Скорость передачи данных по сети bluetooth равна 2 мбит с за сколько секунд
Аппаратные (технические) средства глобальной сети
Узлы компьютерной сети – это компьютеры, объединенные в сеть.
Среди них есть постоянно работающие в сети, выполняющие системные услуги и поддерживающие информационные сервисы. Они называются хост-компьютерами.
Персональный компьютер пользователя также становится узлом сети, но только на время подключения.
Каналы передачи данных по физическому принципу своего устройства делятся на:
- Проводные
- Оптические
- Беспроводные
К проводным каналам относятся телефонные линии и различные виды электрических кабелей. Данные по проводным каналам передаются в виде электрических сигналов.
Использование телефонных каналов (коммутируемых линий) удобно и дешево, поскольку система телефонной связи уже давно организована, налажена и охватывает весь мир. Каждый раз для организации связи между абонентом и узлом сети с помощью коммутируемых линий нужно «дозваниваться» по соответствующему номеру. В другое время эта же линия используется для обычных телефонных разговоров. Для связи между постоянно действующими узлами сети могут применяться специально выделенные телефонные каналы. В этом случае связь действует постоянно и не требуется набирать телефонный номер.
Телефонные сети постепенно переходят на цифровую связь, но значительная часть телефонных каналов все еще использует передачу непрерывного (аналогового) электрического сигнала. Для того, чтобы соединить компьютер с такой сетью, необходимо специальное устройство, которое называется «модем» (МОдулятор – ДЕМодулятор).
Модуляция – это преобразование информации из дискретной цифровой формы в аналоговую, которое производится при передаче информации в сеть.
Иногда такое преобразование называют цифро-аналоговым преобразованием – ЦАП.
Демодуляция – это обратное, аналого-цифровое преобразование (АЦП), происходящее во время приема информации.
Модем может быть выполнен в виде отдельного устройства, подключаемого к компьютеру через стандартный последовательный порт связи, который имеется у каждого компьютера. Бывают также встроенные модемы в виде электронной платы, устанавливаемой внутри компьютера.
Схема связи между пользователем сети и хост-компьютером с помощью модема и телефонной линии показана на рисунке:
Одной из важнейших характеристик модема является скорость передачи данных, измеряемая в битах в секунду (килобитах в секунду, байтах в секунду, килобайтах в секунду и так далее).
Скорость передачи данных по проводным каналам находится в диапазоне от 14 Кбит/с до 56 Кбайт/с
Передача цифровых данных по электрическому кабелю может происходить со скоростями в десятки и сотни Мбит/с.
Примером проводного канала в виде электрического кабеля служат каналы связи кабельного телевидения, которые используются, в том числе, и для компьютерных сетей.
Самую высококачественную связь поддерживают оптоволоконные каналы цифровой связи. Скорость передачи данных по таким каналам измеряется десятками Гбит/с.
Спутниковые радиоканалы применяются для связи между узлами сети, удаленными на большие расстояния. Они могут поддерживать передачу данных со скоростями до 5 Мбит/с.
Для организации беспроводного подключения пользователей к сети используется также технология Wi-Fi (от Wireless Fidelity, дословно: беспроводная точность воспроизведения). В ней используется радиосвязь в определенном диапазоне частот. Wi-Fi дает возможность пользователю поддерживать связь с узлом Wi-Fi-сети на расстояниях от нескольких десятков метров в помещении до нескольких сотен метров на открытом пространстве.
Пропускная способность канала связи
Любой канал связи имеет ограниченную пропускную способность, то есть скорость передачи информации.
Единицы измерения, комментарий:
- Бит / с – означает, сколько бит будет передаваться за 1 секунду.
- 1 Кбит (килобит, Kbit) = 1024 бит = 2 10 бит
- 1 Мбит (мегабит, Mbit) = 1024 Кбит = 2 10 Кбит
- 1 Гбит (гигабит, Gbit) = 1024 Мбит = 2 10 Мбит
- 1 Кбайт (килобайт) = 8 Кбит (килобит), так как 1 байт = 8 бит.
- 1 Мбайт (мегабайт) = 8 Мбит (мегабит), так как 1 байт = 8 бит.
Если нужно измерить объем переданной информации, то используют формулу: Q = q • t , где
Q – Объем переданной информации.
q – Пропускная способность канала (в битах в секунду или подобных единицах). То есть скорость передачи информации.
t – Время передачи.
Формула Q = q • t похожа на формулу Скорость (V ) – Время ( t ) – Расстояние ( S ): S = V • t
В компьютерных сетях пользователи могут использовать различные марки компьютеров, типы модемов, линии связи, коммуникационные программы. Чтобы все это оборудование работало согласованно, работа сетей подчиняется специальным техническим соглашениям, которые называются протоколами.
Решение задач
Скорость передачи данных через ADSL-соединение равна 128000 бит/c. Через данное соединение передают файл размером 625 Кбайт. Определите время передачи файла в секундах.
Согласуем единицы измерения.
- Скорость q = 128 000 бит/с = 128 • 1000 бит/с = 2 7 • (125 • 8) бит/с = 2 7 • 5 3 • 2 3 бит/с = 2 7+3 • 5 3 бит/с =2 10 • 5 3 бит/с
- Объем передаваемого файла Q = 625 Кбайт = 625 • 1024 байт (так как в 1 килобайте 1024 байт) = 625 • 1024 • 8 бит (так как в 1 байте 8 бит) = 625 • 2 10 • 2 3 бит = 54 • 2 10+3 бит = 5 4 • 2 13 бит
Тогда по формуле Q = q • t выразим
Ответ : 40 секунд
Скорость передачи данных через ADSL-соединение равна 512 000 бит/c. Передача файла через это соединение заняла 1 минуту. Определить размер файла в килобайтах.
Ответ : 3750 Кбайт
У Васи есть доступ к Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения им информации 256 Кбит в секунду. У Пети нет скоростного доступа в Интернет, но есть возможность получать информацию от Васи по низкоскоростному телефонному каналу со средней скоростью 32 Кбит в секунду. Петя договорился с Васей, что тот будет скачивать для него данные объемом 5 Мбайт по высокоскоростному каналу и ретранслировать их Пете по низкоскоростному каналу. Компьютер Васи может начать ретрансляцию данных не раньше, чем им будут получены первые 512 Кбайт этих данных. Каков минимально возможный промежуток времени (в секундах), с момента начала скачивания Васей данных, до полного их получения Петей?
а. Петя может начать получать информацию только тогда, когда Вася скачает для него первые 512 Кбайт. При этом известно, что Вася будет скачивать эти 512 Кбайт со скоростью 256 Кбит/с. Значит, во-первых, надо найти время, с которым будет передаваться этот объем информации (512 Кбайт) с заданной скоростью(256 Кбит/с) из Интернета к Васе. Таким образом, будет найдено время задержки файла у Васи. Примечание: после скачивания 512 Кбайт Вася продолжит скачивать весь файл, но уже начнет передавать файл Пете.
б. Практически Вася должен получить 5 Мбайт со скоростью 32 Кбит/с. То есть, во-вторых, надо найти время, с которым будет передаваться этот объем информации (5 Мбайт) с заданной скоростью(32 Кбит/с) от Васи к Пете.
в. Затем, в-третьих, надо сложить два найденных времени.
Данные рассуждения можно представить в виде диаграммы Ганта:
Ответ: 1296 с
Каково время (в минутах) передачи полного объема данных по каналу связи, если известно, что передано 150 Мбайт данных, причем первую половину времени передача шла со скоростью 2 Мбит в секунду, а остальное время – со скоростью 6 Мбит в секунду?
Ответ: 5 минут
Задача 5. Скорость передачи данных через ADSL-соединение равна 128000 бит/с. Сколько времени (в секундах) займет передача файла объемом 500 Кбайт по этому каналу?
Задача 6. Скорость передачи данных через ADSL-соединение равна 64000 бит/с. Сколько времени (в секундах) займет передача файла объемом 375 Кбайт по этому каналу?
Задача 7. Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Передача файла по этому каналу занимает 16 сек. Определите объем файла в килобайтах.
Задача 8. Скорость передачи данных через ADSL-соединение равна 128000 бит/с. Передача файла через данное соединение заняла 120 с. Каков объем файла в Кбайтах?
Задача 9. У Васи есть доступ к Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения им информации 2 17 бит в секунду. У Пети нет скоростного доступа в Интернет, но есть возможность получать информацию от Васи по низкоскоростному телефонному каналу со средней скоростью 2 16 бит в секунду. Петя договорился с Васей, что тот будет скачивать для него данные объемом 8 Мбайт по высокоскоростному каналу и ретранслировать их Пете по низкоскоростному каналу. Компьютер Васи может начать ретрансляцию данных не раньше, чем им будут получены первые 1024 Кбайт этих данных. Каков минимально возможный промежуток времени (в секундах), с момента начала скачивания Васей данных, до полного их получения Петей?
Задача 10. У Толи есть доступ к сети Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения информации 2 19 бит в секунду. У Миши нет скоростного доступа в Интернет, но есть возможность получать информацию от Толи по низкоскоростному телефонному каналу со средней скоростью 2 15 бит в секунду. Миша договорился с Толей, что тот будет скачивать для него данные объемом 5 Мбайт по высокоскоростному каналу и ретранслировать их Мише по низкоскоростному каналу. Компьютер Толи может начать ретрансляцию данных не раньше, чем им будут получены первые 512 Кбайт этих данных. Каков минимально возможный промежуток времени (в секундах) с момента начала скачивания Толей данных до полного их получения Мишей?
Задача 11. Саша скачивает из сети файл размером 60 Мбайт. Скорость передачи первой половины данных составляет 256 Кбит в секунду, а второй – в два раза меньше. Сколько минут будет скачиваться файл?
Задача 12. Каково время (в минутах) передачи полного объема данных по каналу связи, если известно, что передано 9000 Мбайт данных, причем треть времени передача шла со скоростью 60 Мбит в секунду, а остальное время – со скоростью 90 Мбит в секунду?
Задача 13. По каналу связи непрерывно в течение 4 минут передаются данные. Скорость передачи данных в первой половине всего времени работы канала связи составляет 117 Кбит в секунду, а во второй половине – в три раза меньше. Сколько Кбайт данных было передано за время работы канала?
Задача 14. Какова должна быть минимальная пропускная способность канала (в битах в секунду), чтобы за 2 минуты можно было передать файл размером 30 Кбайт?
Этот калькулятор определяет сколько времени нужно для передачи данных из одного места сети в другое, если известна скорость передачи данных.
Пример 1: Рассчитать сколько времени понадобится на загрузку видео файла объемом 2 Гбайт на YouTube по ADSL соединению, имеющему скорость 6 Мбит/с вниз и 600 кбит/с вверх при 10-процентных служебных данных при условии, что YouTube не ограничивает скорость загрузки.
Для расчета введите исходные данные и нажмите кнопку Рассчитать.
Определения и формулы
Передачей данных в компьютерных технологиях и электросвязи выполняется в виде передачи последовательных битов (битового потока) по различным каналам связи. Каналом связи может быть как радиоканал, так и проводная или оптоволоконная линия связи. Каждый бит информации передается в течение определенного промежутка времени. Например, если каждый бит передается в течение 5 микросекунд (мкс), то для передачи 16-разрядной буквы стандарта Unicode потребуется 80 мкс.
Скорость передачи данных определяется как количество битов, переданных в единицу времени, и называется битрейтом (от англ. bit rate or bitrate). Она измеряется в битах в секунду (бит/с или bps). Эту единицу используют с различными десятичными и двоичными приставками, например:
Десятичные приставки | Двоичные приставки |
---|---|
1 кбит/с (kbps) = 1000 бит/с | 1 Кибит/с = 2 10 = 1024 1 бит/с |
1 Мбит/с (kbps) = 10 6 бит/с | 1 Мибит/с = 2 20 = 1024 2 бит/с |
1 Гбит/с (kbps) = 10 9 бит/с | 1 Гибит/с = 2 30 = 1024 3 бит/с |
1 Тбит/с (kbps) = 10 12 бит/с | 1 Тибит/с = 2 40 = 1024 4 бит/с |
Передача данных может происходить в широком диапазоне скоростей. Например, по витой телефонной паре двоичные данные передаются со скоростью до 10 миллионов бит в секунду (Мбит/с, Mbps), а по оптоволоконному кабелю из одного оптического волокна данные могут предаваться со скоростью до 255 терабит в секунду (рекорд 2021 г.). Это означает 32 терабайта в секунду или 16 тысяч фильмов объемом 2 Гбайта в секунду!
Когда двоичные данные передаются по каналу связи с высокой скоростью, возникают ошибки из-за помех, шума или … плохих контактов в оборудовании системы связи. Из-за этих ошибок данные поступают на приемную сторону с ошибками. Для обеспечения надежной передачи данных были разработаны различные способы обнаружения и исправления ошибок. Процесс обнаружения и исправления ошибок требует передачи дополнительных служебных битов, которые передаются вместе с информационными битами.
Эти дополнительные, называемые также избыточными, биты используются для обнаружения ошибок, которые возникают в процессе передачи из-за помех или ошибок в работе оборудования. Конечно, в этом случае для передачи тех же самых данных требуется больше времени из-за необходимости передавать дополнительные биты. Такие дополнительные биты называются служебными данными и их объем может достигать 30% от общего объема передаваемой информации. Служебные данные уменьшают скорость передачи информации, но обеспечивает ее передачу без ошибок.
Например, можно к 8 битам данных добавить 3 бита служебной информации. Таким образом, нужно передать 11 битов, что представляет 100–11×100/8 = 38% служебной информации.
Для определения времени передачи данных без служебной информации мы используем такую формулу:
Время передачи = Объем данных / Скорость передачи данныхЕсли нужно учесть служебную информацию, то формула изменяется:
Полный объем данных = Чистый объем данных + Чистый объем данных × Процент служебной информации Время передачи = Полный объем данных / Скорость передачи данныхЕсли вы не знаете скорость передачи данных канала, которым вы пользуетесь, ее можно измерить одним из множества имеющихся в сети тестов, например, этим.
Подробнее о передаче данных и её единицах измерения — в нашем Конвертере передачи данных.
Пример 2: Рассчитайте сколько времени понадобится для загрузки фильма объемом 1,5 GB в смартфон, подключенный к компьютеру по шине USB 3.1 (соединение USB-C). Подсказка: воспользуйтесь нашим Калькулятором передачи данных для определения Скорости передачи данных по USB 3.1, затем введите ее в этот калькулятор. Считайте, что трафик на передачу служебных данных не используется.
Скорость передачи данных — объём данных (информации), переданный за единицу времени (как правило 1 секунду). Базовой единицей измерения скорости передачи данных является бит в секунду. Также к базовым единицам можно отнести байт в секунду, который равен 8 битам в секунду. Все остальные единицы измерения скорости передачи данных являются производными от этих двух.
Они образуются при помощи приставок:
- используемых для обозначения десятичных кратных единиц: кило- (10 3 ), мега- (10 6 ), гига- (10 9 ) и т.д.
- используемых для обозначения 2-x кратных единиц — двоичные (бинарные) приставки: киби- (2 10 ) , меби- (2 20 ), гиби- (2 30 ) и т.д.
При этом, к примеру:
1 килобит в секунду = 1×10 3 = 1000 бит в секунду
1 кибибит в секунду = 1×2 10 = 1024 бит в секунду
1 кибибит в секунду = 1.024 килобит в секунду
1 килобит в секунду = 0.9765625 кибибит в секунду
1 килобит в секунду ≠ 1024 бит в секунду
Хотя до введения двоичных приставок международной электротехнической комиссией (МЭК) в 1999 году, принято было считать, что 1 килобит равняется именно 1024 бит. Но по сути это было не верно.
К сожалению новый стандарт до сих пор используется не повсеместно и из-за этого могут возникнуть ошибки и недопонимания.
Онлайн конвертер
Чтобы перевести скорость передачи данных из одних единиц измерения в другие, введите значение и выберите единицы измерения скорости.Онлайн калькулятор
Скорость передачи данных
Объём данных (размер файла) I =
Время передачи данных t =
Скорость передачи данных V =
Объём данных
Скорость передачи данных V =
Время передачи данных t =
Объём данных (размер файла) I =
Время передачи данных
Объём данных (размер файла) I =
Скорость передачи данных V =
Время передачи данных t =
Теория
Как найти скорость передачи данных
Чему равна скорость передачи данных (V), если известен объём переданных данных (I) и время (t), за которое эти данные переданы?
Формула
Пример
Через некое соединение был передан файл размером 5MB (мегабайт), передача заняла 16 секунд. Необходимо определить скорость передачи данного файла в мегабитах в секунду.
Для начала переведём 5 мегабайт в биты (cм. таблицу ниже):
5MB = 5 ⋅ 8000000 = 40 000 000 бит
Далее считаем по формуле:
V = 40000000/16 = 2 500 000 бит/с
Переводим полученный результат в мегабиты в секунду:
V = 2500000/1000000 = 2.5 Мбит/с
Как найти объём данных
Чему равен объём данных (I), если известны скорость передачи данных (V) и время (t), за которое эти данные переданы?
Формула
Пример
Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Передача файла заняла 16 секунд. Определим объем файла в килобайтах.
Для начала определим размер переданного файла в битах:
I = 512000 ⋅ 16 = 8192000 бит
Переведём полученный результат в килобайты:
I = 8192000/8000 = 1024 Кбайт
Этот результат верен если 1 Кбайт = 1000 бит. Если же вы производите расчет с устаревшими единицами (1 Кбайт = 1024 бит), то:
I = 8192000/8192 = 1000 Кбайт
А если результат записать в кибибайтах:
I = 8192000/8192 = 1000 КиБ
Как найти время передачи данных
Чему равно время передачи данных (t), если известны объём переданных данных (I) и скорость передачи данных (V):
Формула
Пример
За сколько секунд скачается файл размером в 1GB (гигабайт), если скорость соединения 2 Мбит/с?
1. Как называется сеть, в которой все компьютеры равноправны? В ответе надо ввести прилагательное.
Ответ:
введите строку
2. Отметьте все достоинства одноранговых сетей.
просты в настройке и обслуживании
при выходе из строя любого компьютера сеть работает
надёжная защита данных
есть единый центр управления
не требуется сложное программное обеспечение
3. Отметьте все преимущества схемы «общая шина».
небольшой расход кабеля
работает надежнее, чем другие
при выходе из строя любой машины сеть работает
самая простая схема
4. Отметьте преимущества технологии «клиент-сервер».
рабочие станции могут быть маломощными
система проще и дешевле
более надежная защита от взлома
сервер может быть маломощным
проще и дешевле расширять сеть
5. Какая схема соединения компьютеров в локальной сети обеспечивает лучшую защиту данных?
звезда
кольцо
общая шина
уровень защиты везде одинаковый
6. Отметьте все достоинства схемы «звезда».
малый расход кабеля
надёжная защита данных от взлома
при отказе коммутатора сеть продолжает работать
при разрыве связи с одной рабочей станцией сеть продолжает работать
легко расширять сеть, подключая новые компютеры
7. Перечислите операционные системы, которые используются для создания сетей с выделенным сервером.
Linux Server
Windows 8
Windows 10
Windows Server
Android
8. Какие стандарты беспроводной связи используются с локальных сетях?
Wi-Fi
Bluetooth
локальные сети - всегда кабельные
спутниковая радиосвязь
9. Выделите главную проблему беспроводных сетей.
нужно защитить данные от перехвата
низкая скорость обмена данными
высокий уровень помех
сложность подключения к сети
ограниченное количество компюьтеров в сети
10. Скорость передачи данных по сети Wi-Fi равна 5 Мбит/с. За сколько секунд удастся передать видеофайл объёмом 25⋅106 байт?
Ответ:
введите число
11. Скорость передачи данных по сети Bluetooth равна 2 Мбит/с. За сколько секунд удастся передать рисунок объёмом 3⋅106 байт?
Ответ:
введите число
12. Как называется отрезок кабеля с двумя разъёмами, который соединяет компьютер с коммутатором?
Ответ:
введите строку
13. Как называется устройство, которое связывает локальную сеть с другими сетями?
Ответ:
введите строку
14. Как называется устройство, которое в схеме «звезда» объединяет компьютеры в одну сеть?
Ответ:
10-13 с подробным решением )
7. Серверы на андроиде тоже бывают, но чаще всего таки используют Юникс.
8. Локальные сети на блютусе иногда строят, но они просто медленные. Марсианский робот соединяется с земным компьютером тоже в локальную сеть. Кабеля на Марс нет и вайфай туда почему-то не достаёт.
9. Сеть 4G имеет вполне себе приличную скорость, сложностей с подключением ни один владелец смартфона не испытывает, ограничивать продажу сим-карт ни один оператор вроде не собирается "ограниченное количество компьютеров в сети". Перехват данных. Имеем город с миллионным населением. Среди всех сидящих в интернете через мобильник разыскиваем некоего аоалала екуеуке, чтобы проверить, что он там смотрит в ютубе.
12. Он называется "конец".
Впервые рабочая группа IEEE 802.11 была анонсирована в 1990 году и вот уже 25 лет идёт непрекращающаяся работа над беспроводными стандартами. Основным трендом является постоянное увеличение скоростей передачи данных. В данной статье я попробую проследить путь развития технологии и показать, за счёт чего обеспечивалось увеличение производительности и чего стоит ждать в ближайшем будущем. Предполагается, что читатель знаком с основными принципами беспроводной связи: видами модуляции, глубиной модуляции, шириной спектра и т.д. и знает основные принципы работы Wi-Fi сетей. На самом деле существует не так много способов увеличения пропускной системы связи и большинство из них было реализовано на разных этапах совершенствования стандартов группы 802.11.
Рассмотрению будут подвергнуты стандарты, определяющие физический уровень, из взаимно совместимой линейки a/b/g/n/aс. Стандарты 802.11af (Wi-Fi на частотах эфирного телевиденья), 802.11ah (Wi-Fi в диапазоне 0.9 МГц, предназначенный для реализации концепции IoT) и 802.11ad (Wi-Fi для скоростной связи периферийных устройств наподобие мониторов и внешних дисков) несовместимы друг с другом, имеют различные сферы применения и не подходят для анализа эволюции технологий передачи данных на большом интервале времени. Кроме того, вне рассмотрения останутся стандарты, определяющие стандарты безопасности (802.11i), QoS (802.11e), роуминга (802.11r) и т.д., так как они только косвенно влияют на скорость передачи данных. Здесь и далее речь идёт о канальной, так называемой брутто-скорости, которая является заведомо большей, чем фактическая скорость передачи данных из-за большого количества служебных пакетов в радиообмене.
Первым стандартом беспроводной связи был 802.11 (без буквы). Он предусматривал два типа среды передачи: радиочастота 2.4 ГГц и инфракрасный диапазон 850-950 нм. ИК-устройства не были широко распространены и в будущем развития не получили. В диапазоне 2.4 ГГц было предусмотрено два способа расширения спектра (расширение спектра является неотъемлемой процедурой в современных системах связи): расширение спектра методом скачкообразного изменения частоты (FHSS) и методом прямой последовательности (DSSS). В первом случае все сети используют одну и ту же полосу частот, но с различными алгоритмами перестроения. Во втором случае уже появляются частотные каналы от 2412 МГц до 2472 МГц с шагом 5 МГц, сохранившиеся по сей день. В качестве расширяющей последовательности используется последовательность Баркера длиной 11 чипов. При этом максимальная скорость передачи данных составляла от 1 до 2 Мбит/с. В то время даже с учётом того, что в самых идеальных условиях полезная скорость передачи данных по Wi-Fi не превышает 50% канальной, такие скорости выглядели весьма привлекательно в сравнении со скоростями модемного доступа к сети Интернет.
Для передачи сигнала в 802.11 использовалась 2-х и 4-х позиционная манипуляция, что обеспечивало работу системы даже в неблагоприятных условиях сигнал/шум и не требовало сложных приёмо-передающих модулей.
Например, для реализации информационной скорости 2 Мбит/с каждый передаваемый символ заменяется на последовательность из 11 символов.
Таким образом чиповая скорость составляет 22 Мбит/с. За один такт передачи передаются 2 бита (4 уровня сигнала). Таким образом скорость манипуляции составляет 11 бод и основной лепесток спектра при этом занимает 22 МГц, величину, которую применительно к 802.11, часто называют шириной канала (на самом деле спектр сигнала является бесконечным).
При этом согласно критерию Найквиста (число независимых импульсов в единицу времени ограничено удвоенной максимальной частотой пропускания канала) для передачи такого сигнала достаточно полосы 5.5 МГц. Теоретически устройства формата 802.11 должны удовлетворительно работать и на каналах, отстоящих друг от друга на 10 МГц (в отличии от более поздних реализаций стандарта, требующих вещания на частотах, отстоящих друг от друга не менее, чем на 20 МГц).
Следующий шаг увеличения скорости до 54 Мбит/с был реализован в стандарте 802.11a (данный стандарт начал разрабатываться раньше, чем стандарт 802.11b, но финальная версия была выпущена позже). Увеличение скорости в основном было достигнуто за счёт увеличения глубины модуляции до 64 уровней на один символ (6 бит на 1 бод). Кроме того, была радикально пересмотрена радиочастотная часть: расширение спектра методом прямой последовательности было заменено на расширение спектра методом разделения последовательного сигнала на параллельные ортогональные поденсущие (OFDM). Использование параллельной передачи на 48 подканалах позволило снизить межсимвольную интерференцию за счёт увеличения длительности отдельных символов. Передача данных осуществлялась в диапазоне 5 ГГц. При этом ширина одного канала составляет 20 МГц.
В отличие от стандартов 802.11 и 802.11b, даже частичное перекрытие этой полосы может привести к ошибкам передачи. К счастью в диапазоне 5 ГГц расстояние между канали составляет эти самые 20 МГц.
Стандарт 802.11g не стал прорывом в плане скорости передачи данных. Фактически этот стандарт стал компиляцией 802.11a и 802.11b в диапазоне 2,4 ГГц: в нём поддерживались скорости обоих стандартов.
Серьёзное увеличение скорости произошло в стандарте 802.11n (в обоих диапазонах 2,4 и 5 ГГц): до 72 Мбит/с за счёт уменьшения защитных интервалов между передаваемыми символами. Кроме того, для увеличения пропускной способности можно было объединить два канала по 20 МГц и получить 150 Мбит/с. Однако это не лучший способ увеличения скорости: в диапазоне 2,4 МГц может поместиться всего один расширенный канал в 40МГц. Ещё одним способом повышения скорости стала технология MIMO: использование нескольких приёмопередатчиков, работающих на одной и той же частоте. Разделение каналов происходит за счёт пространственного разнесения антенн и математических операций над сигналом, принятым на разные антенны: он будет различаться в силу многолучевого распространения радиоволн. По иронии судьбы именно эффект многолучевого распространения ранее негативно влиял на передачу данных в сети, но инженеры смогли определить недуг в подвиг и заставить этот паразитный фактор работать на увеличение скорости. Стандарт 802.11n поддерживает MIMO 4x4:4 (четыре независимых канала) и обеспечивает скорость до 600 Мбит/с.
Однако данная технология требует высокого качества изготовления радио части устройств. Кроме того, данные скорости принципиально не реализуемы на мобильных терминалах (основной целевой группе стандарта Wi-Fi): наличие 4-х антенн на достаточном разнесении не может быть реализовано в малогабаритных устройствах как по соображениям отсутствия места, так и из-за отсутствия достаточного на 4 приёмопередатчика энергии.
В большинстве случаев скорость 600 Мбит/с является не более, чем маркетинговой уловкой и нереализуема на практике, так как фактически её можно добиться только между стационарными точками доступа, установленными в пределах одной комнаты при хорошем соотношении сигнал/шум.
Следующий шаг в скорости передачи был выполнен стандартом 802.11ac: максимальная скорость, предусмотренная стандартом, составляет до 6,93 Гбит/с, однако фактически такая скорость ещё не достигнута ни на одном оборудовании, представленном на рынке. Увеличение скорости достигнуто за счёт увеличения полосы пропускания до 80 и даже до 160 МГц. Такая полоса не может быть предоставлена в диапазоне 2,4 ГГц, поэтому стандарт 802.11ac функционирует только в диапазоне 5 ГГц. Ещё один фактор увеличения скорости – увеличение глубины модуляции до 256 уровней на один символ (8 бит на 1 бод) К сожалению, такая глубина модуляции может быть получена только вблизи точки из-за повышенных требований к соотношению сигнал/шум. Указанные улучшения позволили добиться увеличения скорости до 867 Мбит/с. Остальное увеличение получено за счёт ранее упомянутых потоков MIMO 8x8:8. 867х8=6,93 Гбит/с. Технология MIMO была усовершенствована: впервые в стандарте Wi-Fi информация в одной сети может передаваться двум абонентам одновременно с использованием различных пространственных потоков.
В более наглядном виде результаты в таблице:
В таблице перечислены основные способы увеличения пропускной способности: «-» — метод не применим, «+» — скорость была увеличена за счёт данного фактора, «=» — данный фактор остался без изменений.
Ресурсы уменьшения избыточности уже исчерпаны: максимальная скорость помехоустойчивого кода 5/6 была достигнута в стандарте 802.11a и с тех пор не увеличивалась. Увеличение глубины модуляции теоретически возможно, но следующей ступенью является 1024QAM, которая является очень требовательной к соотношению сигнал/шум, что предельно снизит радиус действия точки доступа на высоких скоростях. При этом возрастут требования к исполнению аппаратной части приёмопередатчиков. Уменьшение межсимвольного защитного интервала также вряд ли будет направлением совершенствования скорости – его уменьшение грозит увеличением ошибок, вызванных межсимвольной интерференцией. Увеличение полосы канала сверх 160 МГц так же вряд ли возможно, так как возможности по организации непересекающихся сот будут сильно ограничены. Ещё менее реальным выглядит увеличение количества MIMO-каналов: даже 2 канала являются проблемой для мобильных устройств (из-за энергопотребления и габаритов).
Из перечисленных методов увеличения скорости передачи большая часть в качестве расплаты за своё применение забирает полезную площадь покрытия: снижается пропускная способность волн (переход от 2,4 к 5 ГГц) и повышаются требования к соотношению сигнал шум (увеличение глубины модуляции, повышение скорости кода). Поэтому в своём развитии сети Wi-Fi постоянно стремятся к уменьшению площади, обслуживаемой одной точкой в пользу скорости передачи данных.
В качестве доступных направлений совершенствования могут использоваться: динамическое распределение OFDM поднесущих между абонентами в широких каналах, совершенствование алгоритма доступа к среде, направленное на уменьшение служебного траффика и использование техник компенсации помех.
Подводя итог вышесказанному попробую спрогнозировать тенденции развития сетей Wi-Fi: вряд ли в следующих стандартах удастся серьёзно увеличить скорость передачи данных (не думаю, что больше, чем в 2-3 раза), если не произойдёт качественного скачка в беспроводных технологиях: почти все возможности количественного роста исчерпаны. Обеспечить растущие потребности пользователей в передаче данных можно будет только за счёт увеличения плотности покрытия (снижения радиуса действия точек за счёт управления мощностью) и за счёт более рационального распределения существующей полосы между абонентами.
Вообще тенденция уменьшения зон обслуживания, похоже, является основным трендом в современных беспроводных коммуникациях. Некоторые специалисты считают, что стандарт LTE достиг пика своей пропускной способности и не сможет далее развиваться по фундаментальным причинам, связанным с ограниченностью частотного ресурса. Поэтому в западных мобильных сетях развиваются технологии оффлоада: при любом удобном случае телефон подключается к Wi-Fi от того же оператора. Это называют одним из основных способов спасения мобильного Интернета. Соответственно роль Wi-Fi сетей с развитием сетей 4G не только не падает, а возрастает. Что ставит перед технологией всё новые и новые скоростные вызовы.
Читайте также: