Какой термин описывает каждый маршрутизатор
Маршрутизация служит для приема пакета от одного устройства и передачи его по сети другому устройству через другие сети. Если в сети нет маршрутизаторов, то не поддерживается маршрутизация. Маршрутизаторы направляют (перенаправляют) трафик во все сети, составляющие объединенную сеть.
Для маршрутизации пакета маршрутизатор должен владеть следующей информацией:
- Адрес назначения
- Соседний маршрутизатор, от которого он может узнать об удаленных сетях
- Доступные пути ко всем удаленным сетям
- Наилучший путь к каждой удаленной сети
- Методы обслуживания и проверки информации о маршрутизации
Маршрутизатор узнает об удаленных сетях от соседних маршрутизаторов или от сетевого администратора. Затем маршрутизатор строит таблицу маршрутизации, которая описывает, как найти удаленные сети.
Динамическая маршрутизация — это процесс протокола маршрутизации, определяющий взаимодействие устройства с соседними маршрутизаторами. Маршрутизатор будет обновлять сведения о каждой изученной им сети. Если в сети произойдет изменение, протокол динамической маршрутизации автоматически информирует об изменении все маршрутизаторы. Если же используется статическая маршрутизация, обновить таблицы маршрутизации на всех устройствах придется системному администратору.
Что такое маршрутизатор (шлюз, gateway)?
Маршрутизатором, или шлюзом, называется узел сети с несколькими IP-интерфейсами (содержащими свой MAC-адрес и IP-адрес), подключенными к разным IP-сетям, осуществляющий на основе решения задачи маршрутизации перенаправление дейтаграмм из одной сети в другую для доставки от отправителя к получателю.
Маршрутизаторы представляют собой либо специализированные вычислительные машины, либо компьютеры с несколькими IP-интерфейсами, работа которых управляется специальным программным обеспечением.
Процесс IP-маршрутизации
IP-маршрутизация - простой процесс, который одинаков в сетях любого размера. Например, на рисунке показан процесс пошагового взаимодействия хоста А с хостом В в другой сети. В примере пользователь хоста А запрашивает по ping IP-адрес хоста В. Дальнейшие операции не так просты, поэтому рассмотрим их подробнее:
- В командной строке пользователь вводит ping 172.16.20.2. На хосте А генерируется пакет с помощью протоколов сетевого уровня IP и ICMP.
- IP обращается к протоколу ARP для выяснения сети назначения для пакета, просматривая IP-адрес и маску подсети хоста А. Это запрос к удаленному хосту, т.е. пакет не предназначен хосту локальной сети, поэтому пакет должен быть направлен маршрутизатору для перенаправления в нужную удаленную сеть.
- Чтобы хост А смог послать пакет маршрутизатору, хост должен знать аппаратный адрес интерфейса маршрутизатора, подключенный к локальной сети. Сетевой уровень передает пакет и аппаратный адрес назначения канальному уровню для деления на кадры и пересылки локальному хосту. Для получения аппаратного адреса хост ищет местоположение точки назначения в собственной памяти, называемой кэшем ARP.
- Если IP-адрес еще не был доступен и не присутствует в кэше ARP, хост посылает широковещательную рассылку ARP для поиска аппаратного адреса по IP-адресу 172.16.10.1. Именно поэтому первый запрос Ping обычно заканчивается тайм-аутом, но четыре остальные запроса будут успешны. После кэширования адреса тайм-аута обычно не возникает.
- Маршрутизатор отвечает и сообщает аппаратный адрес интерфейса Ethernet, подключенного к локальной сети. Теперь хост имеет всю информацию для пересылки пакета маршрутизатору по локальной сети. Сетевой уровень спускает пакет вниз для генерации эхо-запроса ICMP (Ping) на канальном уровне, дополняя пакет аппаратным адресом, по которому хост должен послать пакет. Пакет имеет IP-адреса источника и назначения вместе с указанием на тип пакета (ICMP) в поле протокола сетевого уровня.
- Канальный уровень формирует кадр, в котором инкапсулируется пакет вместе с управляющей информацией, необходимой для пересылки по локальной сети. К такой информации относятся аппаратные адреса источника и назначения, а также значение в поле типа, установленное протоколом сетевого уровня (это будет поле типа, поскольку IP по умолчанию пользуется кадрами Ethernet_II). Рисунок 3 показывает кадр, генерируемый на канальном уровне и пересылаемый по локальному носителю. На рисунке 3 показана вся информация, необходимая для взаимодействия с маршрутизатором: аппаратные адреса источника и назначения, IP-адреса источника и назначения, данные, а также контрольная сумма CRC кадра, находящаяся в поле FCS (Frame Check Sequence).
- Канальный уровень хоста А передает кадр физическому уровню. Там выполняется кодирование нулей и единиц в цифровой сигнал с последующей передачей этого сигнала по локальной физической сети.
- Сигнал достигает интерфейса Ethernet 0 маршрутизатора, который синхронизируется по преамбуле цифрового сигнала для извлечения кадра. Интерфейс маршрутизатора после построения кадра проверяет CRC, а в конце приема кадра сравнивает полученное значение с содержимым поля FCS. Кроме того, он проверяет процесс передачи на отсутствие фрагментации и конфликтов носителя.
- Проверяется аппаратный адрес назначения. Поскольку он совпадает с адресом маршрутизатора, анализируется поле типа кадра для определения дальнейших действий с этим пакетом данных. В поле типа указан протокол IP, поэтому маршрутизатор передает пакет процессу протокола IP, исполняемому маршрутизатором. Кадр удаляется. Исходный пакет (сгенерированный хостом А) помещается в буфер маршрутизатора.
- Протокол IP смотрит на IP-адрес назначения в пакете, чтобы определить, не направлен ли пакет самому маршрутизатору. Поскольку IP-адрес назначения равен 172.16.20.2, маршрутизатор определяет по своей таблице маршрутизации, что сеть 172.16.20.0 непосредственно подключена к интерфейсу Ethernet 1.
- Маршрутизатор передает пакет из буфера в интерфейс Ethernet 1. Маршрутизатору необходимо сформировать кадр для пересылки пакета хосту назначения. Сначала маршрутизатор проверяет свой кэш ARP, чтобы определить, был ли уже разрешен аппаратный адрес во время предыдущих взаимодействий с данной сетью. Если адреса нет в кэше ARP, маршрутизатор посылает широковещательный запрос ARP в интерфейс Ethernet 1 для поиска аппаратного адреса для IP-адреса 172.16.20.2.
- Хост В откликается аппаратным адресом своего сетевого адаптера на запрос ARP. Интерфейс Ethernet 1 маршрутизатора теперь имеет все необходимое для пересылки пакета в точку окончательного приема. На рисунке показывает кадр, сгенерированный маршрутизатором и переданный по локальной физической сети.
Кадр, сгенерированный интерфейсом Ethernet 1 маршрутизатора, имеет аппаратный адрес источника от интерфейса Ethernet 1 и аппаратный адрес назначения для сетевого адаптера хоста В. Важно отметить, что, несмотря на изменения аппаратных адресов источника и назначения, в каждом передавшем пакет интерфейсе маршрутизатора, IP-адреса источника и назначения никогда не изменяются. Пакет никоим образом не модифицируется, но меняются кадры.
- Хост В принимает кадр и проверяет CRC. Если проверка будет успешной, кадр удаляется, а пакет передается протоколу IP. Он анализирует IP-адрес назначения. Поскольку IP-адрес назначения совпадает с установленным в хосте В адресом, протокол IP исследует поле протокола для определения цели пакета.
- В нашем пакете содержится эхо-запрос ICMP, поэтому хост В генерирует новый эхо-ответ ICMP с IP-адресом источника, равным адресу хоста В, и IP-адресом назначения, равным адресу хоста А. Процесс запускается заново, но в противоположном направлении. Однако аппаратные адреса всех устройств по пути следования пакета уже известны, поэтому все устройства смогут получить аппаратные адреса интерфейсов из собственных кэшей ARP.
В крупных сетях процесс происходит аналогично, но пакету придется пройти больше участков по пути к хосту назначения.
Таблицы маршрутизации
В стеке TCP/IP маршрутизаторы и конечные узлы принимают решения о том, кому передавать пакет для его успешной доставки узлу назначения, на основании так называемых таблиц маршрутизации (routing tables).
Таблица представляет собой типичный пример таблицы маршрутов, использующей IP-адреса сетей, для сети, представленной на рисунке.
Таблица маршрутизации для Router 2
В таблице представлена таблица маршрутизации многомаршрутная, так как содержится два маршрута до сети 116.0.0.0. В случае построения одномаршрутной таблицы маршрутизации, необходимо указывать только один путь до сети 116.0.0.0 по наименьшему значению метрики.
Как нетрудно видеть, в таблице определено несколько маршрутов с разными параметрами. Читать каждую такую запись в таблице маршрутизации нужно следующим образом:
Чтобы доставить пакет в сеть с адресом из поля Сетевой адрес и маской из поля Маска сети, нужно с интерфейса с IP-адресом из поля Интерфейс послать пакет по IP-адресу из поля Адрес шлюза, а «стоимость» такой доставки будет равна числу из поля Метрика.
В этой таблице в столбце "Адрес сети назначения" указываются адреса всех сетей, которым данный маршрутизатор может передавать пакеты. В стеке TCP/IP принят так называемый одношаговый подход к оптимизации маршрута продвижения пакета (next-hop routing) – каждый маршрутизатор и конечный узел принимает участие в выборе только одного шага передачи пакета. Поэтому в каждой строке таблицы маршрутизации указывается не весь маршрут в виде последовательности IP-адресов маршрутизаторов, через которые должен пройти пакет, а только один IP-адрес - адрес следующего маршрутизатора, которому нужно передать пакет. Вместе с пакетом следующему маршрутизатору передается ответственность за выбор следующего шага маршрутизации. Одношаговый подход к маршрутизации означает распределенное решение задачи выбора маршрута. Это снимает ограничение на максимальное количество транзитных маршрутизаторов на пути пакета.
Для отправки пакета следующему маршрутизатору требуется знание его локального адреса, но в стеке TCP/IP в таблицах маршрутизации принято использование только IP-адресов для сохранения их универсального формата, не зависящего от типа сетей, входящих в интерсеть. Для нахождения локального адреса по известному IP-адресу необходимо воспользоваться протоколом ARP.
Одношаговая маршрутизация обладает еще одним преимуществом - она позволяет сократить объем таблиц маршрутизации в конечных узлах и маршрутизаторах за счет использования в качестве номера сети назначения так называемого маршрута по умолчанию – default (0.0.0.0), который обычно занимает в таблице маршрутизации последнюю строку. Если в таблице маршрутизации есть такая запись, то все пакеты с номерами сетей, которые отсутствуют в таблице маршрутизации, передаются маршрутизатору, указанному в строке default. Поэтому маршрутизаторы часто хранят в своих таблицах ограниченную информацию о сетях интерсети, пересылая пакеты для остальных сетей в порт и маршрутизатор, используемые по умолчанию. Подразумевается, что маршрутизатор, используемый по умолчанию, передаст пакет на магистральную сеть, а маршрутизаторы, подключенные к магистрали, имеют полную информацию о составе интерсети.
Кроме маршрута default, в таблице маршрутизации могут встретиться два типа специальных записей - запись о специфичном для узла маршруте и запись об адресах сетей, непосредственно подключенных к портам маршрутизатора.
Специфичный для узла маршрут содержит вместо номера сети полный IP-адрес, то есть адрес, имеющий ненулевую информацию не только в поле номера сети, но и в поле номера узла. Предполагается, что для такого конечного узла маршрут должен выбираться не так, как для всех остальных узлов сети, к которой он относится. В случае, когда в таблице есть разные записи о продвижении пакетов для всей сети N и ее отдельного узла, имеющего адрес N,D, при поступлении пакета, адресованного узлу N,D, маршрутизатор отдаст предпочтение записи для N,D.
Записи в таблице маршрутизации, относящиеся к сетям, непосредственно подключенным к маршрутизатору, в поле "Метрика" содержат нули («подключено»).
Алгоритмы маршрутизации
Основные требования к алгоритмам маршрутизации:
- точность;
- простота;
- надёжность;
- стабильность;
- справедливость;
- оптимальность.
Существуют различные алгоритмы построения таблиц для одношаговой маршрутизации. Их можно разделить на три класса:
- алгоритмы простой маршрутизации;
- алгоритмы фиксированной маршрутизации;
- алгоритмы адаптивной маршрутизации.
Независимо от алгоритма, используемого для построения таблицы маршрутизации, результат их работы имеет единый формат. За счет этого в одной и той же сети различные узлы могут строить таблицы маршрутизации по своим алгоритмам, а затем обмениваться между собой недостающими данными, так как форматы этих таблиц фиксированы. Поэтому маршрутизатор, работающий по алгоритму адаптивной маршрутизации, может снабдить конечный узел, применяющий алгоритм фиксированной маршрутизации, сведениями о пути к сети, о которой конечный узел ничего не знает.
Простая маршрутизация
Это способ маршрутизации не изменяющийся при изменении топологии и состоянии сети передачи данных (СПД).
Простая маршрутизация обеспечивается различными алгоритмами, типичными из которых являются следующие:
В целом, простая маршрутизация не обеспечивает направленную передачу пакета и имеет низкую эффективности. Основным ее достоинством является обеспечение устойчивой работы сети при выходе из строя различных частей сети.
Фиксированная маршрутизация
Этот алгоритм применяется в сетях с простой топологией связей и основан на ручном составлении таблицы маршрутизации администратором сети. Алгоритм часто эффективно работает также для магистралей крупных сетей, так как сама магистраль может иметь простую структуру с очевидными наилучшими путями следования пакетов в подсети, присоединенные к магистрали, выделяют следующие алгоритмы:
- Однопутевая фиксированная маршрутизация – это когда между двумя абонентами устанавливается единственный путь. Сеть с такой маршрутизацией неустойчива к отказам и перегрузкам.
- Многопутевая фиксированная маршрутизация – может быть установлено несколько возможных путей и вводится правило выбора пути. Эффективность такой маршрутизации падает при увеличении нагрузки. При отказе какой-либо линии связи необходимо менять таблицу маршрутизации, для этого в каждом узле связи храниться несколько таблиц.
Адаптивная маршрутизация
Это основной вид алгоритмов маршрутизации, применяющихся маршрутизаторами в современных сетях со сложной топологией. Адаптивная маршрутизация основана на том, что маршрутизаторы периодически обмениваются специальной топологической информацией об имеющихся в интерсети сетях, а также о связях между маршрутизаторами. Обычно учитывается не только топология связей, но и их пропускная способность и состояние.
Адаптивные протоколы позволяют всем маршрутизаторам собирать информацию о топологии связей в сети, оперативно отрабатывая все изменения конфигурации связей. Эти протоколы имеют распределенный характер, который выражается в том, что в сети отсутствуют какие-либо выделенные маршрутизаторы, которые бы собирали и обобщали топологическую информацию: эта работа распределена между всеми маршрутизаторами, выделяют следующие алгоритмы:
Показатели алгоритмов (метрики)
Маршрутные таблицы содержат информацию, которую используют программы коммутации для выбора наилучшего маршрута. Чем характеризуется построение маршрутных таблиц? Какова особенность природы информации, которую они содержат? В данном разделе, посвященном показателям алгоритмов, сделана попытка ответить на вопрос о том, каким образом алгоритм определяет предпочтительность одного маршрута по сравнению с другими.
В алгоритмах маршрутизации используется множество различных показателей. Сложные алгоритмы маршрутизации при выборе маршрута могут базироваться на множестве показателей, комбинируя их таким образом, что в результате получается один гибридный показатель. Ниже перечислены показатели, которые используются в алгоритмах маршрутизации:
- Длина маршрута.
- Надежность.
- Задержка.
- Ширина полосы пропускания.
Длина маршрута
Длина маршрута является наиболее общим показателем маршрутизации. Некоторые протоколы маршрутизации позволяют администраторам сети назначать произвольные цены на каждый канал сети. В этом случае длиной тракта является сумма расходов, связанных с каждым каналом, который был траверсирован. Другие протоколы маршрутизации определяют "количество пересылок" (количество хопов), т. е. показатель, характеризующий число проходов, которые пакет должен совершить на пути от источника до пункта назначения через элементы объединения сетей (такие как маршрутизаторы).
Надежность
Надежность, в контексте алгоритмов маршрутизации, относится к надежности каждого канала сети (обычно описываемой в терминах соотношения бит/ошибка). Некоторые каналы сети могут отказывать чаще, чем другие. Отказы одних каналов сети могут быть устранены легче или быстрее, чем отказы других каналов. При назначении оценок надежности могут быть приняты в расчет любые факторы надежности. Оценки надежности обычно назначаются каналам сети администраторами. Как правило, это произвольные цифровые величины.
Задержка
Под задержкой маршрутизации обычно понимают отрезок времени, необходимый для передвижения пакета от источника до пункта назначения через объединенную сеть. Задержка зависит от многих факторов, включая полосу пропускания промежуточных каналов сети, очереди в порт каждого маршрутизатора на пути передвижения пакета, перегруженность сети на всех промежуточных каналах сети и физическое расстояние, на которое необходимо переместить пакет. Т. к. здесь имеет место конгломерация нескольких важных переменных, задержка является наиболее общим и полезным показателем.
Полоса пропускания
Полоса пропускания относится к имеющейся мощности трафика какого-либо канала. При прочих равных показателях, канал Ethernet 10 Mbps предпочтителен любой арендованной линии с полосой пропускания 64 Кбайт/с. Хотя полоса пропускания является оценкой максимально достижимой пропускной способности канала, маршруты, проходящие через каналы с большей полосой пропускания, не обязательно будут лучше маршрутов, проходящих через менее быстродействующие каналы.
Объединение нескольких локальных сетей в глобальную ( распределенную, составную ) WAN - сеть происходит с помощью устройств и протоколов сетевого Уровня 3 семиуровневой эталонной модели или уровня межсетевого взаимодействия четырехуровневой модели TCP/IP . Если LAN объединяют рабочие станции, периферию , терминалы и другое сетевое оборудование в одной аудитории или в одном здании, то WAN обеспечивают соединение LAN на широком географическом пространстве. В составную распределенную сеть ( internetwork , internet ) входят как локальные сети и подсети ( subnet ), так и отдельные пользователи. Устройствами, объединяющими LAN в составную сеть , являются:
- маршрутизаторы ( routers );
- модемы;
- коммуникационные серверы.
Наиболее распространенными устройствами межсетевого взаимодействия сетей, подсетей и устройств являются маршрутизаторы. Они представляют собой специализированные компьютеры для выполнения специфических функций сетевых устройств. В лекции 4 было показано, что маршрутизаторы используются, чтобы сегментировать локальную сеть на широковещательные домены, т. е. являются устройствами LAN , но они применяются и как устройства формирования глобальных сетей. Поэтому маршрутизаторы имеют как LAN -, так и WAN -интерфейсы. Маршрутизаторы используют WAN -интерфейсы, чтобы связываться друг с другом, и LAN -интерфейсы – для связи с узлами (компьютерами), например через коммутаторы. Поэтому маршрутизаторы являются устройствами как локальных, так и глобальных сетей . Маршрутизаторы являются также основными устройствами больших корпоративных сетей .
На рис. 6.1 приведен пример того, как маршрутизаторы А, В и С объединяют несколько локальных сетей ( локальные сети № 1, № 2, № 3) в распределенную (составную) сеть . Поэтому маршрутизаторы имеют интерфейсы как локальных, так и глобальных соединений. К локальным сетям, созданным на коммутаторах , маршрутизатор присоединен через интерфейсы, которые на рис. 6.1 обозначены через F0/1, что означает: интерфейс Fast Ethernet , слот 0, номер 1. Глобальные соединения на рис. 6.1 представлены последовательными или серийными ( serial ) интерфейсами S0/1, S0/2. Через такой же последовательный интерфейс реализовано соединение составной сети с сетью Интернет ( Internet ). Подобная структурная схема , включающая несколько последовательно соединенных маршрутизаторов, характерна для многих корпоративных сетей .
В большинстве случаев соединение маршрутизатора локальной сети с сетью Интернет производится через сеть провайдера. Терминальное (оконечное) оборудование ( Data Terminal Equipment – DTE ), к которому относится и маршрутизатор , подсоединяется к глобальной сети (или к сети провайдера) через канальное коммуникационное оборудование ( Data Communications Equipment , или Data Circuit -Terminating Equipment , – DCE ). Маршрутизатор обычно является оборудованием пользователя, а оборудование DCE предоставляет провайдер . Услуги, предоставляемые провайдером для терминальных устройств DTE , доступны через модем или цифровое устройство согласования с каналом связи ( Channel Service Unit / Data Service Unit – CSU / DSU ), которые и являются оборудованием DCE ( рис. 6.2). Оборудование DCE является ведущим в паре DCE - DTE , оно обеспечивает синхронизацию и задает скорость передачи данных.
Поскольку маршрутизаторы в распределенных сетях ( рис. 6.1) часто соединяются последовательно, из двух последовательно соединенных серийных интерфейсов маршрутизаторов один должен выполнять роль устройства DCE , а второй – устройства DTE ( рис. 6.3).
Рис. 6.3. Последовательное соединение маршрутизаторов
Главными функциями маршрутизаторов являются:
- выбор наилучшего пути для пакетов к адресату назначения;
- продвижение ( коммутация ) принятого пакета с входного интерфейса на соответствующий выходной интерфейс.
Таким образом, маршрутизаторы обеспечивают связь между сетями и определяют наилучший путь пакета данных к сети адресата, причем технологии объединяемых локальных сетей могут быть различными.
Протоколы канального ( data link ) уровня WAN описывают, как по сети передаются кадры. Они включают протоколы, обеспечивающие функционирование через выделенные соединения " точка-точка " и через коммутируемые соединения. Основными WAN протоколами и стандартами канального уровня являются: High-level Data Link Control ( HDLC ), Point-to-Point Protocol ( PPP ), Synchronous Data Link Control ( SDLC ), Serial Line Internet Protocol ( SLIP ), X.25, Frame Relay , ATM . Основными протоколами и стандартами физического уровня являются: EIA / TIA -232, EIA / TIA -449, V.24, V.35, X.21, G.703, EIA-530 , ISDN , E1, E3, XDSL , SDH ( STM -1, STM -4 и др.).
Функционируя на Уровне 3 модели OSI , маршрутизаторы принимают решения, базируясь на сетевых логических адресах (IP-адресах). Для определения наилучшего пути передачи данных через связываемые сети маршрутизаторы строят таблицы маршрутизации и обмениваются сетевой маршрутной информацией с другими маршрутизаторами. Администратор может конфигурировать статические маршруты и поддерживать таблицы маршрутизации вручную. Однако большинство таблиц маршрутизации создается и поддерживается динамически, за счет использования протоколов маршрутизации ( routing protocol ), которые позволяют маршрутизаторам автоматически обмениваться информацией о сетевой топологии друг с другом.
Функционирование маршрутизаторов происходит под управлением сетевой операционной системы ( Internetwork Operation System – IOS ), текущая ( running ) версия которой находится в оперативной памяти RAM ( рис. 6.4). Помимо текущей версии IOS оперативная память хранит активный конфигурационный файл ( Active Configuration File ) и таблицы протоколов динамической маршрутизации , выполняет буферизацию пакетов и поддерживает их очередь , обеспечивает временную память для конфигурационного файла маршрутизатора, пока включено питание.
Загрузка операционной системы IOS в оперативную память обычно производится из энергонезависимой флэш-памяти ( Flash ), которая является перепрограммируемым запоминающим устройством ( ППЗУ ). После модернизации IOS она перезаписывается во флэш-память , где может храниться несколько версий. Версию операционной системы можно также сохранять на TFTP -сервере ( рис. 6.4).
Постоянное запоминающее устройство ( ПЗУ – ROM ) содержит программу начальной загрузки ( bootstrap ) и сокращенную версию операционной системы, установленную при изготовлении маршрутизатора. Обычно эта версия IOS используется только при выходе из строя флэш-памяти. Память ROM также поддерживает команды для теста диагностики аппаратных средств (Power-On Self Test – POST ).
Рис. 6.4. Элементы памяти и программы маршрутизатора
Энергонезависимая (non- volatile ) оперативная память NVRAM маршрутизатора является перепрограммируемым запоминающим устройством (ППЗУ). NVRAM хранит стартовый ( startup ) конфигурационный файл , который после изменения конфигурации перезаписывается в ППЗУ, где создается резервная копия ( backup ). Конфигурационные файлы содержат команды и параметры для управления потоком трафика, проходящим через маршрутизатор . Конфигурационный файл используется для выбора сетевых протоколов и протоколов маршрутизации , которые определяют наилучший путь для пакетов к адресуемой сети. Первоначально конфигурационный файл обычно создается с консольной линии (console) и помимо памяти NVRAM может сохраняться на TFTP -сервере ( рис. 6.4). Временное хранение входящих и исходящих пакетов обеспечивается в памяти интерфейсов, которые могут быть выполнены на материнской плате или в виде отдельных модулей.
При включении маршрутизатора начинает функционировать программа начальной загрузки bootstrap, которая тестирует оборудование и загружает операционную систему IOS в оперативную память RAM . В оперативную память загружается также конфигурационный файл , хранящийся в NVRAM . В процессе конфигурирования маршрутизатора задаются адреса интерфейсов, пароли, создаются таблицы маршрутизации , устанавливаются протоколы, проводится проверка параметров. Процесс коммутации и продвижения данных проходит под управлением операционной системы.
6.2. Принципы маршрутизации
Информационный поток данных, созданный на прикладном уровне, на транспортном уровне "нарезается" на сегменты, которые на сетевом уровне снабжаются заголовками и образуют пакеты (см. рис. 1.7, рис. 1.8). Заголовок пакета содержит сетевые IP-адреса узла назначения и узла источника. На основе этой информации средства сетевого уровня – маршрутизаторы осуществляют передачу пакетов между конечными узлами составной сети по определенному маршруту.
Маршрутизатор оценивает доступные пути к адресату назначения и выбирает наиболее рациональный маршрут на основе некоторого критерия – метрики. При оценке возможных путей маршрутизаторы используют информацию о топологии сети. Эта информация может быть сконфигурирована сетевым администратором или собрана в ходе динамического процесса обмена информацией между маршрутизаторами, который выполняется в сети протоколами маршрутизации.
Процесс прокладывания маршрута происходит последовательно от маршрутизатора к маршрутизатору. При прокладывании пути для пакета каждый маршрутизатор анализирует сетевую часть адреса узла назначения, заданного в заголовке поступившего пакета, т.е. вычленяет адрес сети назначения. Затем маршрутизатор обращается к таблице маршрутизации , в которой хранятся адреса всех доступных сетей, и определяет свой выходной интерфейс , на который необходимо передать (продвинуть) пакет. Таким образом, маршрутизатор ретранслирует пакет, продвигая его с входного интерфейса на выходной, для чего использует сетевую часть адреса назначения, обращаясь к таблице маршрутизации .
Выходной интерфейс связан с наиболее рациональным маршрутом к адресату. Конечный маршрутизатор на пути пакета непосредственно (прямо) связан с сетью назначения. Он использует часть сетевого адреса , содержащую адрес узла назначения, чтобы доставить пакет получателю данных.
Процесс ретрансляции пакетов маршрутизаторами рассмотрен на примере сети, приведенной на рис. 6.5. Маршрутизаторы в целом сетевого адреса не имеют, но поскольку они связывают между собой несколько сетей, каждый интерфейс ( порт ) маршрутизатора имеет уникальный адрес , сетевая часть которого совпадает с номером сети, соединенной с данным интерфейсом. Последовательные ( serial ) порты, соединяющие между собой маршрутизаторы, на рисунке обозначены молниевидной линией.
Путь от маршрутизатора A к маршрутизатору В может быть выбран:
- через маршрутизатор С;
- через маршрутизаторы D и E;
- через маршрутизаторы F, G и H.
Оценка наилучшего пути производится на основе метрики. Например, если метрика учитывает только количество маршрутизаторов на пути к адресату, то будет выбран первый маршрут . Если же метрика учитывает полосу пропускания линий связи , соединяющих маршрутизаторы, то может быть выбран второй или третий маршрут при условии, что на этом пути наиболее широкополосные линии связи.
При выборе первого пути функция коммутации реализуется за счет продвижения поступившего на интерфейс 1а маршрутизатора A пакета на интерфейс 2а. Таким образом, пакет попадает на интерфейс 1с маршрутизатора С, который продвинет полученный пакет на свой выходной интерфейс 3с, т. е. передаст полученный пакет маршрутизатору В.
В процессе передачи пакета по сети используются как сетевые логические адреса (IP-адреса), так и физические адреса устройств ( MAC-адреса в сетях Ethernet ). Например, при передаче информации с компьютера Host X локальной сети Сеть 1, ( рис. 6.6) на компьютер Host Y, находящийся в удаленной Сети 2, определен маршрут через маршрутизаторы A, B, C.
Рис. 6.6. Использование маршрутизаторов для передачи данных по сети
Когда узел Host Х Сети 1 передает пакет адресату Host Y из другой Сети 2, ему известен сетевой IP- адрес получателя, который записывается в заголовке пакета, т. е. известен адрес 3-го уровня. При инкапсуляции пакета в кадр источник информации Host Х должен задать в заголовке кадра канальные адреса назначения и источника, т. е. адрес 2-го уровня (табл. 6.1).
У передающего узла нет информации об адресе канального уровня (MAC-адресе) узла назначения Host Y, поэтому Host Х в заголовке кадра в качестве адреса назначения задаст MAC-адрес входного интерфейса 1а маршрутизатора A. Именно через этот интерфейс , называемый шлюзом по умолчанию ( Default gateway ), все пакеты из локальной Сети 1 будут передаваться в удаленные сети. Однако и этот адрес источнику информации Host Х не известен. Процесс нахождения МАС-адреса по известному сетевому адресу реализуется с помощью протокола разрешения адресов Address Resolution Protocol – ARP, который входит в стек протоколов TCP/IP .
Появление сетей существенно отразилось на нашей повседневной жизни. Помимо нашего образа жизни, они также повлияли на рабочие процессы и способы развлечений.
Сети позволяют нам общаться, сотрудничать и взаимодействовать в совершенно новой форме. Мы по-разному используем сети — пользуемся веб-приложениями, IP-телефонией, проводим видеоконференции, играем онлайн, учимся и делаем покупки через Интернет и т. д.
Как показано на рисунке, при обсуждении сетевых технологий можно упомянуть множество ключевых структур и свойств, связанных с производительностью сети.
- Топология: существуют физические и логические топологии. Физическая топология — схема расположения кабелей, сетевых устройств и конечных систем. В ней описывается, как сетевые устройства соединены между собой с помощью проводов и кабелей. Логическая топология — это путь, по которому данные передаются по сети. В ней описывается, как пользователи видят соединения сетевых устройств.
- Скорость — это количество переданных данных по какому-либо каналу сети, измеряемое в битах в секунду (бит/с).
- Стоимость указывает общие расходы на приобретение компонентов сети, установку и обслуживание сети.
- Безопасность указывает на степень защищенности сети, в том числе защищенности информации, передаваемой по сети. Фактор безопасности играет очень важную роль, поэтому технологии и методы обеспечения безопасности постоянно развиваются. При любых действиях, которые могут повлиять на работу сети, необходимо обращать внимание на обеспечение безопасности.
- Доступность указывает на возможность использования сети в момент обращения пользователя.
- Масштабируемость показывает, насколько легко сеть может вмещать большее число пользователей и соответствовать требованиям передачи данных. Если проект сети оптимизирован только для выполнения текущих задач, то расширение сети для соответствия растущим требованиям влечет за собой большие трудности и высокие затраты.
Надежность указывает на степень безотказности компонентов, из которых состоит сеть: маршрутизаторов, коммутаторов, компьютеров и серверов. Надежность часто измеряется как вероятность сбоя или как среднее время безотказной работы (MTBF).
Эти характеристики и свойства обеспечивают способы для сравнения различных сетевых решений.
Примечание. Хотя термин «скорость» нередко используется для обозначения пропускной способности сети, технически это неправильно. Фактическая скорость, с которой передаются биты, остается неизменной в рамках одной среды. Различие в пропускной способности возникает из-за количества бит, передаваемых за секунду, а не из-за скорости их прохождения по проводам или беспроводной среде.
Необходимость маршрутизации
Каким образом, щелкнув на ссылку в веб-браузере, мы получаем желаемую информацию в считанные секунды? Несмотря на то что происходит это благодаря слаженной работе множества устройств и технологий, главным устройством является маршрутизатор. Говоря простым языком, маршрутизатор соединяет две сети вместе.
Обмен данными между сетями был бы невозможен без маршрутизатора, который определяет оптимальный путь до пункта назначения и пересылает трафик на следующий маршрутизатор по сети. Маршрутизатор отвечает за выбор маршрута для пересылки трафика между сетями.
В топологии на рисунке маршрутизаторы соединяют сети на разных узлах. При получении пакета на интерфейсе маршрутизатор использует свою таблицу маршрутизации для определения оптимального пути до пункта назначения. Пунктом назначения для IP-пакета может быть веб-сервер, расположенный в другой стране, или сервер электронной почты в локальной сети. Именно маршрутизаторы отвечают за эффективную доставку этих пакетов. Эффективность передачи данных между сетями в значительной степени зависит от возможности маршрутизаторов пересылать пакеты по наиболее оптимальному пути.
Маршрутизаторы как компьютеры
Как показано на рисунке ниже, для работы большинства устройств с поддержкой сети (например, компьютеры, планшеты и смартфоны) требуются следующие компоненты:
- центральный процессор (ЦП);
- операционная система (OS);
- память и хранилище данных (ОЗУ, ПЗУ, энергонезависимое ОЗУ, флеш-память, жесткий диск).
Каким образом, щелкнув на ссылку в веб-браузере, мы получаем желаемую информацию в считанные секунды? Несмотря на то что происходит это благодаря слаженной работе множества устройств и технологий, главным устройством является маршрутизатор. Говоря простым языком, маршрутизатор соединяет две сети вместе.
Обмен данными между сетями был бы невозможен без маршрутизатора, который определяет оптимальный путь до пункта назначения и пересылает трафик на следующий маршрутизатор по сети. Маршрутизатор отвечает за выбор маршрута для пересылки трафика между сетями.
В топологии на рисунке маршрутизаторы соединяют сети на разных узлах. При получении пакета на интерфейсе маршрутизатор использует свою таблицу маршрутизации для определения оптимального пути до пункта назначения. Пунктом назначения для IP-пакета может быть веб-сервер, расположенный в другой стране, или сервер электронной почты в локальной сети. Именно маршрутизаторы отвечают за эффективную доставку этих пакетов. Эффективность передачи данных между сетями в значительной степени зависит от возможности маршрутизаторов пересылать пакеты по наиболее оптимальному пути.
Маршрутизаторы как компьютеры
Как показано на рисунке ниже, для работы большинства устройств с поддержкой сети (например, компьютеры, планшеты и смартфоны) требуются следующие компоненты:
- центральный процессор (ЦП);
- операционная система (OS);
- память и хранилище данных (ОЗУ, ПЗУ, энергонезависимое ОЗУ, флеш-память, жесткий диск).
По сути, маршрутизатор — это специализированный компьютер. Для его работы необходимы ЦП и память, в которой хранятся данные для выполнения инструкций операционной системы, например инициализации системы, функций маршрутизации и коммутации.
Примечание. В качестве системного ПО устройства Cisco используют операционную систему Cisco IOS.
Память маршрутизатора бывает энергозависимая и энергонезависимая. При отключении питания содержимое энергозависимой памяти теряется, а содержимое энергонезависимой памяти сохраняется.
В таблице ниже представлены типы памяти маршрутизатора с указанием критерия энергозависимости, а также приведены примеры данных, хранящихся в том или ином типе памяти.
В отличие от компьютера, маршрутизаторы не имеют видео- и звуковых карт. Вместо этого маршрутизаторы оснащены специализированными портами и сетевыми платами для подключения устройств к другим сетям. На рисунке ниже описываются некоторые из этих портов и интерфейсов.
Маршрутизаторы соединяют сети
Маршрутизатор соединяет много сетей, и это означает, что он оснащен множеством интерфейсов, каждый из которых принадлежит другой IP-сети. Когда маршрутизатор получает IP-пакет на одном интерфейсе, он определяет, какой интерфейс следует использовать для пересылки пакета до места назначения. Интерфейс, который использует маршрутизатор для пересылки пакета, может быть конечной точкой маршрута, или же сетью, подключенной к другому маршрутизатору, используемому для достижения сети назначения.
В анимации ниже маршрутизаторы R1 и R2 отвечают за получение пакета в одной сети и пересылку этого же пакета из другой сети по направлению в сеть назначения.
Как правило, каждая сеть, к которой подключается маршрутизатор, требует отдельного интерфейса. Эти интерфейсы используются для соединения как локальных (LAN), так и глобальных сетей (WAN). В большинстве случаев, LAN — это сети Ethernet, содержащие такие устройства, как ПК, принтеры и серверы. WAN используются для соединения сетей на больших территориях. Например, подключение к WAN обычно используется для подключения LAN к сети интернет-провайдера (ISP).
Обратите внимание, что для соединения с другими узлами для каждого узла на рис. 2 требуется использование маршрутизатора. Даже в домашнем офисе требуется маршрутизатор. В сетевой топологии домашнего офиса маршрутизатор представляет собой специализированное устройство, которое представляет множество сервисов для домашней сети.
Маршрутизаторы выбирают оптимальные пути
Основные функции маршрутизаторов:
- Определение оптимального пути для передачи пакетов
- Пересылка пакетов к месту назначения
Маршрутизатор использует свою таблицу маршрутизации, чтобы найти оптимальный путь для пересылки пакетов. Когда маршрутизатор получает пакет, он проверяет адрес назначения пакета и использует таблицу маршрутизации для поиска оптимального пути к нужной сети. Кроме того, в таблице маршрутизации учитывается, какой интерфейс следует использовать для пересылки пакетов в каждую известную сеть. Если оптимальный маршрут найден, маршрутизатор инкапсулирует пакет в кадр канала передачи данных исходящего или выходного интерфейса и пересылает пакет до пункта назначения.
Анимация на рисунке демонстрирует передачу пакета от ПК источника до ПК назначения. Обратите внимание, что именно маршрутизатор отвечает за поиск сети назначения в своей таблице маршрутизации и пересылку пакета до пункта назначения. В этом примере маршрутизатор R1 получает пакет, инкапсулированный в кадр Ethernet. После деинкапсуляции пакета маршрутизатор R1 использует IP-адрес назначения пакета для поиска соответствующего сетевого адреса в своей таблице маршрутизации. После того, как в таблице маршрутизации найден сетевой адрес, маршрутизатор R1 инкапсулирует пакет внутри кадра PPP и пересылает пакет маршрутизатору R2. Аналогичный процесс выполняется на маршрутизаторе R2.
Примечание. Для того чтобы узнать об удаленных сетях и построить таблицы маршрутизации, маршрутизаторы используют протоколы статической и динамической маршрутизации.
Механизмы пересылки пакетов
Маршрутизаторы поддерживают три механизма пересылки пакетов:
- Программная коммутация — это устаревший механизм пересылки пакетов, который по-прежнему доступен на маршрутизаторах Cisco. Когда пакет прибывает на интерфейс, он пересылается на уровень управления, где ЦП сопоставляет адрес назначения с записью в таблице маршрутизации, а затем определяет выходной интерфейс и пересылает пакет. Важно понимать, что маршрутизатор совершает это с каждым пакетом, даже если целый поток пакетов предназначен для одного адреса назначения. Механизм программной коммутации работает очень медленно и редко реализуется в современных сетях.
- Быстрая коммутация — это распространенный механизм пересылки пакетов, который использует кэш быстрой коммутации для хранения информации о следующих переходах. Когда пакет прибывает на интерфейс, он пересылается на уровень управления, где ЦП ищет совпадение в кэше быстрой коммутации. Если совпадение не найдено, пакет проходит программную коммутацию и пересылается на выходной интерфейс. Информация о трафике для пакетов также хранится в кэше быстрой коммутации. Если на интерфейс прибывает другой пакет, адресованный тому же назначению, то из кэш-памяти повторно используется информация о следующем переходе без вмешательства ЦП.
- Cisco Express Forwarding (CEF) — это новейший и наиболее предпочтительный для Cisco IOS способ пересылки пакетов. Как и быстрая коммутация, CEF создает 24-портовую базу данных переадресации (FIB) и таблицу смежности (adjacency table). Однако записи таблицы инициированы не пакетами, как при быстрой коммутации, а изменениями — например изменениями в сетевой топологии. Таким образом, по завершении сходимости сети в базе данных FIB и таблице смежности содержится вся информация, необходимая маршрутизатору при пересылке пакета. FIB содержит предварительно вычисленные обратные просмотры, информацию о следующих переходах для маршрутизаторов, в том числе информацию об интерфейсе и 2-м уровне. Коммутация CEF — это самый быстрый механизм пересылки, наиболее предпочтительный для использования на маршрутизаторах Cisco.
Рис. 1-3 иллюстрируют различия между тремя механизмами пересылки пакетов. Допустим, что поток трафика, состоящий из пяти пакетов, отправлен в одно место назначения. Как показано на рис. 1, при программной коммутации каждый пакет должен быть по отдельности обработан центральным процессором. Сравните данный механизм с механизмом быстрой коммутации, проиллюстрированным на рис. 2. При быстрой коммутации только первый пакет потока проходит программную коммутацию, после чего он добавляется в кэш быстрой коммутации. Следующие четыре пакета быстро обрабатываются, исходя из информации в кэш-памяти. На рис. 3 процесс CEF формирует базу данных FIB и таблицу смежности после завершения сходимости сети. Все пять пакетов быстро обрабатываются на уровне данных.
Три механизма пересылки пакетов можно описать, проведя следующую аналогию:
- Программная коммутация делает все расчеты каждый раз, даже в случае решения идентичных проблем.
- Быстрая коммутация делает расчеты один раз, запоминая ответ для последующих идентичных случаев.
- Механизм CEF решает каждую из возможных проблем заранее, внося ее в электронную таблицу.
Источник: Академия Cisco.
Другие статьи из категории «CCNA: Routing and Switching Essentials»
Читайте также: