоборот, задействуют протокол ARP.
- Транспортный — обеспечивает передачу данных по сети благодаря протоколам TCP и UDP в зависимости от требований конечного получателя.
- Сеансовый — занимается созданием и разрывом сессий. Примером работы могут послужить, например, банковские приложения, которые самостоятельно выходят из учетной записи, если пользователь в течении нескольких минут не предпринимает действий. Также эта ступень отвечает за обмен данными в реальном времени и синхронизацию. Яркий пример подобного процесса — видеоконференция между двумя людьми или целой группой, где каждый участник должен в одно и то же время получать синхронную дорожку видео и звука.
- Представление — или преобразование форматов, а также кодирование и сжатие графических, текстовых, прочих данных. Устройства и приложения из этой категории отвечают за возможность прочтения информации, отправленной от одного пользователя к другому. Пример: пересылка текста в кодировке ASCII будет прочитана при необходимости в UTF-8. Также к процессам типа L6 относится архивирование и распаковка информации, шифрование и дешифровка, для которых используются системы защиты данных.
- Приложения — например, сетевые службы, которые позволяют заниматься серфингом интернета конечному потребителю. Иными словами, сюда относятся все интерфейсы, которые позволяют человеку взаимодействовать с устройствами при помощи инструментов управления.
Функционал устройств коммутации также организован в соответствии с этой моделью. Об этом поговорим ниже.
Что означают уровни коммутаторов L1, L2, L3, L4 и так далее…
Фактически, классические коммутаторы не поднимаются выше третьего уровня — L3. И то, эти устройства можно назвать полноценными маршрутизаторами с поправкой на функционал. Но мы пойдем по классической иерархии и обсудим подробно, как работает сетевое оборудование в соответствии с моделью OSI.
Сетевое оборудование 1 уровня (L1)
Устройства L1 работают на физической ступени. Иными словами, способны обрабатывать различные электрические сигналы от хоста к конечному потребителю и преобразовывать импульсы в логические нули и единицы. Исходя из этого, можно сказать, что обозначение «коммутатор первого уровня» не вполне корректно. К сетевому оборудованию из категории L1 относятся почти почившие ныне концентраторы, репитеры и повторители. Максимально дешевые в эксплуатации изделия с нулевой защитой трафика и такой же функциональностью. В чем отличие этих устройств от свитчей вы можете прочесть в этой статье.
Коммутаторы 2 уровня (L2)
На этом этапе к физическому подключается канальный, т.е. адресный уровень. При этом вся информация, как упоминалось выше, распространяется по сети с помощью кадров (фреймов). Все данные разбиваются на логические блоки определенного размера, чтобы коммутирующему устройству было проще распределить поток. Для адресации используется привязка МАС-адреса подключаемого оборудования к конкретному порту. Это упрощает отправку пакетов и делает канал защищенным.
Коммутаторы 3 уровня (L3)
На этом этапе возможности сетевого оборудования типа L2 дополняются функцией IP-маршрутизации. В сочетании с MAC-адресами, передача пакетов по оптимальной траектории становится еще быстрее, безопаснее и удобнее. Коммутатор просчитывает путь отправки пакета с данными, как GPS-навигатор — маршрут автомобиля перед поездкой. Именно поэтому этот функционал устройства называют маршрутизацией.
Коммутаторы 4 уровня (L4)
На этой ступени к функционалу L2 и L3 добавляется виртуализация (Virtual IP, VIP). VIP-адрес автоматически или вручную конфигурируется для отдельного сервера или группы серверов. Такой адрес также регистрируется через DNS-системы, как и обычный «физический» IP. Каждый коммутатор, ориентированный на 4-й тип обработки информации, поддерживает еще одну таблицу значений, где связаны исходный IP, исходный TCP и выбранный сервер. Подобным образом внутри крупной компании решают проблему с превышением нагрузки на отдельные сервера и перенаправлением трафика.
Отличия коммутаторов 2 и 3 уровня
Как было сказано выше, физическая отправка трафика происходит на первых трех ступенях. Первую отбрасываем по причине морального устаревания и остаются две — второй и третий, разница между которыми состоят в следующем:
- модели коммутаторов второго уровняотправляют данные только по MAC-адресу порта-получателя, игнорируя все остальное порты. При этом устройство не просчитывает путь, по которому следует фрейм, что способно привести к перепадам нагрузки и заторам на разных участках сети.
- Модели Layer 3 — осуществляют статическую или динамическую маршрутизацию трафика, поскольку располагают таблицами MAC и IP-адресов. Плюс обладают возможностью объединения нескольких устройств внутри одной или многих VLAN-сетей.
Таким образом, главное, чем отличаются коммутаторы второго и третьего уровня — наличие функции маршрутизации, которая обеспечивает связь внутри VLAN — виртуальной локальной вычислительной сети — с направлением пакетов по оптимальному маршруту без потерь и задержек с учетом нагрузки на сеть.
Ничего удивительного в том, что модели коммутаторов третьего уровня стоят дороже, чем их предшественники, поскольку за счет функции маршрутизации делают передачу данных значительно быстрее, безопаснее и эффективнее. Из сопутствующих полезных функций можно также назвать:
- автоматическое маркирование трафика по IP-адресу;
- высокая защита данных;
- стекирование.
Помимо всего прочего управляемые маршрутизирующие коммутаторы уровня L3 обладают большей мощностью и высокой пропускной способностью, так как зачастую используются в качестве коммутаторов агрегации и ядра, что требует улучшенных характеристик. Однако далеко не всем бывает нужен расширенный функционал, за который требуется платить достаточно высокую цену. Тем, кого не устраивает перспектива переплачивать за L3, но возможностей L2 недостаточно, рынок сетевого оборудования предлагает компромиссный вариант — L2+
Разница между L2 и L2+
Layer 2+ (3 Lite) — это коммутационное оборудование второй ступени с расширенным функционалом. В качестве опций в устройствах L2+ могут присутствовать некоторые функции layer 3.
- отслеживание DHCP - протокола динамической настройки узла для защиты от атак;
- маршрутизация между сетями VLAN, с использованием статических маршрутов;
- объединение ряда свитчей в стек, чтобы увеличит число портов;
- и другие.
Иными словами, когда коммутирующее оборудование поддерживает лишь на статическую маршрутизацию, его относят к категории L2+ иначе называемое L3 Lite. Зачастую такого выбора оказывается достаточно для адекватного функционирования сети по критериям безопасности, эффективности и надежности. Коммутаторы L2+ оптимальны для компромиссного решения задач и позволяют поддержать хороший баланс цены и возможностей.
Заключение
Выбор коммутирующего оборудования зависит от многих параметров: его доступного функционала, характеристик и параметров сети. Уровни коммутатора в данном контексте можно рассматривать как один из критериев, по которому может осуществляться такой выбор, поскольку описывает возможности всей группы устройств в целом. Если у вас еще остались вопросы, вы можете задать их нашим специалистам, которые помогут подобрать сетевое оборудование в зависимости от ваших потребностей.
Читайте также: