Создание vlan на основе одного коммутатора
Прежде чем приступить к изучению виртуальной локальной сети (VLAN), необходимо иметь определенное представление о локальной сети. Локальную сеть можно рассмотреть с двух сторон. С одной стороны, локальная сеть это все пользовательские устройства, серверы, коммутаторы, маршрутизаторы, кабели и точки беспроводного доступа, расположенные в одном месте. С другой стороны, в более узком понимании определения локальной сети, позволяет нам освоить концепцию виртуальной локальной сети: локальная сеть включает все устройства в одном широковещательном домене.
Широковещательный домен это устройства, подключенные к локальной сети, таким образом, что, когда одно из устройств отправляет широковещательный кадр, все остальные устройства получают копию этого кадра. Таким образом, понятие локальной сети и широковещательного домена является практически одинаковым.
Коммутатор, с настройками по умолчанию, считает, что все его интерфейсы находятся в одном широковещательном домене. То есть, когда широковещательный кадр приходит на один конкретный порт коммутатора, устройство пересылает этот широковещательный кадр на все остальные свои порты. В связи с таким принципом работы коммутатора, чтобы создать два разных широковещательных домена, придется купить два разных коммутатора для локальной сети Ethernet, как показано на рисунке:
Показаны два домена: домен 1 (подсеть 1) и домен 2 (подсеть 2). В первом домене два компьютера, а именно ПК1 и ПК2, подключены к коммутатору SW1 для создания широковещательного домена 1. Аналогично, во втором домене два компьютера, а именно ПК3 и ПК4, подключены к коммутатору SW2 для создания широковещательного домена 2.
Используя два VLAN’а, можно организовать те же две сети, что изображены на рисунке 1- создать два широковещательных домена с помощью одного коммутатора. С VLAN’нами коммутатор может настроить некоторые интерфейсы в один широковещательный домен, а некоторые в другой, создавая несколько широковещательных доменов. Эти отдельные широковещательные домены, созданные коммутатором, называются виртуальными локальными сетями (VLAN).
Рисунок ниже демонстрирует использование одного коммутатора для создания двух VLAN’ов, рассматривая порты в каждом VLAN’е как полностью самостоятельные. Коммутатор никогда не перешлет кадр, отправленный ПК1 (VLAN 1) либо ПК3 либо ПК4 (VLAN 2).
использование одного коммутатора для создания двух VLA использование одного коммутатора для создания двух VLAИз рисунка мы видим, что используется один коммутатор для нескольких широковещательных доменов. Из широковещательного домена 1 (подсеть 1) две системы ПК1 и ПК2 подключены к коммутатору SW1. Из широковещательного домена 2 (подсеть 2) к коммутатору SW1 подключены две системы ПК3 и ПК4.
Проектирование локальных сетей кампуса с использованием большего количества VLAN’ов, в каждом из которых используется минимальное количество коммутационного оборудования, часто помогает улучшить локальную сеть во многих отношениях. Например, широковещательная передача, отправленная одним узлом во VLAN1, будет приниматься и обрабатываться всеми другими узлами этого VLAN1-но не узлами из другого VLAN. Чем меньше посторонних узлов в сети получают широковещательные кадры, тем выше безопасность локальной сети.
Это всего лишь несколько причин для разделения хостов на разные VLAN. В следующем списке перечислены наиболее распространенные причины, по которым следует создавать VLAN’ны:
Назначение виртуальных сетей
иртуальной сетью VLAN (Virtual LAN) называют группу узлов сети, образующих домен широковещательного трафика (Broadcast Domain). Такое определение вполне корректно, но малоинформативно, так что попытаемся трактовать понятие виртуальной сети несколько иначе.
При создании локальной сети на основе коммутатора, несмотря на возможность использования пользовательских фильтров по ограничению трафика, все узлы сети представляют собой единый широковещательный домен, то есть широковещательный трафик передается всем узлам сети. Таким образом, коммутатор изначально не ограничивает широковещательный трафик, а сами сети, построенные по указанному принципу, именуются плоскими.
Виртуальные сети образуют группу узлов сети, в которой весь трафик, включая и широковещательный, полностью изолирован на канальном уровне от других узлов сети. Это означает, что передача кадров между узлами сети, относящимися к различным виртуальным сетям, на основании адреса канального уровня невозможна (хотя виртуальные сети могут взаимодействовать друг с другом на сетевом уровне с использованием маршрутизаторов).
Изолирование отдельных узлов сети на канальном уровне с использованием технологии виртуальных сетей позволяет решать одновременно несколько задач. Во-первых, виртуальные сети способствуют повышению производительности сети, локализуя широковещательный трафик в пределах виртуальной сети и создавая барьер на пути широковещательного шторма. Коммутаторы пересылают широковещательные пакеты (а также пакеты с групповыми и неизвестными адресами) внутри виртуальной сети, но не между виртуальными сетями. Во-вторых, изоляция виртуальных сетей друг от друга на канальном уровне позволяет повысить безопасность сети, делая часть ресурсов для определенных категорий пользователей недоступной.
Типы виртуальных сетей
Существует несколько способов построения виртуальных сетей, но сегодня в коммутаторах главным образом реализуется технология группировки портов или используется спецификация IEEE 802.1Q.
Виртуальные сети на основе группировки портов
Рис. 1. Виртуальные сети, построенные с использованием технологии группировки портов на базе одного коммутатора
Рис. 2. Создание разделяемого ресурса между несколькими виртуальными сетями с использованием технологии группировки портов
Описываемая технология обладает рядом преимуществ в сравнении с использованием стандарта IEEE 802.1Q, но имеет и свои недостатки.
К достоинствам можно отнести простоту конфигурации виртуальных сетей. Кроме того, при этом не требуется, чтобы конечные узлы сети поддерживали стандарт IEEE 802.1Q, а поскольку большинство сетевых контроллеров Ethernet не поддерживают этот стандарт, то организация сети на основе группировки портов может оказаться проще. К тому же при подобной организации виртуальных сетей они могут пересекаться, что позволяет создавать разделяемые сетевые ресурсы.
Технология создания виртуальных сетей на основе группировки портов находит применение в случаях использования одного коммутатора или использования стека коммутаторов с единым управлением. Однако если сеть достаточно крупная и построена на нескольких коммутаторах, то возможности по организации виртуальных сетей на основе группировки портов имеют существенные ограничения. Прежде всего, эта технология плохо масштабируется и в большинстве случаев ограничивается лишь одним коммутатором.
Рассмотрим для примера ситуацию, когда сеть построена на базе двух коммутаторов, поддерживающих технологию организации виртуальных сетей на основе группировки портов (рис. 3).
Рис. 3. Реализация виртуальных сетей на основе группировки портов при использовании двух коммутаторов
Виртуальные сети на основе стандарта IEEE 802.1Q
ри наличии развитой сетевой инфраструктуры, насчитывающей множество коммутаторов, более эффективным решением создания виртуальных сетей будет технология IEEE 802.1Q. В виртуальных сетях, основанных на стандарте IEEE 802.1Q, информация о принадлежности передаваемых Ethernet-кадров к той или иной виртуальной сети встраивается в сам передаваемый кадр. Таким образом, стандарт IEEE 802.1Q определяет изменения в структуре кадра Ethernet, позволяющие передавать информацию о VLAN по сети.
Рис. 4. Сравнение обычного Ethernet-кадра и кадра с меткой
Добавляемая метка кадра включает в себя двухбайтовое поле TPID (Tag Protocol Identifier) и двухбайтовое поле TCI (Tag Control Information). Поле TCI, в свою очередь, состоит из полей Priority, CFI и VID. Поле Priotity длиной 3 бита задает восемь возможных уровней приоритета кадра. Поле VID (VLAN ID) длиной 12 бит является идентификатором виртуальной сети. Эти 12 бит позволяют определить 4096 различных виртуальных сетей, однако идентификаторы 0 и 4095 зарезервированы для специального использования, поэтому всего в стандарте 802.1Q возможно определить 4094 виртуальные сети. Поле CFI (Canonical Format Indicator) длиной 1 бит зарезервировано для обозначения кадров сетей других типов (Token Ring, FDDI), передаваемых по магистрали Ethernet, и для кадров Ethernet всегда равно 0.
Изменение формата кадра Ethernet приводит к тому, что сетевые устройства, не поддерживающие стандарт IEEE 802.1Q (такие устройства называют Tag-unaware), не могут работать с кадрами, в которые вставлены метки, а сегодня подавляющее большинство сетевых устройств (в частности, сетевые Ethernet-контроллеры конечных узлов сети) не поддерживают этот стандарт. Поэтому для обеспечения совместимости c устройствами, поддерживающими стандарт IEEE 802.1Q (Tag-aware-устройства), коммутаторы стандарта IEEE 802.1Q должны поддерживать как традиционные Ethernet-кадры, то есть кадры без меток (Untagged), так и кадры с метками (Tagged).
Правила входящего порта (Ingress rules)
Рассмотрим более подробно процесс передачи кадра через коммутатор (рис. 5). По отношению к трафику каждый порт коммутатора может быть как входным, так и выходным. После того как кадр принят входным портом коммутатора, решение о его дальнейшей обработке принимается на основании предопределенных правил входного порта (Ingress rules). Поскольку принимаемый кадр может относиться как к типу Tagged, так и к типу Untagged, то правилами входного порта определяется, какие типы кадров должны приниматься портом, а какие отфильтровываться. Возможны следующие варианты: прием только кадров типа Tagged, прием только кадров типа Untagged, прием кадров обоих типов. По умолчанию для всех коммутаторов правилами входного порта устанавливается возможность приема кадров обоих типов.
Рис. 5. Процесс продвижения кадров в коммутаторе, совместимом со стандартом IEEE 802.1Q
Если правилами входного порта определено, что он может принимать кадр Tagged, в котором имеется информация о принадлежности к конкретной виртуальной сети (VID), то этот кадр передается без изменения. А если определена возможность работы с кадрами типа Untagged, в которых не содержится информации о принадлежности к виртуальной сети, то прежде всего такой кадр преобразуется входным портом коммутатора к типу Tagged (напомним, что внутри коммутатора все кадры должны иметь метки о принадлежности к виртуальной сети).
Чтобы такое преобразование стало возможным, каждому порту коммутатора присваивается уникальный PVID (Port VLAN Identifier), определяющий принадлежность порта к конкретной виртуальной сети внутри коммутатора (по умолчанию все порты коммутатора имеют одинаковый идентификатор PVID=1). Кадр типа Untagged преобразуется к типу Tagged, для чего дополняется меткой VID (рис. 6). Значение поля VID входящего Untagged-кадра устанавливается равным значению PVID входящего порта, то есть все входящие Untagged-кадры автоматически приписываются к той виртуальной сети внутри коммутатора, к которой принадлежит входящий порт.
Рис. 6. Обработка кадров входящим портом коммутатора
Правила продвижения пакетов (Forwarding Process)
После того как все входящие кадры отфильтрованы, преобразованы или оставлены без изменения в соответствии в правилами входящего порта, решение об их передаче к выходному порту основывается на предопределенных правилах продвижения пакетов. Правило продвижения пакетов внутри коммутатора заключается в том, что пакеты могут передаваться только между портами, ассоциированными с одной виртуальной сетью. Как уже отмечалось, каждому порту присваивается идентификатор PVID, который используется для преобразования принимаемых Untagged-кадров, а также для определения принадлежности порта к виртуальной сети внутри коммутатора с идентификатором VID=PVID. Таким образом, порты с одинаковыми идентификаторами внутри одного коммутатора ассоциируются с одной виртуальной сетью. Если виртуальная сеть строится на базе одного коммутатора, то идентификатора порта PVID, определяющего его принадлежность к виртуальной сети, вполне достаточно. Правда, создаваемые таким образом сети не могут перекрываться, поскольку каждому порту коммутатора соответствует только один идентификатор. В этом смысле создаваемые виртуальные сети не обладали бы такой гибкостью, как виртуальные сети на основе портов. Однако стандарт IEEE 802.1Q с самого начала задумывался для построения масштабируемой инфраструктуры виртуальных сетей, включающей множество коммутаторов, и в этом состоит его главное преимущество по сравнению с технологией образования VLAN на основе портов. Но для того, чтобы расширить сеть за пределы одного коммутатора, одних идентификаторов портов недостаточно, поэтому каждый порт может быть ассоциирован с несколькими виртуальными сетями, имеющими различные идентификаторы VID.
Если адрес назначения пакета соответствует порту коммутатора, который принадлежит к той же виртуальной сети, что и сам пакет (могут совпадать VID пакета и VID порта или VID пакета и PVID порта), то такой пакет может быть передан. Если же передаваемый кадр принадлежит к виртуальной сети, с которой выходной порт никак не связан (VID пакета не соответствует PVID/VID порта), то кадр не может быть передан и отбрасывается.
Правила выходного порта (Egress rules)
Каждый порт коммутатора может быть сконфигурирован как Tagged или Untagged Port. Если выходной порт определен как Tagged Port, то исходящий трафик будет создаваться кадрами типа Tagged с информацией о принадлежности к виртуальной сети. Следовательно, выходной порт не меняет тип кадров, оставляя их такими же, какими они были внутри коммутатора. К указанному порту может быть подсоединено только устройство, совместимое со стандартом IEEE 802.1Q, например коммутатор или сервер с сетевой картой, поддерживающей работу с виртуальными сетями данного стандарта.
Если же выходной порт коммутатора определен как Untagged Port, то все исходящие кадры преобразуются к типу Untagged, то есть из них удаляется дополнительная информация о принадлежности к виртуальной сети. К такому порту можно подключать любое сетевое устройство, в том числе коммутатор, не совместимый со стандартом IEEE 802.1Q, или ПК конечных клиентов, сетевые карты которых не поддерживают работу с виртуальными сетями этого стандарта.
Конфигурирование виртуальных сетей стандарта IEEE 802.1Q
Рассмотрим конкретные примеры конфигурирования виртуальных сетей стандарта IEEE 802.1Q.
Чтобы сформировать VLAN-сеть в соответствии со стандартом IEEE 802.1Q, необходимо проделать следующие действия:
Далее необходимо повторить вышеперечисленные действия для следующей виртуальной сети. При этом нужно помнить, что каждому порту можно задать только один идентификатор PVID, но один и тот же порт может входить в состав различных виртуальных сетей, то есть ассоциироваться одновременно с несколькими VID.
Таблица 1. Задание характеристик портов при создании виртуальных сетей на базе одного коммутатора
Примеры построения VLAN-сетей на основе коммутаторов, совместимых со стандартом IEEE 802.1Q
А теперь рассмотрим типичные примеры построения виртуальных сетей на основе коммутаторов, поддерживающих стандарт IEEE 802.1Q.
Если имеется всего один коммутатор, к портам которого подключаются компьютеры конечных пользователей, то для создания полностью изолированных друг от друга виртуальных сетей все порты должны быть объявлены как Untagget Ports для обеспечения совместимости с сетевыми Ethernet-контроллерами клиентов. Принадлежность узлов сети к той или иной VLAN определяется заданием идентификатора порта PVID.
Рис. 7. Организация трех сетей VLAN по стандарту IEEE 802.1Q на основе одного коммутатора
Рис. 8. Организация трех VLAN-сетей по стандарту IEEE 802.1Q на основе двух коммутаторов
Порт 4 первого коммутатора используется для связи со вторым коммутатором и должен передавать кадры всех трех виртуальных сетей без изменения второму коммутатору. Поэтому его необходимо сконфигурировать как Tagged Port и включить в состав всех трех виртуальных сетей (ассоциировать с VID=1, VID=2 и VID=3). При этом идентификатор порта не имеет значения и может быть любым (в нашем случае PVID=4).
Аналогичная процедура конфигурации виртуальных сетей осуществляется и на втором коммутаторе. Конфигурации портов двух коммутаторов представлены в табл. 2.
Таблица 2. Задание характеристик портов при создании виртуальных сетей на основе двух коммутаторов
Автоматическая регистрация в виртуальных сетях стандарта IEEE 802.1Q
ассмотренные примеры виртуальных сетей относились к так называемым статическим виртуальным сетям (Static VLAN), в которых все порты настраиваются вручную, что хотя и весьма наглядно, но при развитой сетевой инфраструктуре является довольно рутинным делом. Кроме того, при каждом перемещении пользователей в пределах сети приходится производить перенастройку сети с целью сохранения их членства в заданных виртуальных сетях, а это, конечно, крайне нежелательно.
Существует и альтернативный способ конфигурирования виртуальных сетей, а создаваемые при этом сети называются динамическими виртуальными сетями (Dynamic VLAN). В таких сетях пользователи могут автоматически регистрироваться в сети VLAN, для чего служит специальный протокол регистрации GVRP (GARP VLAN Registration Protocol). Этот протокол определяет способ, посредством которого коммутаторы обмениваются информацией о сети VLAN, чтобы автоматически зарегистрировать членов VLAN на портах во всей сети.
Компания «Ромашки» из Иркутска открыла новое подразделение в Ангарске, где расположены несколько приоритетных клиентов. Начинающий системный администратор Роман взялся за голову: сеть компании состояла из нескольких изолированных сегментов, построенных на отдельных коммутаторах. В новом подразделении требовалось повторить такую же структуру, причём сделать так, чтобы, например, работники бухгалтерии в старом и новом офисе имели доступ к одним и тем же ресурсам и могли взаимодействовать друг с другом.
Приобретать для нового офиса такое же количество коммутаторов, как для главного, было нецелесообразно, поскольку там работало намного меньше сотрудников. Было непонятно, как объединять и разделять трафик от разных сегментов для передачи по WAN-каналу. И самое главное — казалось невозможным обеспечить изолированное взаимодействие пользователей в разных офисах.
Роман обратился за консультацией в компанию-интегратор и получил рекомендацию использовать технологию VLAN. Познакомившись с технологией, системный администратор понял, что это решит все его проблемы.
VLAN — это технология, которая позволяет строить виртуальные сети с независимой от физических устройств топологией. Например, можно объединить в одну сеть отдел компании, сотрудники которого работают в разных зданиях и подключены к разным коммутаторам. Или наоборот, создать отдельные сети для устройств, подключённых к одному коммутатору, если этого требует политика безопасности.В этой публикации мы расскажем о принципах работы технологии, её возможностях и преимуществах, а также разберём типовые сценарии её применения.
Принципы работы VLAN
Большое количество широковещательных пакетов, отправляемых устройствами, приводит к снижению производительности сети, поскольку вместо полезных операций коммутаторы заняты обработкой данных, адресованных сразу всем.
Чтобы снизить влияние широковещательных рассылок на производительность, сеть разделяют на изолированные сегменты. При этом каждый широковещательный пакет будет распространяться только в пределах сегмента, к которому подключен компьютер-отправитель.
Добиться такого результата можно, подключив разные сегменты к разным физическим коммутаторам, не соединённым между собой, либо соединить их через маршрутизаторы, которые не пропускают широковещательные рассылки.
На рисунке имеется четыре изолированных сегмента сети, каждый из которых подключён к отдельному физическому коммутатору. Взаимодействие между сегментами происходит через маршрутизаторы.
VLANы позволяют изолировать сегменты сети с помощью одного физического коммутатора. При этом функционально всё будет выглядеть полностью аналогично, но для каждого офиса используется один коммутатор с поддержкой VLAN.
В основе технологии VLAN лежит стандарт IEEE 802.1Q. Он позволяет добавлять в Ethernet-трафик информацию о принадлежности передаваемых данных к той или иной виртуальной сети — теги VLAN. С их помощью коммутаторы и маршрутизаторы могут выделить из общего потока передаваемых по сети кадров те, что относятся к конкретному сегменту.
Технология VLAN даёт возможность организовать функциональный эквивалент нескольких LAN-сетей без использования набора из коммутаторов и кабелей, которые понадобились бы для их реализации в физическом виде. Физическое сетевое оборудование заменяется виртуальным. Отсюда термин Virtual LAN.
Возможности VLAN
Используя виртуальные локальные сети, можно создавать конфигурации для решения различных задач:
Объединить в единую сеть группы компьютеров, подключённых к разным коммутаторам:
Компьютеры в VLAN 1 будут взаимодействовать между собой, хотя подключены к разным физическим коммутаторам, при этом сети VLAN 1 и VLAN 2 будут невидимы друг для друга.
Разделить на разные сети компьютеры, подключённые к одному коммутатору
При этом устройства в VLAN 1 и VLAN 2 не смогут взаимодействовать между собой.
Разделить гостевую и корпоративную беспроводную сеть компании:
Гости смогут подключаться к интернету, но не получат доступа к сети компании.
Обеспечить взаимодействие территориально распределённых отделов компании как единого целого:
Преимущества VLAN
- Сокращение числа широковещательных запросов, которые снижают пропускную способность сети.
- Повышение безопасности каждой виртуальной сети. Работники одного отдела офиса не смогут отслеживать трафик отделов, не входящих в их VLAN, и не получат доступ к их ресурсам.
- Возможность разделять или объединять отделы или пользователей, территориально удаленных друг от друга. Это позволяет привлекать к рабочему процессу специалистов, не находящихся в здании офиса.
- Создать новую виртуальную сеть можно без прокладки кабеля и покупки коммутатора.
- Позволяет объединить в одну сеть компьютеры, подключенные к разным коммутаторам.
- Упрощение сетевого администрирования. При переезде пользователя VLAN в другое помещение или здание сетевому администратору нет необходимости перекоммутировать кабели, достаточно со своего рабочего места перенастроить сетевое оборудование. А в случае использования динамических VLAN регистрация пользователя в «своём» VLAN на новом месте выполнится автоматически.
VLAN с Traffic Inspector Next Generation
Технология VLAN позволяет одному устройству Traffic Inspector Next Generation контролировать доступ в интернет для нескольких подразделений, причём для каждого сегмента можно установить свои правила взаимодействия с глобальной сетью.
На рисунке изображена сеть компании, подключенная к интернет через сервер Traffic Inspector Next Generation. Сеть организована на базе одного коммутатора, на котором создано два виртуальных сегмента — VLAN 2 и VLAN 6. В первом сегменте находятся компьютеры пользователей, во втором — серверы. Устройство Traffic Inspector Next Generation подключено к транковому порту коммутатора — специальному порту, который «слышит» пакеты от всех виртуальных сетей. Трафик, передаваемый или принимаемый на транковый порт, всегда образован тегированными кадрами.
Чтобы управлять работой двух виртуальных сетей на одном устройстве Traffic Inspector Next Generation, достаточно в настройках выполнить следующие операции:
1. Создать VLAN-интерфейсы (Интерфейсы → Другие типы → VLAN)
2. Добавить VLAN-интерфейсы в веб-интерфейс (Интерфейсы → Назначения портов, указать VLAN в поле «Новый интерфейс»)
3. Задать параметры TCP/IP для VLAN-интерфейсов (в разделе «Интерфейсы»)
4. Сохранить изменения.
Заключение
Использование VLAN не только упрощает жизнь системным администраторам, позволяя быстро вносить изменения в структуру сети, но и даёт организациям возможность экономить на сетевом оборудовании.
Администратор Роман, о котором шла речь в начале статьи, обошёлся без покупки дополнительного оборудования, настроив на коммутаторах VLAN для каждого отдела. Это позволило высвободить из старого офиса два коммутатора и использовать их для построения сети в новом офисе. Кроме того, благодаря VLAN решилась проблема с маршрутизацией трафика по WAN-каналу.
Иногда нам может потребоваться разделить локальную сеть на несколько отдельных сегментов. Например, в компании несколько отделов: Отдел кадров, Производство, Высшее руководство, Технический отдел. Каждый отдел может иметь серверы, доступ к которым нужно ограничить сотрудникам из других отделов.
С одной стороны теоретически это легко реализовать. Ведь можно создать отдельную сетевую инфраструктуру для каждой сети.
Но с другой стороны проблема в том, что довольно сложно планировать такую сеть. Кроме того, может потребоваться изменить и саму конфигурацию сети.
Поэтому гораздо проще создать общую физическую сеть с последующим логическим сегментированием определенных частей сети.
Данный подход позволяет гораздо гибче планировать и управлять сетью, а также повышает безопасность сети.
Сегментированные сети и называются виртуальными локальными сетями (VLAN- Virtual LAN)
Как можно разделить одну физическую сеть на несколько виртуальных?
Это достигается с помощью коммутаторов. Коммутаторы поддерживают технологии IEEE 802.1Q и ISL. ISL - собственный протокол Cisco. Современные коммутаторы его уже не поддерживают, поэтому не будет далее рассматриваться.
Суть технологии заключается в том, что в Ethernet кадр вставляется специальная 4-х байтовая метка. Метка содержит 12-битный идентификатор VLAN, максимальное значение которого 4096. То есть всего может быть 4096 VLAN
Для начала настроим сеть с одним коммутатором:
По умолчанию все порты коммутатора принадлежат VLAN 1, поэтому все компьютеры будут “видеть” друг друга. В этом легко убедиться, запустив утилиту Ping на всех хостах.
Создадим VLAN 23
Затем аналогично создадим и остальные VLAN.
Теперь назначим порты 0/1, 0/2, 0/3, 0/4, 0/5 в VLAN 23:
Если портов слишком много, то будет довольно утомительно вводить одни и те же команды, поэтому гораздо удобнее выделить диапазон портов. Для этого выполни команду
switch(config) interface range fastethernet 0/1-5
Все остальные порты назначим по той же схеме.
Теперь попробуй выполнить команду Ping на каждом компьютере. Компьютеры из другой VLAN уже не доступны.
Помни, что все введенные команды и конфигурация хранятся в оперативной памяти, поэтому при отключении питания все настройки будут удалены.
Как сохранить настройки?
Все настройки записываются в энергонезависимую память NVRAM. Для этого выполни
При включении питания конфигурация из NVRAM записывается в оперативную память.Чтобы проверить произведенные настройки в оперативной памяти выполним команду
Для просмотра настроек, сохраненных в NVRAM выполни
Просмотр сведений о VLAN
Для просмотра информации о VLAN выполни команду
Кстати, конфигурация VLAN сохраняется в отдельном файле, не в NVRAM. Файл с конфигурацией о VLAN хранится во Flash памяти коммутатора. Поэтому командой show running-config мы не увидим никакую информацию о VLAN.
Чтобы уивдеть файл, содержащий данные о VLAN выполни команду
и ты увидишь файл vlan.dat
Теперь подключим к нашему коммутатору еще один коммутатор и выполним те же настройки
Однако компьютеры разных коммутаторов одного VLAN почему-то недоступны друг другу, хотя в рамках одного коммутатора все “видят” друг друга.
Все верно. Дело в том, что в технологии VLAN существуют 2 таких понятия, как порт доступа ( access port ) и магистральный порт ( trunk port ), а также связанные с ними нетегированный ( untagged ) и тегированный ( tagged ) кадры соответственно.
Все конечные устройства, такие как компьютер подключаются к портам доступа. Компьютеры вообще не знают, что принадлежат определенной VLAN, но это знает только коммутатор. Поэтому между коммутатором и компьютерами проходят нетегированные кадры, то есть кадры без метки-идентификатора VLAN.
Однако, если мы соединяем друг с другом коммутаторы, на которых настроен VLAN, то порты, их соединяющие, настраиваются как магистральные.
Во все исходящие кадры коммутатор вставляет соответствующую метку-идентификатор VLAN. Такие кадры называются тегированные.
Режимы работы trunk
Для автоматической настройки магистрального порта коммутаторы Cisco поддерживают специальный протокол DTP (Dynamic Trunk Protocol), который периодически посылает кадры соседним портам. Все коммутаторы поддерживают 4 режима работы магистрального порта
Auto - DTP-кадры не рассылает. Приняв DTP-кадр сразу переходит в магистральный режим.
Desirable - рассылает DTP-кадры. Если на другом конце готовы перейти в магистральный режим, то сразу оба порта переходят в данный режим.
Trunk - статический магистральный режим. DTP-кадры не рассылает.
Nonegotiate - готов перейти в магистральный режим только, если на другом конце установлен магистральный режим. DTP-кадры не рассылает.
В таблице указано в какое состояние перейдут порты автоматически в зависимости от установленных на них режимах:
Читайте также: