Коммутатор тк 102 схема подключения на уаз
Пусковые двигатели, установленные на дизелях, имеют автономный источник высокого напряжения — магнето, который вырабатывает ток низкого напряжения, преобразует его в ток высокого напряжения и подает в определенный момент к свечам зажигания.
Основными неисправностями магнето являются:
- размагничивание ротора
- повреждение обмоток трансформатора
- износ контактов прерывателя
- трещина в деталях токоведущих устройств
- пробой конденсатора
- нарушение угла абриса магнето
Намагниченность ротора проверяют магнитометром МД-4. Если она ниже 220 мкВб, тогда ротор намагничивают на аппарате НА-5-ВИМ от 12-вольтной АКБ 2-3-разовым включением аппарата на 1-2 с.
Работоспособность трансформатора проверяют на стенде КИ-968 током 1,5-2,5 А, который пропускают через его первичную обмотку и прерыватель стенда. При частоте вращения кулачкового вала прерывателя 500 мин-1 на трехэлектродном разряднике стенда должна появиться устойчивая искра голубого цвета. Неисправный трансформатор заменяют.
Собранное магнето испытывают на бесперебойность искрообразования при частоте вращения 2000-4500 мин-1 в течение 5 мин при зазоре 7 мм на разряднике. Высоковольтную изоляцию магнето проверяют при частоте вращения 2400-3000 мин-1 и зазоре на разряднике 9—11 мм в течение 15 с. В процессе испытания искрообразование должно быть бесперебойным.
Прерыватель-распределитель
Основными неисправностями являются:
- износ и обгорание контактов
- уменьшение упругости пружин
- износ текстолитовой втулки и пятки рычажка прерывателя
- трещины или сквозной искровой пробой деталей (крышка, ротор)
Обгоревшие контакты зачищают стеклянной шкуркой или специальным надфилем с последующей протиркой ветошью, смоченной в бензине. При высоте контактов менее 0,6 мм заменяют рычаг прерывателя или контактную стойку в сборе. Вместо изношенных контактов припоем ПСр-70 припаивают новые.
Натяжение пружины проверяют с помощью динамометра. Усилие пружины по оси контактов в момент их разрыва должно составлять не менее 4,9 Н. Момент разрыва контактов определяют по контрольной лампе. В случае ослабления пружины рычаг прерывателя в сборе заменяют.
В регуляторах опережения зажигания поврежденные пружины, диафрагму, прокладку под штуцер, текстолитовые детали заменяют новыми.
В собранном прерывателе-распределителе валик должен вращаться легко, его продольное перемещение не должно превышать 0,25 мм. Собранный прерыватель-распределитель регулируют и испытывают на стенде КИ-968. Его соединяют с индукционной катушкой и АКБ стенда. Среднее значение силы тока, проходящего через контакты прерывателя, при прочих равных условиях зависит от угла замкнутого состояния контактов, т. е. от угла поворота кулачка прерывателя, в пределах которого контакты находятся в замкнутом состоянии. На стенде его контролируют с помощью прибора ИУК. Угол проверяют при частоте вращения кулачка 1500 мин-1 и регулируют изменением зазора между контактами.
Пригодность конденсатора определяют методом сравнения с эталонным по качеству искрообразования. Если при включении в цепь испытуемого конденсатора интенсивность искрообразования уменьшается, конденсатор неисправен.
В собранном прерывателе-распределителе проверяют бесперебойность искрообразования. При постепенном повышении частоты вращения валика распределителя до заданных техническими требованиями значений не должно быть заметных на глаз и слух перебоев в искрообразовании на трехэлектродных разрядниках с искровым промежутком 7—10 мм.
Рис. Схема проверки прерывателя-распределителя на стенде: 1 — диск синхронизатора; 2 — вакуумный насос; 3 — вакуумметр; 4 — проверяемый прерыватель-распределитель; 5 — индукционная катушка; 6 — амперметр; 7 — аккумуляторная батарея.
Правильность чередования искрообразования в распределителе проверяют при подаче высокого напряжения от индукционной катушки на неоновую лампу синхроноскопа стенда. Угол чередования вспышек лампы, измеряемый по шкале градуированного диска при частоте вращения валика распределителя 100— 150 мин-1, должен составлять 90° для кулачков с четырьмя выступами, 60° — с шестью и 45° — с восьмью выступами. Отклонение не должно превышать ±1°. Большая неравномерность свидетельствует об износе кулачка.
Работу центробежного регулятора опережения зажигания проверяют также с помощью синхроноскопа. Плавно увеличивая частоту вращения валика распределителя, по тахометру определяют, при какой частоте вращения началось и закончилось смещение светящейся риски относительно нулевого деления шкалы, и устанавливают величину угла смещения риски. Полученные данные сравнивают с техническими требованиями. Регулируют работу центробежного регулятора изменением натяжения пружины грузиков или заменой пружин.
Вакуумный регулятор опережения зажигания проверяют после подсоединения к штуцеру вакуумного насоса и вакуумметра. Характеристики вакуумного регулятора изменяют с помощью регулировочных шайб, устанавливаемых под его пробкой.
При испытании электрической прочности крышки и ротора распределителя высокое напряжение от индукционной катушки стенда подают на центральное гнездо крышки, а выводные провода высокого напряжения соединяют с разрядниками, выдерживая искровой промежуток 10 мм. Устанавливают частоту вращения вала распределителя 500-700 мин-1 и наблюдают новообразование на разряднике. Ротор и крышка считаются исправными, если искрообразование на разряднике бесперебойное.
Транзисторный коммутатор ТК-102
Он может иметь следующие неисправности:
- обрыв в цепи
- пробой транзистора, стабилизатора, импульсного трансформатора и др.
Рис. Схема проверки транзисторного коммутатора ТК-102: 1 — коммутатор; 2, 6 — амперметры; 3 — выключатель; 4 — катушка; 5 — аккумуляторная батарея; 7 — резисторы СЭ-107.
Проверку транзисторного коммутатора, проверку транзистора в ключевом режиме выполняют по схеме. При замыкании выключателя 3 наблюдают за показаниями амперметров: амперметр 2, регистрирующий ток в цепи управления транзистором, должен показать 0,5-0,6 А, а амперметр 6, регистрирующий ток в первичной обмотке катушки зажигания, — 6—7 А. При размыкании выключателя 3 амперметр 6 должен зарегистрировать прекращение тока.
Катушка зажигания (индукционная катушка)
Работоспособность катушки определяют испытанием на стендах КИ-968, Э-208 и др. На стенд устанавливают исправный распределитель и к нему подключают первичную обмотку проверяемой катушки и аккумуляторную батарею или используют прерыватель и конденсатор стенда. Вывод катушки соединяют с разрядником, установив зазор между его иглами 7 мм для катушек, работающих в контактной системе зажигания, и 10 мм — для транзисторных.
Индукционные катушки контактно-транзисторной системы зажигания (Б-114) следует испытывать со своим прерывателем-распределителем (Р-137, Р-133, Р4-Д) и транзисторным коммутатором при максимальной частоте вращения вала распределителя. Заметные на глаз и слух перебои в искрообразовании не допускаются.
Свечи зажигания
Характерные неисправности свечей зажигания:
- электроэрозионный и химический износ электродов
- отложение нагара
- повреждение изолятора центрального электрода
Нагар очищают скребками или пескоструйной обработкой на приборе Э-203-0. Зазор между электродами регулируют подгибанием бокового электрода. Для свечей различных двигателей он должен быть в пределах 0,4-0,8 мм. Очищенные свечи испытывают на бесперебойность искрообразования при давлении 0,8 МПа и герметичность при давлении 1,0 МПа на приборе Э-203П или М514-2. Если падение давления превышает 0,05 МПа за 1 мин для свечей со стеклогерметиком и за 10 с с герметиком из термоцемента, то свечи считаются неисправными. У исправных свечей искрообразование должно быть бесперебойным. Работу испытуемой свечи можно проверить сравнением с эталонной.
Однако, механические (контактные) коммутаторы имели ряд существенных недостатков, которые по мере развития и совершенствования автомобильных двигателей проявлялись все отчетливее. Контакты имели склонность к подгоранию, требовали систематической чистки и регулировки зазора, и не могли «похвастать» стабильностью создаваемого импульса по величине и продолжительности.
Кроме того, они обладали заметной инертностью, как и все механические устройства, что ограничивало возможности высокооборотистых двигателей, а недостаточно продолжительная и мощная искра была камнем преткновения для увеличения степени сжатия.
Тем не менее, такие системы зажигания длительное время использовались в автомобилях, и только появление и совершенствование полупроводниковых приборов позволило конструкторам совершить своеобразную революцию в способе коммутации управляющих импульсов.
На первых порах от использования механических контактов прерывателя конструкторы не отказались, но решили проблему с их электрической нагрузкой, приводящей к подгоранию. Через контакты прерывателя пропускался слабый ток управления, который подавался на базу мощного транзистора, служащего усилителем сигнала, поступающего в первичную цепь катушки зажигания.
Так появились контактно-транзисторные системы зажигания, и первые полупроводниковые коммутаторы. Впоследствии конструкторы систем зажигания отказались от механических контактов, использовав для формирования маломощного импульса различные магнитоэлектрические датчики, а также датчики, работающие на эффекте Холла.
Усовершенствование этих устройств продолжается и в настоящее время, при этом современные коммутаторы автомобильных систем зажигания совершенно отличаются от своих механических и даже транзисторных «предков».
Применение полупроводниковых и микропроцессорных коммутаторов в контактно-транзисторных или бесконтактных системах зажигания позволяет получить следующие преимущества:
- уменьшается ток, протекающий по контактам прерывателя, вследствие чего они практически перестают подгорать (для контактно-транзисторной системы зажигания);
- увеличивается длительность подачи искры, что гарантирует эффективное воспламенение рабочей смеси в цилиндрах двигателя;
- появляется возможность существенного увеличения степени сжатия в цилиндрах двигателя, а также частоты вращения коленчатого вала без ущерба для надежности искрообразования.
В целом увеличивается надежность работы системы зажигания и снижается трудоемкость ее технического обслуживания.
Выпускаемые коммутаторы контактно-транзисторных и бесконтактных систем зажигания делятся на три группы:
- коммутаторы на дискретных полупроводниковых компонентах с использованием корпусных интегральных микросхем, установленных на печатных платах;
- коммутаторы, выполненные по толстопленочной технологии с применением стандартных бескорпусных и дискретных компонентов;
- коммутаторы, изготовленные по гибридной технологии с использованием специальной твердотельной микросхемы, на которой реализуются основные функциональные узлы коммутатора.
Коммутаторы для контактно-транзисторных систем зажигания
Коммутаторы контактно-транзисторных систем и коммутаторы с постоянной скважностью импульсов выходного тока для бесконтактных систем зажигания функционально просты и содержат небольшое количество полупроводниковых компонентов (как правило, не более четырех транзисторов). Они относятся к первой группе. Их основой служит литой алюминиевый корпус, имеющий ребристую наружную поверхность для улучшения теплоотдачи.
Внутри корпуса расположены все элементы коммутатора за исключением выходного транзистора, который монтируется на корпусе в специальном кармане.
Для многих типов транзисторов (например, n-p-n) необходима изоляция от корпуса коммутатора, поэтому они монтируются через специальную прокладку. Для снижения теплового сопротивления перехода между корпусом коммутатора и прокладкой наносят теплопроводные пасты, благодаря чему охлаждение выходного транзистора более интенсивно.
Для подключения коммутатора к бортовой сети автомобиля и к элементам системы зажигания используется клеммная колодка.
Коммутатор ТК102
На рис. 1 показан коммутатор ТК102, относящийся к первой группе, который предназначен для работы в контактно-транзисторной системе зажигания автомобилей с восьмицилиндровыми двигателями, но может быть использован для работы с любым классическим распределителем зажигания. В качестве нагрузки используется катушка Б114 (W2/W1 = 235; L1 = 3,7 мГн; R1 = 0,42 Ом).
Для ограничения первичного тока используется добавочное сопротивление СЭ107 (1,04 Ом). Коммутатор ТК102 имеет один мощный германиевый транзистор ГТ701А (VT1), стабилитрон Д817В (VD2) и диод Д7Ж (VD1), служащие для защиты от перенапряжения силового транзистора VT1.
Дроссель L1 и резистор R1 предназначены для ускорения процесса запирания транзистора VT1, конденсатор С1 первичного контура возбуждения катушки зажигания и конденсатор С2 служат для защиты компонентов схемы коммутатора от скачков напряжения в бортовой сети автомобиля.
В случае отказа коммутатора (например, при выходе из строя транзистора) можно перекинуть провода в стандартное положение, и двигатель продолжит работать, что позволит водителю добраться до места ремонта.
Коммутаторы для бесконтактных систем зажигания
Коммутаторы этого типа используются в системах зажигания, где для формирования импульса управления током первичной цепи катушки зажигания используются не механически управляемые контакты, а магнитоэлектрические датчики.
Электронные коммутаторы бесконтактных систем зажигания выполняют следующие функции:
- формирование выходного токового импульса необходимой амплитуды и продолжительности, подаваемого к первичной обмотке катушки (или катушек) зажигания для обеспечения заданного уровня высокого напряжения и энергии искры;
- обеспечение момента искрообразования в соответствии с заданным фронтом управляющего импульса, поступающего на вход коммутатора;
- стабилизация параметров выходного токового импульса при колебаниях напряжения бортовой сети автомобиля и воздействии внешних факторов.
Различные коммутаторы могут выполнять и дополнительные функции:
- стабилизация питания и защита от импульсов перенапряжения в бортовой сети автомобиля в аномальных режимах микропереключателя, работающего на эффекте Холла;
- ограничение амплитуды импульса вторичного напряжения в аномальных режимах (например, в режиме открытой цепи);
- предотвращение протекания первичного тока через первичную обмотку катушки зажигания при включенном замке зажигания и неработающем двигателе.
На входные клеммы коммутатора поступают импульсы управления, формируемые бесконтактным датчиком углового положения коленчатого вала двигателя или электронным регулятором напряжения – коллектором.
Выходом (нагрузкой) коммутатора является первичная обмотка катушки (или катушек) зажигания. В случае, когда коммутатор обслуживает две или несколько катушек, он выполняет функцию распределителя высоковольтных импульсов по цилиндрам двигателя.
Многочисленные коммутаторы бесконтактных систем зажигания можно разделить на две группы:
- коммутаторы с постоянной скважностью выходного первичного импульса тока (скважность – отношение периода следования импульсов к их длительности), не зависящей от частоты вращения коленчатого вала двигателя;
- коммутаторы с нормируемой скважностью выходного импульса тока.
Общим для обеих групп коммутаторов является наличие в выходной цепи мощного выходного транзистора, способного коммутировать токи амплитудой до 10 А в индуктивной нагрузке коллектора.
Коммутатор 13.3734
Примером коммутаторов для бесконтактных систем зажигания может служить коммутатор 13.3734, разработанный на базе первого серийного отечественного коммутатора ТК200 «Искра». Коммутатор предназначен для совместной работы с бесконтактным магнитоэлектрическим датчиком, катушкой зажигания Б116 и добавочным сопротивлением 14.379.
Коммутатор 13.3734 (рис. 2) содержит выходной резистор VT3 (КТ848А), каскад предварительного усиления на транзисторе VT2 (КТ630Б) и резисторе R7, формирователь сигнала датчика на транзисторе VT1 (КТ630Б) и элементах R1-R8, С1, VD1, VD2.
Между выходом и входом коммутатора имеется положительная обратная связь (R10, С7), обеспечивающая стабильную работу коммутатора на пусковых частотах вращения валика распределителя (20…30 об/мин). Цепь R3-С1 служит для уменьшения электрического смещения момента зажигания в зависимости от частоты вращения вала датчика.
Коммутатор содержит также элементы схемы (С2-С4, VD3, VD4, R8) и цепи защиты выходного транзистора (С5, С6, R9). Коммутатор выполнен на печатной плате, на которой смонтированы маломощные элементы схемы. Плата установлена в оребренный литой дюралюминиевый корпус, где размещены силовые элементы.
Коммутаторы с нормируемой скважностью импульсов выходного тока
Коммутатор 36.3734
Первый отечественный коммутатор 36.3734 с нормируемой скважностью импульсов выходного тока, применяемый на автомобиле ВАЗ-2108, выполнен также по дискретной технологии и предназначен для работы с бесконтактным датчиком, работающим на эффекте Холла.
В качестве нагрузки используется катушка зажигания 27.3705 (W2/W1 = 85; L1 = 3,8 мГн; R1 = 0,5 Ом).
В коммутаторе 36.3734 реализовано программное регулирование времени накопления энергии в первичной обмотке катушки зажигания, активное ограничение уровня первичного тока (8…9 А), ограничение амплитуды импульса первичного напряжения (350…380 В), безыскровое отключение первичного тока при остановленном двигателе (Тоткл = 1,53 с). Последнее предназначено для плавного запирания коммутационного транзистора для предотвращения искрообразования при остановке двигателя, когда катушка зажигания осталась под током.
В коммутаторе 36.3734 функциональные основные узлы выполнены на операционных усилителях DA1.1-DA1.4, которые являются компонентами микросхемы К1401УД1.
На базе усилителей DA12 и DA13 реализованы интегратор и компаратор (нормирование скважности импульсов) выходного тока. На усилителе DA1.1 собрана схема безыскрового отключения тока, на усилителе DA1.4 – компаратор ограничения амплитуды выходного тока. В качестве выходного транзистора применен транзистор Дарлингтона КТ848А.
Конструктивно коммутатор представляет собой печатную плату, на которой размещены радиокомпоненты схемы, за исключением выходного транзистора VT4, защитного диода VD7 и стабилитрона VD4 ограничителя напряжения питания, которые смонтированы на корпусе коммутатора.
Для подключения коммутатора к бесконтактному датчику Холла, к катушке зажигания и источнику питания используется съемно-контактный разъем.
Коммутатор 42.3734
Электрическая схема дискретного двухканального коммутатора 42.3734 разработана на основе электрической схемы коммутатора 36.3734. Основное различие заключается в наличии двух выходных каскадов (VT4, VT6 и VT5, VT7), управляющих работой выходных транзисторов VT8 и VT9. В свою очередь выходные каскады управления каналов коммутатора посредством ключевого каскада на транзисторе VT2 (КТ342А).
Схема коммутатора также снабжена устройством формирования сигнала для управления тахометром (VD14, VD15, R53, R54).
Коммутатор 42.3734 выполнен на двух печатных платах (рис. 3): плате управления А1, на которой размещена операционная часть коммутатора, и силовой плате А2 с элементами выходных каскадов и выходными транзисторами. Причем последние смонтированы на дополнительном теплоотводе. Платы установлены в корпусе одна над другой.
Достоинства и недостатки различных типов коммутаторов
К недостаткам коммутаторов первой группы можно отнести большие габаритные размеры и массу, а также при крупносерийном производстве низкую технологичность и недостаточную надежность в связи с большим числом радиокомпонентов.
Существенного снижения массогабаритных показателей можно добиться при изготовлении коммутаторов по толстопленочной технологии с применением стандартных бескорпусных компонентов. Однако такая технология является относительно дорогой и трудоемкой, поэтому не нашла широкого применения в промышленном крупносерийном производстве коммутаторов.
Наилучшими показателями с точки зрения трудоемкости и технологичности производства, а также надежности обладают коммутаторы третьей группы, которые содержат специальную микросхему, где размещаются основные функциональные узлы: схема нормирования скважности с адаптацией по уровню выходного тока, схема безыскрового отключения тока, устройство ограничения тока и др. По гибридной толстопленочной технологии выполняется силовая часть схемы коммутатора с элементами защиты от импульсных перегрузок по цепи питания. Примером использования этой технологии может служить коммутатор 0.227.100.103 фирмы «Бош» (Германия), схема которого приведена на рис. 4.
В схему входят следующие элементы: бескорпусной выходной транзистор VT1; специализированная микросхема DA1 (МА 7355) с миниатюрными навесными конденсаторами С2-С5, выполняющая основные функции коммутатора; корпусные диод VD1, стабилитрон VD2, миниатюрный конденсатор С1 и толстопленочные резисторы R3, R4, выполняющие функции защиты от импульсных перенапряжений в бортовой сети и перепутывания полярности аккумуляторной батареи.
Также имеются толстопленочные резисторы, служащие для изменения и подстройки требуемых уровней первичного тока (R6, R7, R10) и первичного напряжения (R8, R9). Цепь защиты выходного транзистора выполнена на дискретных элементах С7 и R11.
Налажен выпуск аналогичных коммутаторов, выполненных в виде большой гибридной интегральной схемы (БГИС), представляющей собой толстопленочную микросборку операционной части и микросборку силовой части коммутатора, смонтированные на медном основании СА из полимерного материала. Причем корпус выполнен заодно с семиштырьковым разъемом. Корпус герметизируется приклеиваемой крышкой. Подложками толстопленочных сборок служит алюмооксидная керамика (Al2O3).
Внешний вид одноканального и двухканального коммутаторов показан на рис. 5.
По мере развития цифровой и микропроцессорной техники и разработки комплексных систем управления двигателем транзисторный коммутатор, сохраняя свое функциональное назначение, в конструктивном плане может не иметь очертания самостоятельного изделия, объединяясь в единую конструкцию с цифровым контроллером. Следующим шагом на пути интеграции электронного блока является передача функции нормирования скважности импульса выходного тока в схему контроллера. В этом случае модуль коммутатора реализует функции распределения высоковольтных импульсов, ограничения тока и первичного напряжения, выдачи сигнала обратной связи об уровне тока в катушке зажигания.
Контроллеры
Выпускаются контроллеры серии МС2715.03 для легковых автомобилей ВАЗ-21083 и МС2713.01 для грузовых автомобилей ЗИЛ-4314, предназначенные для управления углом опережения зажигания по оптимальной характеристике регулирования на основе информации от датчиков начала отсчета, частоты вращения коленчатого вала двигателя, разрежения в задроссельном пространстве карбюратора (или впускном трубопроводе инжекторного двигателя) и температуры охлаждающей жидкости.
Контроллеры осуществляют также управление электроклапаном экономайзера принудительного холостого хода (ЭПХХ). Контроллер МС2715.03 для легковых автомобилей с четырехтактным четырехцилиндровым двигателем вырабатывает сигнал «Выбор канала» для обеспечения функции статического распределения энергии по цилиндрам двигателя.
Структурная схема контроллера приведена на рис. 6. На выводы контроллера поступают сигналы датчика начала отсчета (НО), датчика угловых импульсов (УИ), датчика частоты вращения коленчатого вала (КВ), датчика разрежения (Р), датчика температуры охлаждающей жидкости (Тохл).
После обработки сигналов датчиков в аналого-цифровом преобразователе (АЦП) информация о параметрах двигателя в виде цифровых кодов поступает в процессор, который производит вычисление частоты вращения коленчатого вала двигателя, разрежения, температуры, углового положения коленчатого вала двигателя и на основании этих данных вычисляет угол опережения зажигания в соответствии с картой углов опережения зажигания двигателя, которая хранится в памяти процессора.
Синхронизация работы контроллера с работой двигателя и формирование сигнала «Выбор канала» производится посредством импульсов датчика НО. Выходные сигналы процессора управляют работой формирователей импульса зажигания (ФИЗ) и выбора канала усилителя ЭПХХ. Сигналы ФИЗ и ВК непосредственно управляют работой двухканального коммутатора.
Транзисторный коммутатор ТК102 устанавливается в контактно-транзисторной системе зажигания автомобилей ГАЗ-66, ЗИЛ-130 (рис. 2), он состоит из следующих основных узлов:
- транзистор; - цепи защиты транзистора; - цепь ускорения переключения транзистора.
Все элементы коммутатора размещены в корпусе из алюминиевого сплава с ребрами охлаждения. На корпусе имеется четыре клеммы (К, Р, М и одна клемма не обозначенная), которыми коммутатор подключается в цепь системы зажигания.
Транзистор ГТ701-А p-n-p перехода включен в первичную цепь системы зажигания. Он рассчитан на напряжение 160 В и ток коллектора до 12 А.
Цепи защиты служат для защиты транзистора от ЭДС самоиндукции первичной обмотки катушки зажигания и импульсных напряжений, возникающих в бортовой сети.
Цепи защиты включают в себя: диод VD1, стабилитрон VD2, конденсаторы С1, С2.
Цепь ускорения служит для ускорения процесса запирания транзистора. Цепь ускорения включает в себя: импульсный трансформатор Т и резистор R.
Рисунок 2 - Контактно-транзисторная система зажигания автомобиля
Совместная работа катушки зажигания и транзисторного коммутатора ТК102 происходит следующим образом.
При замкнутых контактах прерывателя на базу транзистора подается отрицательный потенциал, транзистор открывается и по первичной цепи проходит ток, создавая в катушке зажигания магнитное поле. При размыкании контактов прерывателя транзистор закрывается, первичная цепь прерывается, магнитное поле в катушке зажигания убывает и во вторичной обмотке индуктируется высокое напряжение. В дальнейшем процесс повторяется.
Стабилитрон VD2 предохраняет транзистор от пробоя от ЭДС самоиндукции первичной обмотки катушки зажигания. Стабилитрон пробивается при ЭДС, превышающей 100 В. Диод VD1 исключает прохождение тока через транзистор, минуя первичную обмотку катушки зажигания. Конденсатор С1 заряжается током ЭДС самоиндукции первичной обмотки катушки зажигания в момент перехода транзистора в режим ”закрыт”. Этим самым уменьшается нагрев транзистора от тока ЭДС самоиндукции, а также увеличивается скорость убывания магнитного потока катушки зажигания. Конденсатор С2 предохраняет транзистор от импульсных всплесков напряжений, возникающих в бортовой сети.
Процесс ускорения запирания транзистора заключается в том, что при размыкании контактов прерывателя во вторичной обмотке импульсного трансформатора индуктируется ЭДС. Под действием ЭДС через резистор R проходит ток, создавая на базе транзистора положительный потенциал, а на эмиттере - отрицательный. Это способствует быстрому закрытию транзистора, а следовательно, увеличению скорости убывания магнитного потока катушки зажигания и повышению вторичного напряжения.
Применение транзисторного коммутатора ТК102 позволило повысить вторичное напряжение за счет увеличения тока в первичной цепи, а также увеличить срок службы контактов прерывателя за счет небольшого тока разрыва (до 1 А).
Характерные неисправности транзисторного коммутатора:
пробой транзистора (транзистор постоянно открыт);
обрыв в транзисторе (транзистор постоянно закрыт).
Оценить состояние транзисторного коммутатора можно контрольной лампой, вольтметром или на стенде СПЗ-12.
Транзисторный коммутатор ТК101-А2
Данный коммутатор устанавливается в контактно-транзисторной системе зажигания автомобильного шасси 135ЛМ (рис. 3).
Рисунок 3 - Контактно-транзисторная система зажигания автомобильного шасси 135ЛМ
Устройство и действие транзисторного коммутатора ТК101-А2 аналогичны ТК102. Особенностью является наличие в нем элементов (резистора R5, конденсаторов С2. С5 и клемм Ак и Ар), позволяющих перевести систему зажигания на контактную в случае отказа коммутатора. Для перехода на контактную систему зажигания необходимо провода от разъемов К и Р коммутатора отсоединить и присоединить соответственно к клеммам Ак и Ар.
Целесообразность установки коммутатора тк102 Оценка:
Есть коммутатор тк102. Если я его воткну хотя бы как временную меру, поможет?
НЕ погорит он с нашей контактной катушкой? И посмотрел, ему нужно питание через добавочное сопротивление ,хотя диапазон рабочих напряжений от +5 до +17 указан. Если его напрямую воткнуть?
Вопрос в целом такой -
как лучше его воткнуть как временную меру (несколько дней надо поездить, пока Волгу докрашиваю) и не сгорит ли он без катушки Б114?
К коммутатору нужен вариатор, коробочка железная. С обычной катушкой работать естественно будет, но если искра плохая именно от катушки, коммутатор не поможет.
Заводиться с педалью в пол) переобогащение смеси от разогрева карбюратора, плюс слабая искра "уставшей" катушки и незамыкающееся сопротивление.
К коммутатору нужен вариатор, коробочка железная. С обычной катушкой работать естественно будет, но если искра плохая именно от катушки, коммутатор не поможет.
А как катушка может устать? Она уж либо работает либо не работает.
Коммутатор убирает вопрос с контактами, как одну из причин, и даёт бОльший ток на первичную обмотку, естественно, на вторичной сильнее напряжение.
Другой вопрос, что именно эта систета контактно-тиристорная имеет нехорошие отзывы по надёжности.
Одно время продавалась такая обалденная коробочка ОКТАН или ИСКРА . Разные были. Ставишь её в разрыв катушки и трамблёра без всяких мыслей.
Питание с ключа. Сразу искра как на сварочном аппарате. ТОлько вот надёжность этих коробочек очень низкая. Последняя отработала у меня 2 недели. Мне в магазине деньги вернули даже без чека.
Зато первая такая - года 2 без проблем.
Плохой пуск ясно с чем связан - да, переобогащённая смесь в нагревшемся воздушном фильтре. И слабая искра не хочет её поджигать.
Я правда ещё грешу на возможно пережатые клапана.
Многое способно возродиться из того, что уже умерло. (Гораций)
У меня стоит новый карб 124 с буквой, которая для ГАЗ69. Сейчас не помню, какая именно там буква. Так вот я заметил, что на м20 моторах с однокамерниками когда настраиваешь ХХ там есть очень чёткое положение максимальных оборотов. В отличии от моторв м 21, где одним и тем же оборотам двигателя соответствует почти 1,5 оборота винта качества.
ТАк вот недавно настраивал ХХ. Всё ОК.
Давайте не будем отвлекаться от вопроса в теме. Вопрос именно по коммутатору 102.
Искра от температуры мотора не меняется, это же ясно как белый день. А вот перелив карбюратора на моторах м-20 или м-21обычное дело. Огневой коллектор рядом с поплавковой камерой делает свое дело, бензин после поездки просто закипает и какой карбюратор установлен новый или старый без разницы.
Коммутатор проблемы не решит. ( как говорил Штирлиц в известном фильме- "Запоминается последняя фраза")
Поглядим,послушаем,пощупаем,понюхаем.
[i]Вы что в окно смотрите да? Ну и как?[/i]
Отвечаю сам себе.
Поставил коммутатор просто в разрыв. М отключил конденсатор. И мотор стал плохо заводится и холодный. По 30 секунд стартером приходится крутить. Так это если коммутатор питать на старт от плюса, а не через сопротивление. Если питать через сопротивление - вообще не заводится. Хотя искра на вид очень бодрая.
Видимо этому коммутатору необходима катушка именно б114 с низкоомной первичной обмоткой.
Зато выяснил, что перемыкание добавочного сопротивления координально меняет время пуска.
Так что пока просто восстановлю систему зажигания как есть. А потом перейду на датчик Холла с ВАЗовской катушкой и коммутатором.
Хотя вопрос остаётся. Есть ли смысл заморочиться с поиском катушки Б114 и вариатором?
У меня на Змз 402 с коммутатором и простой катушкой 116 заводится прекрасно.Причем и с катушкой 2108 и 2101 заводится тоже также.
Сейчас два вида коммутаторов с добавочным резистором и без. Лучше брать без него. Лишняя нагрузка.
А вот найти нормально работающий коммутатор проблема. Я с 3го раза нашел.
Мож и не в тему. Так просто реплика
ТК-102 и контактно ТИРИСТОРНАЯ - это две совершенно разные даже по замыслу системы.
Огневой коллектор рядом с поплавковой камерой делает свое дело,А вот с этим совершенно согласен. Особенно в жаркое время года, капризы вполне себе обычное дело.
Может и не так написал. Вопрос остаётся. Контактная система и коммутатор тк102. Хорошо ли это? Будет ли эта работать так же, как 131й коммутатор и 116я катушка на 29й Волге?
Я вот и думал, не заменит ли его тк102?
ТК-102 расчитан на работу вкупе с боббиной, по своим характеристикам практически идентичной родной. Как результат практически параметры искры от этого не меняются, так как они в первую голову от параметров боббины зависят. Коммутатор тут только лишь подменяет контакты прерывателя в цепи боббины, тем самым разгружая контакты прерывателя, коими сам управляется. Задумка - всего лишь снизить объемы обслуживания системы. Благодаря коммутатору контакты могут проработать до второго пришествия, а уплывающий с годами зазор в них, на работу системы влияния не оказывает. Важно только наличие зазора - размер не имеет значения.
Что до замены ТК-102 Импульса. это две кардинально разные системы ( подробности тут ) . И если не брать в расчет надежность( а точнее ненадежность ) Импульса, то ТК далеко не лучший вариант. Уж лучше переходить таки на современную бесконтактную систему по полной.
Это стопудов что-то с карбом.
Вероятно кипит бензин и парами забивает наглухо воздухан, что сильно усложняет пуск. У меня аналогичная хуерга на еразе происходит, на горячую чуть ли не 20 секунд с педалью в пол маслать надо.
Зажигание там кстати БСЗ , искра как у сварочника - и все равно это не спасает.
Так что имхо надо внимательно проверить карб - есть ли тепловой щиток, есть ли прокладка , не уходит ли уровень после остановки двигла (такое бывает когда игла чуть-чуть подтравливает) и т.д.
Да, кстати, на 100% выщемить переобогащение это врезультате кипения или нет позволит простой тест. Если на горячей машине заглушить мотор и попробовать его завести сразу же и все будет ок , а если пробовать завести через 5-7 минут и будет не ок - значит дело точно в испарениях бензина
Вот с таким сталкивался и сам. Специально вскрывал возд фильтр чтобы убедиться. Четко через 5-7 мин начинает капать из распылителей ГДС. И пожалте газ в пол. А если запускать до того или через пару часиков - с пол тыка. И это у меня началось с постановкой нового Б/Н. Похоже слишком хороши его клапаны были. Топливо на участке от него до карба в жару похоже вскипает и давлением насыщеных паров пересиливая поплавок вдувает порцию лишка в карб. Пока клапаны были хилыми, могло стравить назад. А так путь только в карб. Я даже обратку слепил для устранения. да жара спала и проблема ушла. так и не подсоединил. И по жаре иногда о себе напоминает.
Читайте также: