Поддерживаемые типы очередей коммутатор
Параллельно с появлением архитектуры с разделяемой памятью (в середине 1990-х годов) была разработана архитектура на основе коммутационной матрицы (Crossbar architecture). Эта архитектура используется для построения коммутаторов различных типов.
Существует множество вариаций архитектуры этого типа. Базовая архитектура на основе коммутационной матрицы N х N непосредственно соединяет N входных портов с N выходными портами в виде матрицы. В местах пересечения проводников, соединяющих входы и выходы, находятся коммутирующие устройства, которыми управляет специальный контроллер. В каждый момент времени, анализируя адресную информацию, контроллер сообщает коммутирующим устройствам, какой выход должен быть подключен к какому входу. В том случае, если два входящих пакета от разных портов-источников будут переданы на один и тот же выходной порт, он будет заблокирован. Существуют различные подходы к решению этой проблемы: повышение производительности матрицы по сравнению с производительностью входных портов или использование буферов памяти и арбитров.
Несмотря на простой дизайн, одной из фундаментальных проблем архитектуры на основе коммутационной матрицы остается ее масштабируемость. При увеличении количества входов и выходов усложняется схемотехника матрицы и в особенности контроллера. Поэтому для построения многопортовых коммутационных матриц используется другой подход, который заключается в том, что простые коммутационные матрицы связываются между собой, образуя одну большую коммутационную матрицу.
Рис. 1.17. Архитектура на основе коммутационной матрицы
Можно выделить два типа коммутаторов на основе коммутационной матрицы:
- коммутаторы на основе коммутационной матрицы с буферизацией (buffered crossbar );
- коммутаторы на основе коммутационной матрицы с арбитражем ( arbitrated crossbar ).
Коммутаторы на основе коммутационной матрицы с буферизацией
В коммутаторах на основе коммутационной матрицы с буферизацией буферы расположены на трех основных стадиях: на входе и выходе и непосредственно на коммутационной матрице. Благодаря наличию очередей на трех стадиях эта архитектура позволяет избежать сложностей, связанных с реализацией механизма централизованного арбитража . На выходе каждой из стадий осуществляется управление очередями с помощью одного из алгоритмов диспетчеризации.
Несмотря на то, что эта архитектура является простейшей архитектурой коммутаторов, из-за независимости стадий для нее существуют сложности с реализацией качества обслуживания ( QoS ) в пределах коммутатора.
Коммутаторы на основе коммутационной матрицы с арбитражем
Эта архитектура характеризуется наличием безбуферных коммутирующих элементов и арбитра, который управляет передачей трафика между входами и выходами матрицы. Отсутствие буферов у коммутирующих элементов компенсируется наличием буферов входных и выходных портов. Обычно разработчики используют один из трех методов буферизации: выходные буферы, входные буферы, комбинированные входные и выходные буферы.
В коммутаторах с входными очередями (Input- Queued Switch) память каждого входного порта организована в виде очереди типа FIFO (First Input First Output — "первым пришел, первым ушел"), которая используется для буферизации пакетов перед началом процесса коммутации. Одной из проблем этого типа коммутационной матрицы является блокировка первым в очереди (Head-Of-Line blocking, HOL). Она возникает в том случае, когда коммутатор пытается одновременно передать пакеты из нескольких входных очередей на один выходной порт. При этом пакеты, находящиеся в начале этих очередей, блокируют все остальные пакеты, находящиеся за ними. Для принятия решения о том, какой пакет и из какой очереди может получить доступ к матрице, используется арбитр. Перед передачей пакета входные порты направляют арбитру запросы на подключение к разделяемому ресурсу (в данном случае — пути матрицы) и получают от него право на подключение.
Арбитр принимает решение о последовательности передачи пакетов из входных очередей на основе алгоритма диспетчеризации ( scheduling algorithm ).
Рис. 1.18. Архитектура на основе коммутационной матрицы с входными очередями
Рис. 1.19. Архитектура на основе коммутационной матрицы с выходными очередями
В коммутаторах с выходными очередями (output-queued switch) пакеты буферизируются только на выходных портах после завершения процесса коммутации. В этом случае удается избежать проблемы, связанной с блокированием очередей HOL . Коммутаторы этой архитектуры используют арбитр для управления временем, за которое пакеты коммутируются через матрицу. При правильно разработанном арбитре коммутаторы с выходными очередями могут обеспечивать качество обслуживания ( QoS ).
Следует отметить, что выходной буфер каждого порта требует большего объема памяти по сравнению с входным буфером. Это позволяет избежать блокирования на выходе, когда все входные порты пытаются подключиться к одному выходу. Еще одним важным фактором является скорость выполнения операции "запись" коммутируемых пакетов в выходную очередь. По этим двум причинам архитектура с выходными очередями должна быть реализована на высокоскоростных элементах, что делает ее очень дорогостоящей.
Коммутаторы с виртуальными очередями (Virtual Output Queues, VOQ) позволяют преодолеть проблему блокировки очередей HOL , не внося издержек по сравнению с коммутаторами с выходными очередями. В этой архитектуре память каждого входного порта организована в виде N (где N — количество выходных портов) логических очередей типа FIFO, по одной для каждого выходного порта. Эти очереди используются для буферизации пакетов, поступающих на входной порт и предназначенных для выходного порта j (j = 1,…N) .
В том случае, если существует несколько виртуальных очередей, может возникнуть проблема, связанная с одновременным доступом к коммутационной матрице и блокировкой очередей. Для решения этой проблемы используется арбитр, который на основе алгоритма диспетчеризации выбирает пакеты из разных очередей.
Рис. 1.20. Архитектура на основе коммутационной матрицы с виртуальными очередями
Рис. 1.21. Архитектура на основе коммутационной матрицы с CIOQ
Во временной слот 2, который называется стадией диспетчеризации, ячейки передаются из входных очередей в выходные. Последовательность передачи ячеек определяется централизованным арбитром с помощью алгоритма диспетчеризации. Для того чтобы выходные очереди быстро заполнялись пакетами из входных очередей (с целью уменьшения задержки передачи пакетов и обеспечения QoS ), алгоритм диспетчеризации должен обеспечивать циклическое высокоскоростное сопоставление входных и выходных очередей. Это сопоставление используется для настройки управляемых переключателей матрицы перед передачей пакетов с входов на выходы.
Во временной слот 3, который называется стадией передачи, осуществляется сборка пакетов и их передача с выходных портов.
Соответствуют ли ваши коммутаторы требованиям, которые постоянно меняются? Если вы поймете различия между сетевыми коммутаторами разных типов, то сможете выбрать подходящее решение, которое будет полезно и сейчас, и в будущем. При выборе коммутаторов вам нужно оценить разные категории коммутаторов, а также их особые преимущества.
Сетевые Ethernet-коммутаторы делятся на две основные категории: с модульной и с фиксированной конфигурацией. По мере развития этой сферы появляются новые разновидности сетевых коммутаторов, однако основные категории остаются неизменными.
Модульные коммутаторы
Модульные коммутаторы — это коммутаторы, к которым по мере необходимости можно добавлять модули расширения. Это гибкое решение для тех, кто хочет расширять свою сеть. Модули расширения могут подключаться в виде приложений (межсетевой экран, беспроводная связь, сетевой анализ) и модулей для дополнительных интерфейсов, источников питания или вентиляторов для охлаждения.
Сетевые Ethernet-коммутаторы с фиксированной конфигурацией
Коммутаторы с фиксированной конфигурацией — это коммутаторы с фиксированным количеством портов. Как правило, возможность расширения у таких коммутаторов отсутствует.
Коммутаторы с фиксированной конфигурацией, в свою очередь, делятся на неуправляемые коммутаторы, интеллектуальные коммутаторы и управляемые коммутаторы уровня 2 и уровня 3.
Неуправляемые коммутаторы
Неуправляемый коммутатор достаточно подключить к источнику питания — и он сразу начнет работать. Выполнять предварительную настройку не требуется. Обычно неуправляемые коммутаторы подходят для подключения, к которому предъявляются базовые требования. Их часто используют для домашних сетей или там, где требуется всего несколько дополнительных портов, например на рабочем месте, в лаборатории или конференц-зале.
Коммутаторы этой категории — самые бюджетные: понадобятся только базовая коммутация второго уровня и подключение. Это оптимальное решение, например, если нужно несколько дополнительных портов на рабочем месте, в лаборатории, конференц-зале или даже дома.
На рынке представлены неуправляемые коммутаторы, которые также выполняют диагностику кабеля, обнаруживают петли трафика, назначают приоритеты трафику с помощью настроек QoS по умолчанию, помогают экономить на электроэнергии благодаря технологии Energy Efficient Ethernet (EEE) и даже PoE (Power over Ethernet). Но, как понятно из названия, управлять и изменять конфигурации таких коммутаторов практически невозможно. Достаточно их подключить — и они сразу, без предварительной настройки, готовы к работе.
Интеллектуальные коммутаторы
Коммутаторы этой категории продолжают развиваться. В целом эти коммутаторы поддерживают некоторые функции управления, контроля качества обслуживания и безопасности, при этом они хуже масштабируются и предлагают меньше возможностей по сравнению с управляемыми коммутаторами. Но интеллектуальные коммутаторы более доступны по цене. Выполнять их развертывание можно по периметру большой сети (если в ее основе — управляемые коммутаторы), в инфраструктуре небольших сетей или для несложных функций.
Возможности этой категории интеллектуальных коммутаторов значительно различаются. Все эти устройства оснащены интерфейсом для управления, который обычно проще, чем у управляемых коммутаторов.
Интеллектуальные коммутаторы позволяют сегментировать сеть на рабочие группы, создавая сети VLAN, но количество таких сетей и узлов (MAC-адресов) меньше, чем у управляемого коммутатора.
Также они обеспечивают определенную степень защиты, например с помощью аутентификации конечных точек по протоколу 802.1x (в некоторых случаях с ограничением списка контроля доступа), хотя уровни управления и детализации не отличаются от тех, что предоставляет управляемый коммутатор.
Более того, интеллектуальные коммутаторы достаточно универсальны: они поддерживают базовые функции обеспечения качества обслуживания (QoS), что упрощает распределение приоритетов для пользователей и приложений на основании протокола 802.1q/TOS/DSCP.
Полностью управляемые коммутаторы уровней 2 и 3
Управляемые коммутаторы предоставляют самый широкий спектр функций и гарантируют самую удобную работу с приложениями, самый высокий уровень безопасности, самый точный контроль и управление сетью, а коммутаторы с фиксированной конфигурацией — максимальную масштабируемость. Именно поэтому управляемые коммутаторы часто внедряют в качестве коммутаторов агрегации/доступа в очень крупных сетях или в качестве коммутаторов уровня ядра в относительно небольших сетях. Управляемые коммутаторы должны поддерживать и коммутацию второго уровня, и IP-маршрутизацию третьего уровня, хотя некоторые из них поддерживают только коммутацию второго уровня.
В плане безопасности управляемые коммутаторы защищают на уровне передачи данных (при перенаправлении пользовательского трафика), контроля (при передаче трафика между сетевыми устройствами, чтобы пользовательский трафик достигал места назначения) и управления (трафик, используемый для управления самой сетью или устройством). Кроме того, управляемые коммутаторы осуществляют контроль насыщения сети, защиту от DoS-атак и другие функции.
Функции списка контроля доступа позволяют настроить отбрасывание пакетов, ограничение скорости, зеркалирование или внесение данных о трафике в журнал по адресам второго уровня, адресам третьего уровня, номерам портов TCP/UDP, типу разъема Ethernet, флагам ICMP или TCP и т. д.
Управляемые коммутаторы поддерживают множество функций, с помощью которых они обеспечивают свою защиту и защиту сети от намеренных или непреднамеренных DoS-атак. К таким функциям относятся динамическая проверка ARP, перехват DHCP-трафика для сетей IPv4, защита на уровне первого транзитного перехода для сетей IPv6 с функцией RA Guard, обнаружение соседа, установка связи между соседями и т. д.
Среди других возможностей обеспечения безопасности — частные сети VLAN для защиты сообщества пользователей или изоляции устройств, а также безопасное управление (загрузки через SCP, веб-аутентификация, авторизация и учет по протоколу Radius или TACACS и т. д.). Назначение политик для уровня управления (CoPP) с целью защиты ЦП коммутатора и более обширной поддержки протокола 802.1x (учет времени, назначение динамической VLAN, уровень порта/хоста и т. д.).
У этих устройств много вариантов масштабирования, поэтому вы можете, к примеру, создавать множество сетей VLAN (для рабочих групп), устройств (таблицы MAC-адресов), IP-маршрутов и политик ACL для безопасности и функций QoS на основе потоков.
Для обеспечения максимальной доступности сети и времени бесперебойной работы управляемые маршрутизаторы поддерживают резервирование третьего уровня по протоколу VRRP (протокол резервирования виртуального маршрутизатора), большое количество групп агрегации каналов (для масштабируемости и отказоустойчивости), а также функции защиты второго уровня, например STRG и BPDU.
А возможности обеспечения качества обслуживания (QOS) и многоадресной рассылки намного шире, чем у интеллектуальных коммутаторов. Управляемые коммутаторы поддерживают отслеживание IGMP и MLD с функциями оптимизации многоадресного трафика IPv4/v6 в локальной сети, предотвращение перегрузок TCP, 4 или 8 очередей для сортировки трафика по важности, настройку или маркирование трафика по второму уровню (802.1p) или третьему уровню (DSCP/TOS), а также ограничение трафика по скорости.
Другие особенности
Помимо различий в категориях коммутаторов стоит учитывать и другие особенности, в том числе скорость передачи данных сетевого коммутатора, количество портов, питание через Ethernet и возможности стекирования.
Скорость передачи данных сетевого коммутатора
Сетевые коммутаторы могут различаться по скорости передачи данных. Доступны коммутаторы с фиксированной конфигурацией стандарта Fast Ethernet (10/100 Мбит/с), Gigabit Ethernet (10/100/1000 Мбит/с), Ten Gigabit (10/100/1000/10000 Мбит/с) и даже 40/100 Гбит/с. На некоторых коммутаторах также доступна многогигабайтная технология. Она обеспечивает скорость передачи более 1 гигабайта, если используются кабели категории 5e/6. У коммуникаторов есть несколько портов каскадирования и портов нисходящего канала. Порты нисходящего канала устанавливают подключение к конечным пользователям, а порты каскадирования — к другим коммутаторам или сетевой инфраструктуре.
Количество портов
Сетевые коммутаторы различаются по размеру. Коммутаторы с фиксированной конфигурацией обычно оснащены 5, 8, 10, 16, 24, 28, 48 и 52 портами. Это может быть комбинация разъемов SFP/SFP+ для подключения оптоволоконного кабеля, но чаще используются медные порты с разъемами RJ-45 спереди для установки подключения на расстоянии до 100 метров. Оптоволоконные модули SFP позволяют установить подключение на расстоянии до 40 километров.
Поддержка технологии электропитания по сети Ethernet
Технология питания через Ethernet (PoE) обеспечивает питание устройства (например, IP-телефоны, IP-камеры видеонаблюдения или точки беспроводного доступа) по тому же кабелю, что и для передачи данных. Одно из преимуществ технологии PoE — это гибкость: вы можете разместить конечные устройства в любой части помещения, даже там, где сложно подвести питание через розетку. Например, точку беспроводного доступа можно разместить прямо в стене или потолке.
Коммутаторы подают питание по нескольким стандартам: IEEE 802.3af подает питание до 15,4 Вт на порт коммутатора, а IEEE 802.3at (также известный как PoE+) подает питание до 30 Вт на порт коммутатора. Для большинства конечных устройств подходит стандарт 802.3af, но для некоторых устройств (например, видеотелефонов и точек доступа с несколькими радиомодулями) требуется более высокая мощность. Некоторые модели коммутаторов Cisco также поддерживают технологию универсального питания PoE (UPoE) или PoE 60 Вт, которая подает мощность до 60 Вт на порт коммутатора. Новый стандарт PoE 802.3bt обеспечивает более высокую мощность для работы приложений нового поколения.
Чтобы выбрать подходящий коммутатор, определите, какая мощность вам нужна. При подключении к настольным компьютерам или устройствам другого типа, не требующим технологии PoE, самым выгодным решением будут коммутаторы без поддержки PoE.
Стекируемые и автономные коммутаторы
По мере расширения сети вам понадобится больше коммутаторов, чтобы обеспечить сетевое подключение для устройств, количество которых увеличивается. Если вы используете автономные коммутаторы, каждый из них нужно контролировать и настраивать по отдельности.
В отличие от них стекируемые коммутаторы облегчают управление и улучшают доступ к сети. Вместо того, чтобы настраивать, контролировать и устранять неполадки каждого из восьми коммутаторов с 48 портами, вы можете использовать стекируемые коммутаторы, которые позволят контролировать все восемь устройств как одно. Если все восемь коммутаторов (всего 384 порта) являются стекируемыми, они работают как один коммутатор с одним агентом SNMP/RMON, одним доменом связующего дерева, одним интерфейсом командной строки или веб-интерфейсом, то есть одним уровнем управления. Вы также можете создать группы агрегации каналов, которые охватывают несколько устройств в стеке и зеркалируют порты для передачи трафика от одного устройства в стеке к другому, либо настроить охват ACL/QoS для всех устройств. Такой подход дает значительные преимущества при эксплуатации.
Обратите внимание: некоторые продукты, представленные на рынке, называются стекируемыми, но поддерживают только один интерфейс пользователя или интерфейс централизованного управления для доступа по отдельности к каждому коммутатору. То есть это не стекирование, а кластеризация. В таком случае вам придется настраивать каждую функцию (ACL, QoS, зеркалирование портов и т. д.) на каждом коммутаторе отдельно.
Стекирование дает и другие преимущества. Вы можете подключить компоненты стека в кольцо: если порт или кабель выйдет из строя, стек автоматически выполнит перенаправление, чтобы обойти неработающий элемент. Чаще всего это занимает всего микросекунду. Вы также можете добавлять или отключать компоненты стека, автоматически распознавать их и добавлять в стек.
Сетевое оборудование структурировано по модели OSI, которая включает 7 уровней. Более подробно об этом мы говорили в соответствующем материале. Однако чаще остальных в большинстве инструкций упоминают следующие уровни:
- доступ;
- агрегация;
- сетевое ядро.
О том, что это значит, мы поговорим в этой статье.
Что такое «уровни управления коммутаторов»?
Трехуровневая модель сети впервые была предложена инженерами компании Cisco. Смысл этой модели состоит в том, чтобы объединить все устройства в архитектуре сети в группы по древовидному принципу. Если представить, что уровни доступа — это дерево (возможно, это звучит забавно, но древовидная структура почитается всеми сетевыми специалистами), то:
- ядро сети — ствол;
- распределители, агрегаторы — крупные ветви;
- коммутаторы уровня доступа — мелкие и тонки ветки в большом количестве;
- пользователи — листва.
Так легче ориентироваться в уровнях, подуровнях и прочих хитросплетениях сетевого администрирования.
Такая иерархия в больших и сложных сетях позволяет распределять устройства по отдельным кластерам, согласно их функциям и техническим возможностям, а также упрощает контроль их работы. Трафик при этом передается от нижестоящего узла на вышестоящий, маршрутизируется и направляется по конечному адресу. По сути такая система служит огромным приемно-сортировочным пунктом, который вначале стремится к централизации данных, а затем рассылает пакеты по запрашиваемым портам-адресатам.
Коммутаторы уровня ядра
Основная задача такого оборудования — обеспечить быструю и безотказную транспортировку огромного объема трафика. Само собой, без задержек. Также предварительно надо озаботиться настройкой ACL и маршрутизации в целом, иначе поток сильно замедлится.
Зачастую при проблемах с пиковой производительностью приходится сжимать зубы и полностью менять сетевую инфраструктуру на более мощную. Классическим расширением тут не отделаешься, поскольку 8 портов по 100 Мбит + 8 портов по 100 Мбит будут на голову хуже 4 портов по 1 Гбит. И не забывайте про резервное кольцо на всякий случай.
Сетевые устройства уровня ядра зачастую работают по принципу VLAN на один узел Distribution-уровня. А это еще кто такие? А вот сейчас познакомим.
Коммутаторы уровня распределения (агрегации)
Говоря простым языком — распределители трафика между VLAN-сетями с последующей фильтрацией по ACL-протоколу. Такие устройства ориентированы на описание политики сети для конечного потребителя. Они же формируют широковещательные потоки Broadcast и Multicast-доменов и рассылок. Ваше IPTV — их рук дело.
Здесь периодически используют статические маршруты на базе динамических протоколов. Нередко можно встретить устройства распределения трафика с внушительной емкостью SFP-портов, которые одновременно являются и портами расширения (дополнительные устройства, объединение в кластер), и инструментом для использования связей с коммутаторами уровнем ниже. С их же помощью определенное число узлов объединяют в кольцо.
А еще подобные коммутаторы нередко встречаются с функционалом L2+ (L3 Lite) и принципом калибровки «VLAN каждого сервиса соответствует одному узлу Access».
Как вы понимаете, мы подобрались к третьей категории устройств
Access-коммутаторы (уровня доступа)
Эти устройства созданы для того, чтобы к ним подключались сами пользователи. Вы наверняка встречали маркировку DSCP, но не знали, что она значит. Все просто: трафик, маркированный меткой DSCP, приходит как раз от абонентов, чтобы его было легче отслеживать.
Зачастую это классические коммутаторы L2 (реже — L3) с классическим принципом настройки:
- VLAN-услуги идут на порт абонента;
- Один управляющий VLAN отвечает за доступ.
Как определить подходящее устройство
Вы уже поняли, что корпоративная сеть делится на три уровня. Преимущества такого подхода — оптимизация расходов, грамотный выбор оборудования L2 и L3 (иногда L2+). Если стоит выбор между уровнями, спросите себя, где оно будет стоять. Если компания небольшая, то выбор L2 очевиден.
Большая сеть по умолчанию должна быть надежной, так что здесь использование коммутаторов L3 — вопрос надежности. При этом устройство должно поддерживать VLAN, ACL и QoS.
Коммутаторы ядра по умолчанию бывают третьего уровня, при этом зачастую комплектуются жирными пропускными Ethernet-каналами:
- 10 Гбит/с;
- 40 Гбит/с;
- 100 Гбит/с.
Они не гоняют пакеты. Скорее выполняют роль меж-виртуальной маршрутизации:
- распределение трафика;
- скорость пересылки;
- списки доступа и распределение устройств.
Иными словами — делают все для максимальной скорости передачи под предельными нагрузками. Нередко на «ядерные» коммутаторы ложится и защита от DDoS с использованием протоколов третьего уровня. А потому такие устройства должны быть максимально отказоустойчивыми.
Закончить хотелось бы простой идеей: идеальных устройств коммутации не существует. Особенно, если вы плотно столкнулись с коммерческими структурами, где уровни доступа, пропускной способности, производительности оборудования рассчитываются чуть ли не для каждого сотрудника, не говоря уже о различных отделах. Изучите подробнее уровни и защитные функции коммутаторов, чтобы сделать правильный выбор. , либо закажите консультацию специалистов, которые ответят на все ваши вопросы.
Трехуровневая иерархическая модель межсетевого взаимодействия, состоящая из уровней доступа, распределения и ядра, широко используется предприятиями для создания надежной и экономически эффективной сети. В этой статье будет описано, когда следует использовать коммутаторы уровня распределения, и основные факторы, которые следует учитывать при принятии решения о выборе коммутаторов уровня распределения.
Требуется ли при проектировании сети предприятия коммутатор уровня распределения?
Коммутаторы уровня распределения на уровне распределения играют важную роль в корпоративной сети, которая получает трафик от уровня доступа и перенаправляет его на уровень ядра, тем самым определяя права доступа рабочей группы и обеспечивая соединения на основе политик. Однако в практических применениях распределительный слой иногда опускается, а трехслойный дизайн сокращается до двухслойного. В чем разница между двумя архитектурами и когда их использовать? Следующий выбор опишет эти две различные проектировании сети.
Двухуровневая свернутая архитектура ядра
Чтобы минимизировать стоимость оборудования и стоимость развертывания, сохраняя при этом большинство преимуществ трехуровневой модели иерархической сети межсоединений, уровень ядра и уровень распределения объединены в один уровень, который реализует функцию двух уровней в одном устройстве. Этот тип конструкции называется ядро разрушения. Сокращение трех уровней до двух уровней может снизить нагрузку на управление и упростить решение проблем производительности сети с меньшим количеством аппаратных устройств. Как правило, двухуровневую модель межсетевого взаимодействия можно увидеть в сети малого бизнеса с менее чем 200 пользователями.
Рисунок 1: Двухуровневая свернутая архитектура ядра
Коммутаторы уровня распределения в трехуровневой архитектуре
На средних и крупных предприятиях с 200 пользователями двухуровневая архитектура больше не доступна из-за высоких требований к производительности и доступности сети. Появился традиционный трехслойный иерархический дизайн сети.
Рисунок 2: Коммутаторы уровня распределения в трехуровневой архитектуре
В трехуровневой иерархической структуре сети коммутатор уровня распределения соединяет уровень ядра и уровень доступа на предприятии и действует как мост, поэтому весь трафик на уровень доступа и с него может перетекать в магистральный порт с высокой пропускной способностью, а затем данные плавно передаются на уровень ядра для маршрутизации до конечного пункта назначения. Помимо роли точки подключения нескольких коммутаторов уровня доступа, коммутаторы распределения также играют роль терминации VLAN от коммутаторов уровня доступа, суммирования маршрутизации до уровня доступа и так далее.
В целом, использование трехуровневой архитектуры корпоративной сети или двухуровневой свернутой архитектуры ядра зависит от типа сети и потенциального будущего масштаба. Если вы хотите построить среднюю и крупную корпоративную сеть с большим количеством пользователей, двухуровневой свернутой архитектуры ядра не очень подходит. Учитывая стоимость и управление, двухслойные конструкции обычно используются в сетях малого бизнеса, но нельзя исключать их огромный потенциал для масштабного расширения. В этом случае разработчики сети должны учитывать потенциальный рост, чтобы приспособиться к будущим потребностям. Если сеть может быть расширена, рекомендуется использовать трехуровневую корпоративную сетевую архитектуру.
Факторы, которые следует учитывать при выборе коммутаторов уровня распределения
Будь то двухуровневая сложенная корпоративная архитектура или трехуровневая сложенная корпоративная сетевая архитектура, вы должны четко понимать, какие функции необходимы для коммутаторов уровня распределения на уровне ядра или распространения. Принимая во внимание общие факторы, такие как тип порта, плотность порта и скорость порта, в следующем разделе будут рассмотрены функции, требуемые скоростью переадресации коммутатора и уровнем распределения. Ниже приведены контрольные факторы.
Функция уровня 3
Коммутатор уровня распределения всегда отвечает за обработку данных уровня 3. Трафик, генерируемый оборудованием уровня доступа, должен быть разделен на несколько VLAN, а коммутатор верхнего уровня должен обеспечивать функцию маршрутизации между VLAN, чтобы несколько VLAN могли обмениваться данными друг с другом. Поскольку уровень ядра выполняет сложные задачи пересылки трафика, для уменьшения рабочей нагрузки коммутатора уровня ядра используется коммутатор уровня распределения с функциями уровня 3.
Скорость пересылки
Скорость пересылки отражает пропускную способность коммутатора в виде чисел данных, обрабатываемых коммутатором в секунду, и является ключевым фактором, который следует учитывать при выборе оммутатора уровня распределения. Обычно скорость пересылки коммутатора уровня распределения выше, чем у коммутатора уровня доступа. Если скорость пересылки пакетов слишком низкая, коммутатор уровня распределения не сможет обеспечить полную скорость передачи данных.
Избыточность
Избыточность является важной проблемой, которую должны учитывать коммутатор уровня распределения. Для обеспечения большей доступности рекомендуется, чтобы коммутаторы уровня распределения поддерживали несколько источников питания с возможностью горячей замены. С резервными блоками питания, даже в случае сбоя одного блока питания, коммутатор уровня распределения может работать нормально, не влияя на сетевой трафик. В то же время источник питания можно заменить новым, а другой может работать как обычно.
Агрегация линии связи
Политика безопасности
Стратегия безопасности должна быть принята на коммутаторах уровня распределения, чтобы предотвратить смешанный трафик через сеть и позволить другим проходить. Используя политики безопасности, такие как списки управления доступом (ACL), коммутатор распределения может идентифицировать типы трафика, которым разрешено обмениваться данными, и типы, которые не соответствуют правилам ACL, определенным на коммутаторе, тем самым обеспечивая безопасность всей сети предприятия.
QoS емкость
Настройка интеллектуального QoS необходима для эффективной пропускной способности сети. Поскольку многие пользователи отправляют различные типы трафика в локальной сети, развертывание коммутатора уровня распределения с поддержкой QoS будет считывать пакеты данных и определять приоритетность передачи в соответствии с политикой, чтобы важный трафик мог проходить первым. Это обеспечит передачу аудиоданных и видеоданных с достаточной пропускной способностью. FS S5800-48F4S коммутаторы хорошо подходят для роли корпоративных коммутаторов уровня распределения, поддерживающих возможности QoS, для повышения производительности сетевого трафика.
Читайте также: