Сколько у коммутатора интерфейсов fast ethernet
Если устройство имеет стандартные физические интерфейсы (например, RJ-45), то структура подуровней физического уровня может быть скрыта внутри микросхемы с большой интеграцией логики. Кроме того допустимы отклонения в протоколах промежуточных подуровней в едином устройстве, ставящие главной целью рост быстродействия.
3. Физические
интерфейсы
Fast Ethernet
100Base-FX
Стандарт этого волоконно-оптического интерфейса полностью идентичен стандарту FDDI PMD, который подробно рассмотрен в главе 6. Основным оптическим разъемом стандарта 100Base-FX является Duplex SC. Интерфейс допускает дуплексный канал связи.
100Base-TX
Стандарт этого физического интерфейса предполагает использование неэкранированной витой пары категории не ниже 5. Он полностью идентичен стандарту FDDI UTP PMD, который также подробно рассмотрен в главе 6. Физический порт RJ-45 как и в стандарте 10Base-T может быть двух типов: MDI (сетевые карты, рабочие станции) и MDI-X (повторителе Fast Ethernet, коммутаторы). Порт MDI в единичном количестве может иметься на повторителе Fast Ethernet. Для передачи по медному кабелю используются пары 1 и 3. Пары 2 и 4 - свободны. Порт RJ-45 на сетевой карте и на коммутаторе может поддерживать на ряду с режимом 100Base-TX и режим 10Base-T или функцию автоопределения скорости. Большинство современных сетевых карт и коммутаторов поддерживают эту функцию по портам RJ-45 и кроме этого могут работать в дуплексном режиме.
100Base-T4
Этот тип интерфейса позволяет обеспечить полудуплексный канал связи по витой паре UTP Cat.3 и выше. Именно возможность перехода предприятия со стандарта Ethernet на стандарт Fast Ethernet без радикальной замены существующей кабельной системы на основе UTP Cat.3 следует считать главным преимуществом этого стандарта.
В отличи от стандарта 100Base-TX, где для передачи используется только две витых пары кабеля, в стандарте 100Base-T4 используются все четыре пары (рис.3а). Причем при связи рабочей станции и повторителя посредством прямого кабеля, данные от рабочей станции к повторителю идут по витым парам 1, 3 и 4, а в обратном направлении - по парам 2, 3 и 4. Пары 1 и 2 используются для обнаружения коллизий подобно стандарту Ethernet. Другие две пары 3 и 4 попеременно в зависимости от команд могут пропускать сигнал либо в одном, либо в другом направлении. Битовая скорость в расчете на один канал составляет 33,33 Мбит/с.
Символьное кодирование 8B/6T. Если использовалось бы манчестерское кодирование, то битовая скорость в расчете на одну витую пару была бы 33.33 Мбит/с, что превышало установленный предел 30 МГц для таких кабелей. Эффективное уменьшить частоты модуляции достигается, если вместо прямого (2-х уровневого) бинарного кода использовать 3-х уровневый (ternary) код. Этот код известен как 8B6T; это означает, что прежде, чем происходит передача, каждый набор из 8 бинарных битов (символ) сначала преобразуется в соответствии с определенными правилами в 6 тройных (3-х уровневых) символов. На примере, показанном на рис.3б, можно определить скорость 3-х уровневого символьного сигнала:
значение которой не превышает установленный предел.
Интерфейс 100Base-T4 имеет один существенный недостаток - принципиальную невозможность поддержки дуплексного режима передачи. И если при строительстве небольших сетей Fast Ethernet с использованием повторителей, 100Base-TX не имеет преимуществ перед 100Base-T4 (существует коллизионный домен, полоса пропускания которого не больше 100 Мбит/с), то при строительстве сетей с использованием коммутаторов недостаток интерфейса 100Base-T4 становится очевидным и очень серьезным. Поэтому данный интерфейс не получи столь большого распространения, как 100Base-TX и 100Base-FX.
3. Типы
устройств
Fast Ethernet
Трансивер - это (по аналогии с трансивером Ethernet) двухпортовое устройство, охватывающее подуровни PCS, PMA, PMD и AUTONEG, и имеющее с одной стороны MII интерфейс, с другой - один из средазависимых физических интерфейсов (100Base-FX, 100Base-TX или 100Base-T4). Трансиверы используются сравнительно редко, как и редко используются сетевые карты, повторители, коммутаторы с интерфейсом MII.
Сетевая карта. Наиболее широкое распространение получили сегодня получили сетевые карты с интерфейсом 100Base-TX на шину PCI. Необязательными но крайне желательными функциями порта RJ-45 является автоконфигурирования 100/10 Мбит/с, и поддержка дуплексного режима. Большинство современных выпускаемых карт поддерживают эти функции. Выпускаются также сетевые карты с оптическим интерфейсом 100Base-FX (производителя IMC, Adaptec, Transition Networks и др.) - основным стандартным оптическим является разъем SC (допускается ST) на многомодовое волокно.
Конвертер (media converter) - это двухпортовое устройство, оба порта которого представляют средазависимые интерфейсы. Конвертеры в отличии от повторителей могут работать в дуплексном режиме, за исключение случая, когда имеется порт 100Base-T4. Распространены конвертеры 100Base-TX/100Base-FX. В силу общих тенденций роста широкополосных протяженных сетей с использованием одномодовых ВОК, потребление оптических приемо-передатчиков на одномодовое волокно резко возросло в последние один-два года. Конвертерные шасси, объединяющие несколько отдельных модулей 100Base-TX/100Base-FX позволяют подключать множество сходящих в центральном узле волоконно-оптических сегментов к коммутатору оснащенному дуплексными портами RJ-45 (100Base-TX).
Повторитель. По параметру максимальных временных задержек при ретрансляции кадров, повторители Fast Ethernet подразделяются на два класса:
Стандарт Fast Ethernet IEEE 802.3u появился значительно позже стандарта Ethernet – в 1995 году. Его разработка в первую очередь была связана с требованием повышения скорости передачи информации. Однако переход с Ethernet на Fast Ethernet позволяет не только повысить скорость передачи , но и существенно отодвинуть границу перегрузки сети (что обычно гораздо важнее). Поэтому популярность Fast Ethernet постоянно растет.
Вместе с тем надо учитывать, что стандартные сегменты Fast Ethernet имеют свои особенности и недостатки, которые далеко не очевидны, но которые обязательно надо учитывать. Создатели Fast Ethernet сделали все возможное для облегчения перехода на новую скорость, однако, в каком-то смысле Fast Ethernet – это уже другая, новая сеть .
Если сравнивать набор стандартных сегментов Ethernet и Fast Ethernet , то главное отличие – полный отказ в Fast Ethernet от шинных сегментов и коаксиального кабеля. Остаются только сегменты на витой паре и оптоволоконные сегменты .
Стандарт 100BASE-TX определяет сеть с топологией пассивная звезда и использованием сдвоенной витой пары.
Схема объединения компьютеров в сеть 100BASE-TX практически ничем не отличается от схемы по стандарту 10BASE -T (рис. 12.1). Однако, в этом случае необходимо применение кабелей с неэкранированными витыми парами ( UTP ) категории 5 или выше, что связано с требуемой пропускной способностью кабеля. В настоящее время это самый популярный тип сети Fast Ethernet .
Рис. 12.1. Схема объединения компьютеров по стандарту 100BASE-TX
Из восьми контактов разъема RJ-45 используется только 4 контакта (табл. 12.1): два для передачи информации (TX+ и TX-) и два для приема информации (RX+ и RX-). Передача производится дифференциальными сигналами. Для передачи используется код 4В/5В, такой же, как в сети FDDI , что позволяет снизить частоту изменения сигналов по сравнению с манчестерским кодом . Это уже серьезный шаг в сторону от первоначального стандарта IEEE 802.3.
Стандарт предусматривает также возможность применения экранированного кабеля с двумя витыми парами проводов ( волновое сопротивление – 150 Ом). В этом случае должен применяться 9-контактный экранированный разъем DB-9 , он же разъем STP IBM типа 1 (рис. 12.2), такой же, как в сети Token-Ring. Назначение контактов этого разъема приведено в табл. 12.2.
Как и в случае 10BASE -T, в сети 100BASE-TX могут использоваться два типа кабеля: прямой и перекрестный (рис. 12.3). Для соединения двух компьютеров без применения концентраторов используется стандартный перекрестный ( crossover ) кабель . А для связи компьютера с концентратором применяется прямой (direct) кабель с соединенными между собой одинаковыми контактами разъемов. Если перекрестное соединение предусмотрено внутри концентратора, то соответствующий порт его должен быть помечен буквой "X".Здесь все точно так же, как и в случае 10BASE -T.
Для контроля целостности сети в 100BASE-TX предусмотрена передача в интервалах между сетевыми пакетами специальных сигналов ( FLP – Fast Link Pulse ). Но в отличие от 10BASE -T эти сигналы выполняют также функцию автоматического согласования скорости передачи аппаратных средств ( Auto-Negotiation ). Об этом автоматическом согласовании будет рассказано в разделе "Автоматическое определение типа сети".
Соответствуют ли ваши коммутаторы требованиям, которые постоянно меняются? Если вы поймете различия между сетевыми коммутаторами разных типов, то сможете выбрать подходящее решение, которое будет полезно и сейчас, и в будущем. При выборе коммутаторов вам нужно оценить разные категории коммутаторов, а также их особые преимущества.
Сетевые Ethernet-коммутаторы делятся на две основные категории: с модульной и с фиксированной конфигурацией. По мере развития этой сферы появляются новые разновидности сетевых коммутаторов, однако основные категории остаются неизменными.
Модульные коммутаторы
Модульные коммутаторы — это коммутаторы, к которым по мере необходимости можно добавлять модули расширения. Это гибкое решение для тех, кто хочет расширять свою сеть. Модули расширения могут подключаться в виде приложений (межсетевой экран, беспроводная связь, сетевой анализ) и модулей для дополнительных интерфейсов, источников питания или вентиляторов для охлаждения.
Сетевые Ethernet-коммутаторы с фиксированной конфигурацией
Коммутаторы с фиксированной конфигурацией — это коммутаторы с фиксированным количеством портов. Как правило, возможность расширения у таких коммутаторов отсутствует.
Коммутаторы с фиксированной конфигурацией, в свою очередь, делятся на неуправляемые коммутаторы, интеллектуальные коммутаторы и управляемые коммутаторы уровня 2 и уровня 3.
Неуправляемые коммутаторы
Неуправляемый коммутатор достаточно подключить к источнику питания — и он сразу начнет работать. Выполнять предварительную настройку не требуется. Обычно неуправляемые коммутаторы подходят для подключения, к которому предъявляются базовые требования. Их часто используют для домашних сетей или там, где требуется всего несколько дополнительных портов, например на рабочем месте, в лаборатории или конференц-зале.
Коммутаторы этой категории — самые бюджетные: понадобятся только базовая коммутация второго уровня и подключение. Это оптимальное решение, например, если нужно несколько дополнительных портов на рабочем месте, в лаборатории, конференц-зале или даже дома.
На рынке представлены неуправляемые коммутаторы, которые также выполняют диагностику кабеля, обнаруживают петли трафика, назначают приоритеты трафику с помощью настроек QoS по умолчанию, помогают экономить на электроэнергии благодаря технологии Energy Efficient Ethernet (EEE) и даже PoE (Power over Ethernet). Но, как понятно из названия, управлять и изменять конфигурации таких коммутаторов практически невозможно. Достаточно их подключить — и они сразу, без предварительной настройки, готовы к работе.
Интеллектуальные коммутаторы
Коммутаторы этой категории продолжают развиваться. В целом эти коммутаторы поддерживают некоторые функции управления, контроля качества обслуживания и безопасности, при этом они хуже масштабируются и предлагают меньше возможностей по сравнению с управляемыми коммутаторами. Но интеллектуальные коммутаторы более доступны по цене. Выполнять их развертывание можно по периметру большой сети (если в ее основе — управляемые коммутаторы), в инфраструктуре небольших сетей или для несложных функций.
Возможности этой категории интеллектуальных коммутаторов значительно различаются. Все эти устройства оснащены интерфейсом для управления, который обычно проще, чем у управляемых коммутаторов.
Интеллектуальные коммутаторы позволяют сегментировать сеть на рабочие группы, создавая сети VLAN, но количество таких сетей и узлов (MAC-адресов) меньше, чем у управляемого коммутатора.
Также они обеспечивают определенную степень защиты, например с помощью аутентификации конечных точек по протоколу 802.1x (в некоторых случаях с ограничением списка контроля доступа), хотя уровни управления и детализации не отличаются от тех, что предоставляет управляемый коммутатор.
Более того, интеллектуальные коммутаторы достаточно универсальны: они поддерживают базовые функции обеспечения качества обслуживания (QoS), что упрощает распределение приоритетов для пользователей и приложений на основании протокола 802.1q/TOS/DSCP.
Полностью управляемые коммутаторы уровней 2 и 3
Управляемые коммутаторы предоставляют самый широкий спектр функций и гарантируют самую удобную работу с приложениями, самый высокий уровень безопасности, самый точный контроль и управление сетью, а коммутаторы с фиксированной конфигурацией — максимальную масштабируемость. Именно поэтому управляемые коммутаторы часто внедряют в качестве коммутаторов агрегации/доступа в очень крупных сетях или в качестве коммутаторов уровня ядра в относительно небольших сетях. Управляемые коммутаторы должны поддерживать и коммутацию второго уровня, и IP-маршрутизацию третьего уровня, хотя некоторые из них поддерживают только коммутацию второго уровня.
В плане безопасности управляемые коммутаторы защищают на уровне передачи данных (при перенаправлении пользовательского трафика), контроля (при передаче трафика между сетевыми устройствами, чтобы пользовательский трафик достигал места назначения) и управления (трафик, используемый для управления самой сетью или устройством). Кроме того, управляемые коммутаторы осуществляют контроль насыщения сети, защиту от DoS-атак и другие функции.
Функции списка контроля доступа позволяют настроить отбрасывание пакетов, ограничение скорости, зеркалирование или внесение данных о трафике в журнал по адресам второго уровня, адресам третьего уровня, номерам портов TCP/UDP, типу разъема Ethernet, флагам ICMP или TCP и т. д.
Управляемые коммутаторы поддерживают множество функций, с помощью которых они обеспечивают свою защиту и защиту сети от намеренных или непреднамеренных DoS-атак. К таким функциям относятся динамическая проверка ARP, перехват DHCP-трафика для сетей IPv4, защита на уровне первого транзитного перехода для сетей IPv6 с функцией RA Guard, обнаружение соседа, установка связи между соседями и т. д.
Среди других возможностей обеспечения безопасности — частные сети VLAN для защиты сообщества пользователей или изоляции устройств, а также безопасное управление (загрузки через SCP, веб-аутентификация, авторизация и учет по протоколу Radius или TACACS и т. д.). Назначение политик для уровня управления (CoPP) с целью защиты ЦП коммутатора и более обширной поддержки протокола 802.1x (учет времени, назначение динамической VLAN, уровень порта/хоста и т. д.).
У этих устройств много вариантов масштабирования, поэтому вы можете, к примеру, создавать множество сетей VLAN (для рабочих групп), устройств (таблицы MAC-адресов), IP-маршрутов и политик ACL для безопасности и функций QoS на основе потоков.
Для обеспечения максимальной доступности сети и времени бесперебойной работы управляемые маршрутизаторы поддерживают резервирование третьего уровня по протоколу VRRP (протокол резервирования виртуального маршрутизатора), большое количество групп агрегации каналов (для масштабируемости и отказоустойчивости), а также функции защиты второго уровня, например STRG и BPDU.
А возможности обеспечения качества обслуживания (QOS) и многоадресной рассылки намного шире, чем у интеллектуальных коммутаторов. Управляемые коммутаторы поддерживают отслеживание IGMP и MLD с функциями оптимизации многоадресного трафика IPv4/v6 в локальной сети, предотвращение перегрузок TCP, 4 или 8 очередей для сортировки трафика по важности, настройку или маркирование трафика по второму уровню (802.1p) или третьему уровню (DSCP/TOS), а также ограничение трафика по скорости.
Другие особенности
Помимо различий в категориях коммутаторов стоит учитывать и другие особенности, в том числе скорость передачи данных сетевого коммутатора, количество портов, питание через Ethernet и возможности стекирования.
Скорость передачи данных сетевого коммутатора
Сетевые коммутаторы могут различаться по скорости передачи данных. Доступны коммутаторы с фиксированной конфигурацией стандарта Fast Ethernet (10/100 Мбит/с), Gigabit Ethernet (10/100/1000 Мбит/с), Ten Gigabit (10/100/1000/10000 Мбит/с) и даже 40/100 Гбит/с. На некоторых коммутаторах также доступна многогигабайтная технология. Она обеспечивает скорость передачи более 1 гигабайта, если используются кабели категории 5e/6. У коммуникаторов есть несколько портов каскадирования и портов нисходящего канала. Порты нисходящего канала устанавливают подключение к конечным пользователям, а порты каскадирования — к другим коммутаторам или сетевой инфраструктуре.
Количество портов
Сетевые коммутаторы различаются по размеру. Коммутаторы с фиксированной конфигурацией обычно оснащены 5, 8, 10, 16, 24, 28, 48 и 52 портами. Это может быть комбинация разъемов SFP/SFP+ для подключения оптоволоконного кабеля, но чаще используются медные порты с разъемами RJ-45 спереди для установки подключения на расстоянии до 100 метров. Оптоволоконные модули SFP позволяют установить подключение на расстоянии до 40 километров.
Поддержка технологии электропитания по сети Ethernet
Технология питания через Ethernet (PoE) обеспечивает питание устройства (например, IP-телефоны, IP-камеры видеонаблюдения или точки беспроводного доступа) по тому же кабелю, что и для передачи данных. Одно из преимуществ технологии PoE — это гибкость: вы можете разместить конечные устройства в любой части помещения, даже там, где сложно подвести питание через розетку. Например, точку беспроводного доступа можно разместить прямо в стене или потолке.
Коммутаторы подают питание по нескольким стандартам: IEEE 802.3af подает питание до 15,4 Вт на порт коммутатора, а IEEE 802.3at (также известный как PoE+) подает питание до 30 Вт на порт коммутатора. Для большинства конечных устройств подходит стандарт 802.3af, но для некоторых устройств (например, видеотелефонов и точек доступа с несколькими радиомодулями) требуется более высокая мощность. Некоторые модели коммутаторов Cisco также поддерживают технологию универсального питания PoE (UPoE) или PoE 60 Вт, которая подает мощность до 60 Вт на порт коммутатора. Новый стандарт PoE 802.3bt обеспечивает более высокую мощность для работы приложений нового поколения.
Чтобы выбрать подходящий коммутатор, определите, какая мощность вам нужна. При подключении к настольным компьютерам или устройствам другого типа, не требующим технологии PoE, самым выгодным решением будут коммутаторы без поддержки PoE.
Стекируемые и автономные коммутаторы
По мере расширения сети вам понадобится больше коммутаторов, чтобы обеспечить сетевое подключение для устройств, количество которых увеличивается. Если вы используете автономные коммутаторы, каждый из них нужно контролировать и настраивать по отдельности.
В отличие от них стекируемые коммутаторы облегчают управление и улучшают доступ к сети. Вместо того, чтобы настраивать, контролировать и устранять неполадки каждого из восьми коммутаторов с 48 портами, вы можете использовать стекируемые коммутаторы, которые позволят контролировать все восемь устройств как одно. Если все восемь коммутаторов (всего 384 порта) являются стекируемыми, они работают как один коммутатор с одним агентом SNMP/RMON, одним доменом связующего дерева, одним интерфейсом командной строки или веб-интерфейсом, то есть одним уровнем управления. Вы также можете создать группы агрегации каналов, которые охватывают несколько устройств в стеке и зеркалируют порты для передачи трафика от одного устройства в стеке к другому, либо настроить охват ACL/QoS для всех устройств. Такой подход дает значительные преимущества при эксплуатации.
Обратите внимание: некоторые продукты, представленные на рынке, называются стекируемыми, но поддерживают только один интерфейс пользователя или интерфейс централизованного управления для доступа по отдельности к каждому коммутатору. То есть это не стекирование, а кластеризация. В таком случае вам придется настраивать каждую функцию (ACL, QoS, зеркалирование портов и т. д.) на каждом коммутаторе отдельно.
Стекирование дает и другие преимущества. Вы можете подключить компоненты стека в кольцо: если порт или кабель выйдет из строя, стек автоматически выполнит перенаправление, чтобы обойти неработающий элемент. Чаще всего это занимает всего микросекунду. Вы также можете добавлять или отключать компоненты стека, автоматически распознавать их и добавлять в стек.
Аппаратура [1] локальных сетей обеспечивает взаимодействие сетевых абонентов. Выбор аппаратных средств имеет важнейшее значение на этапе проектирования сети, так как стоимость оборудования составляет существенную часть от стоимости сети в целом, а замена аппаратуры связана не только с дополнительными расходами, но и с трудоемкими работами. К аппаратуре локальных вычислительных сетей относятся:
- кабели для передачи информации;
- разъемы для присоединения кабелей;
Сетевые адаптеры (контроллеры, карты, платы, интерфейсы, NIC – Network Interface Card) – это основная часть аппаратуры локальной сети. Назначение сетевого адаптера – сопряжение (соединение) компьютера (или другого абонента) с сетью, то есть обеспечение обмена данными между абонентом и каналом связи в соответствии с принятыми протоколами обмена. Они реализуют функции двух нижних уровней модели OSI. Как правило, сетевые адаптеры выполняются в виде платы, вставляемой в слоты расширения системной магистрали (шины) компьютера (чаще всего PCI, ISA или PC-Card). Плата сетевого адаптера имеет один или несколько внешних разъемов для подключения к ней сетевого кабеля.
Сетевые адаптеры Ethernet могут выпускаться со следующими наборами разъемов:
- TPO – разъем RJ-45 (для кабеля на витых парах по стандарту 10BASE-T);
- TPC – разъемы RJ-45 (для кабеля на витых парах 10BASE-T) и BNC (для коаксиального кабеля 10BASE2);
- Combo – разъемы RJ-45 (10BASE-T), BNC (10BASE2), AUI;
- Coax – разъемы BNC, AUI;
- FL – разъем ST (для волоконно-оптического кабеля 10BASE-FL).
К основным функциям сетевых адаптеров относятся:
- гальваническая развязка компьютера и информационной среды локальной сети (используется передача данных через импульсные трансформаторы);
- преобразование логических сигналов в сетевые (световые или электрические) и обратно;
- кодирование и декодирование сетевых сигналов (прямое и обратное преобразование сетевых кодов передачи информации;
- селекция принимаемых сетевых пакетов (выбор из приходящих пакетов адресованных данному абоненту);
- преобразование параллельного кода в последовательный при передаче данных и обратное преобразование при приеме;
- накопление (буферизация) передаваемых и принимаемых данных в памяти сетевого адаптера;
- организация доступа к сети в соответствии с принятым методом управления обменом;
- вычисление контрольной суммы пакетов при передаче и приеме.
Стандартный алгоритм взаимодействия компьютера с сетевым адаптером происходит следующим образом. Если компьютеру необходимо передать пакет, то он сначала формирует этот пакет в своей оперативной памяти, затем пересылает его в буферную память сетевого адаптера и дает ему команду на передачу. Адаптер анализирует текущее состояние сети и при первой возможности передает пакет в сеть (выполняет управление доступом к среде передачи данных). При этом он производит преобразование информации из буферной памяти в последовательный вид для побитной передачи по сети, вычисляет контрольную сумму, кодирует биты пакета в сетевой код и через узел гальванической развязки выдает пакет в кабель сети.
Если по сети приходит пакет, то сетевой адаптер через узел гальванической развязки принимает биты этого пакета, производит их декодирование из сетевого кода и сравнивает сетевой адрес приемника из пакета со своим собственным адресом (адрес сетевого адаптера устанавливается его производителем). При совпадении адреса сетевой адаптер записывает пришедший пакет в свою буферную память и сообщает компьютеру (сигналом аппаратного прерывания) о том, что получен пакет и его обработать. Одновременно с записью пакета производится вычисление контрольной суммы, что позволяет к завершению процесса приема сделать вывод о наличии в нем ошибок. Буферная память позволяет освободить компьютер от непрерывного контроля сети и обеспечивает высокую степень готовности сетевого адаптера к приему информации. Сетевой адаптер выполняет функции двух нижних уровней модели OSI.
Все остальное аппаратное обеспечение локальных сетей (кроме адаптеров) имеет вспомогательный, дополнительный характер - это промежуточные сетевые устройства.
Приемопередатчики или трансиверы (TRANsmitter + reCEIVER) используют для передачи информации между адаптером и кабелем сети или между двумя сегментами (частями) сети. Трансиверы усиливают сигналы, преобразуют их уровни или преобразуют сигналы в другую форму (например, из электрической в световую и обратно). Трансиверами, кроме того называют встроенные в адаптер приемопередатчики.
Репитеры (repeater) или повторители в отличие от трансиверов выполняют более простую функцию. Они не преобразуют ни уровни сигналов, ни их физическую природу, а только восстанавливают слабые сигналы (их амплитуду и форму), приводя их к первоначальному виду. Цель такой ретрансляции сигналов состоит в увеличении протяженности сети.
Концентраторы (хабы, hub) используют для объединения в сеть нескольких сегментов. Концентраторы (или репитерные концентраторы) представляют собой несколько репитеров, они выполняют те же функции, что и повторители. Концентраторы иногда вмешиваются в обмен для устранения некоторых явных ошибок. Они работают на первом уровне модели OSI, так как имеют дело только с физическими сигналами, с битами пакета и не анализируют его содержимое, рассматривая пакет как единое целое. На этом же уровне работают трансиверы и репитеры.
Коммутаторы (свичи, switch, коммутирующие концентраторы), как и концентраторы, служат для объединения сегментов сети. Они выполняют более сложные функции, производя сортировку поступающих пакетов с данными. Коммутаторы передают из одного сегмента сети в другой не все поступающие на них пакеты, а те, которые адресованы компьютерам того сегмента. Пакеты, передаваемые между абонентами одного сегмента, через коммутатор в другой сегмент не попадают. При этом сам пакет коммутатором не принимается, а только пересылается. Интенсивность обмена в сети уменьшается из-за разделения нагрузки, поскольку каждый сегмент работает не только со своими пакетами, но и с пакетами, пришедшими из других сегментов, а коммутатор не пропускает лишних. Коммутатор работает на втором уровне модели OSI (подуровень MAC), так как анализирует МАС-адреса внутри пакета. Кроме того, он выполняет и функции первого уровня.
Мосты (bridge), маршрутизаторы (router) и шлюзы (gateway) служат для объединения в одну сеть нескольких разнородных сетей с разными протоколами обмена нижнего уровня: с разными форматами пакетов, методами кодирования, скоростью передачи и др. В результате их использования сложная и неоднородная сеть, содержащая в себе различные сегменты, с точки зрения пользователя выглядит обычной сетью. Все эти устройства гораздо дороже, чем концентраторы, так как они выполняют довольно сложную обработку информации. Реализуются они обычно на базе компьютеров, подключенных к сети с помощью сетевых адаптеров - они представляют собой специализированные абоненты (узлы) сети.
Мосты - наиболее простые устройства из трех перечисленных выше, служащие для объединения сетей с разными стандартами обмена, например, Ethernet и Arcnet, или нескольких частей (сегментов) одной и той же сети, например, Ethernet. В последнем случае мост, как и коммутатор, только разделяет нагрузку сегментов, повышая тем самым производительность сети в целом. В отличие от коммутаторов мосты принимают поступающие пакеты данных целиком и в случае необходимости производят их несложную обработку. Мосты, как и коммутаторы, работают на втором уровне модели OSI. В последнее время они вытесняются коммутаторами, которые становятся все более функциональными.
Маршрутизаторы осуществляют выбор оптимального маршрута для каждого пакета с целью избежание чрезмерной нагрузки отдельных участков сети и обхода ее поврежденных участков. Они применяются в сложных разветвленных сетях, имеющих несколько альтернативных маршрутов между отдельными абонентами. Маршрутизаторы не преобразуют протоколы нижних уровней, поэтому они могут соединять только сегменты одноименных сетей. Маршрутизаторы работают на третьем уровне модели OSI, так как они глубоко проникают в инкапсулированный пакет и анализируют не только физический адрес пакета, но и сетевой.
Шлюзы – это устройства для соединения сетей с различными протоколами, например, для соединения локальных сетей с глобальными сетями. Это сложное, дорогое и редко применяемое сетевое оборудование. Шлюзы реализуют связь между абонентами с четвертого по седьмой уровень модели OSI. Соответственно, они выполняют и все функции нижестоящих уровней.
[1] Кондратенко С., Новиков Ю. Основы локальных сетей [Электронный ресурс]
Читайте также: