Источники питания усилители коммутаторы и т д это
Основу схемы составляет интегральный ШИМ-контроллер SG3526N. Выходной каскад построен на параллельных mosfet - IRFP450, максимальный ток которых до 14 А каждый. Выходной трансформатор, соответствующей мощности, имеет две первичные обмотки по 12 В, рассчитанных на ток до 40 А, и вторичную на 230 В
Ступенчатый регулятор мощности с индикацией
Особенностью схемы является управление с помощью двух кнопок, которыми осуществляется цикл регулирования из девяти ступеней, а не переменным резистором
Дискретный регулятор мощности
Гальваническая развязка схемы управления от силовой и переключение режима выходной мощности от нуля до максимальной с помощью галетного переключателя с кратностью в 10%
Регулируемый источник питания с защитой от КЗ
Конструкция регулируемого источника питания на LM317T, в котором применена небольшая доработка, позволяющая защитить нагрузку и саму микросхему от превышения предельно допустимого тока
Повышающий преобразователь 3,7 в 5 В. Эффективность схемы или расчет КПД
Step-Up на MC34063
Преобразователь для двухполярного напряжения
Стабилизатор, который позволит получить двухполярное напряжение на выходе при однополярном на входе
Step-Up-преобразователь на MC34063
Представленная схема позволяет при питании от аккумулятора 3,7 В получить выходное напряжение 5 В при токе в нагрузке до 700 мА. КПД схемы естественно зависит от мощности нагрузки, т.е. выходного тока. При испытаниях схемы получены следующие результаты: при 100 мА - 85%, 250 мА - 79%, 500 мА - 73%, 700 мА - 67%
Плавное включение ламп накаливания 230 VAC
Лампа питается выпрямленным напряжением через mosfet-транзистор, а плавное включение обеспечивается ёмкостью конденсатора в цепи затвора
УПП для электроинструмента
Стационарное устройство плавного пуска, которое можно встроить в удлинитель, стену с розеткой или выполнить в качестве отдельного блока. Работает устройство с коллекторными двигателями
Регулируемый блок питания с цифровым управлением
Универсальный источник питания 0…30 В с регулировкой тока 0…3 А
Двухполярный блок питания с регулируемым выходом
Тройной источник питания от USB
Простой DC-DC-конвертер, схема которого позволяет получить на выходе, помимо уже имеющегося напряжения на 5 В, ещё два дополнительных: 3,3 В и 12 В
Повышающий DC-преобразователь на основе NE555
Cхема удвоителя напряжения на таймере 555. Диапазон напряжений от 6 до 12VDC, с малыми значениями выходных токов и эффективностью порядка 80 %
Регулируемый стабилизатор напряжения 1,25-120 В
Источник питания с выходным стабилизированным напряжением в широком диапазоне -1,25…120В, для радиолюбительской практики на основе TL783
DC-Регулятор 0. 310 В, 200 мА на MOSFET
Схема для радиолюбительской практики и главное её преимущество - защита от короткого замыкания на выходе. Ток короткого замыкания ограничен в нагрузке величиной 270 мА
Простой Мощный Стабилизатор 3…32 В с Защитой
Простая, но в тоже время мощная и функциональная, плата линейного стабилизатора напряжения, реализованная на основе микросхемы LM723. Схема имеет защиту от перегрузок, которую можно рассчитать самостоятельно
Линейный Лабораторный Источник Питания. Uвых=0. 20 В с Регулировкой Тока
Бюджетная схема лабораторного источника питания, выполненная на одних транзисторах с использованием трансформатора стандартного ряда. Данная схема позволяет получить на выходе напряжение в диапазоне от 0 до 20 В с максимальным током ограничения 2 А
Модуль Импульсного Преобразователя. Регулировка Uвых=1,2. 57В, Iнагр=2A
Импульсный преобразователь c регулируемым выходом на основе LM2592
Простейший Лабораторный Источник Питания
Источник питания на основе LM723 с выходным напряжением от 1 до 27 В и функцией ограничения тока в нагрузке в диапазоне от 0 до 2,5 А
Блок Питания. Мощный Линейный Регулируемый. Uвых=4. 30В, I=10A
Блок питания на основе двух LM338 в параллельном включении
Простой и Мощный. Регулятор Uвых=1,5. 30В, I=7,5А
Мощный регулируемый стабилизатор напряжения на основе LT1083.
Модуль Преобразования Однополярного Напряжения в Двухполярное
Данный преобразователь, или ещё по другому его можно назвать активным делителем напряжения, служит для получения двухполярного напряжения из обычного - однополярного.
Автомобильный Повышающий Преобразователь для Портативной Техники
Стабилизатор для питания УМЗЧ
Блок Питания с Регулируемым Выходом на MC34063
Блок питания на импульсном стабилизаторе со ступенчатым регулированием выходного напряжения и светодиодной индикацией
Стабилизированный Блок Питания 0…30 В с Установкой Тока Ограничения
На выходе схема обеспечивает выходное напряжение от «чистого» нуля до 30 В с максимальным током до 2 А. Важным преимуществом схемы является возможность ручной оперативной установки тока ограничения в пределах от 0 до 2 А
Модуль Для Лабораторного Источника на XL4016
Плата понижающего ШИМ-преобразователя на основе микросхемы XL4016. Позволяет получить на выходе стабилизируемое напряжение от 1,25 до 36 В при входном до 40 В. КПД схемы - до 95%. Выходной ток регулируется, максимальное значение - 8 А.
Двухполярный Блок Питания с Регулировкой Напряжения
Статья о том, как имея в наличии трансформатор с одной вторичной обмоткой и обычную « кренку » получить на выходе стабилизированное напряжение для питания двухполярной нагрузки с возможностью подстройки выхода. Зачастую это бывает востребовано, когда не хочется перематывать трансформатор БП .
Плата Мощного Стабилизатора 3. 45 В с Малым Падением Напряжения
Предлагаемая схема и миниатюрная конструкция стабилизатора постоянного напряжения, позволяет получить на выходе регулируемое напряжение в диапазоне от 3 до 45 В , при этом разница между входным и выходным напряжением, при токах до 10 А , составляет всего лишь 100 мВ . В качестве регулирующего элемента в схеме использован n- канальный mosfet -транзистор IRL2505S в корпусе TO-263 с сопротивлением открытого канала 0,008 Ом и высокой крутизной характеристики.
Стабилизированный БП 0. 15 В с шагом регулировки 1 В
Предлагаемый блок питания предназначен для радиолюбительской практики в процессе налаживания различных устройств. Выходное напряжение блока питания можно изменять от 0 до 15 В , управляя с помощью двух кнопок с шагом 1 В . Также данная схема защищена от перегрузки по току. Максимально допустимый ток выбирается с помощью резистора определённого наминала и может достигать 7 А .
Регулируемый Двухполярный Источник Питания 5. 30В, 2А на L4960
В обоих плечах источника питания в качестве регулирующего элемента применена микросхема L4960. Это импульсный регулятор напряжения, способный обеспечить напряжение на выходе от 5,1 В до 40 В, при максимальном токе 2,5 А.
Сильноточный Стабилизатор 35-70 В
В радиолюбительской практике не редко бывает необходимость в сильноточном ( 5 А и более) стабилизаторе с выходным напряжением от 35 В . Популярные интегральные стабилизаторы на основе трёхвыводных микросхем, в большинстве своём, не способны перекрыть такие диапазоны токов и напряжений. Построить подобный стабилизатор напряжения можно применив в качестве силового регулирующего элемента mosfet -транзистор.
Лабораторный БП с Двухступенчатым Преобразованием Выпрямленного Напряжения
Этот блок питания представляет из себя гибрид ШИМ -преобразователя и линейного регулятора. Благодаря такому схемному решению получилось сократить до минимума тепловые потери на линейном регуляторе при широком диапазоне регулировки выходного напряжения и относительной простоты самой схемы.
Питание Цифровых Схем от Одной ААА - STEP-UP DC BL8530
ИСПОЛЬЗОВАНИЕ LM2592HVT-ADJ ДЛЯ ПОСТРОЕНИЯ ИМПУЛЬСНОГО РЕГУЛИРУЕМОГО ИСТОЧНИКА ПИТАНИЯ С UВЫХ=1,2. 57 В
СЕТЕВОЙ БЕСТРАНСФОРМАТОРНЫЙ МИКРОМОЩНЫЙ БП НА МИКРОСХЕМЕ PT4515
Микромощный бестрансформаторный источник питания основе специальной микросхемы PT4515, которая применяется в светодиодных лампах в качестве стабилизатора тока.
ЛБП С ВЫХОДНЫМ НАПРЯЖЕНИЕМ 0,6. 29 В И ТРИГГЕРНОЙ ЗАЩИТОЙ ОТ 0 ДО 3 А
Этот лабораторный блок питания позволяет регулировать напряжение на нагрузке от 0,6 до 29 В , при максимальном токе в 3А , с плавной установкой ограничения от нулевого до максимального значений, по достижении которой нагрузка отключается от выхода БП .
ВАРИАНТ ДВУХПОЛЯРНОГО СТАБИЛИЗИРОВАННОГО ЛИНЕЙНОГО БП ±30 В ДЛЯ УМЗЧ
ПРОСТОЙ ВЫСОКОТОКОВЫЙ РЕГУЛИРУЕМЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ 3,6…22 В С ИСПОЛЬЗОВАНИЕМ ОБЫЧНОЙ 5-ТИ ВОЛЬТОВОЙ КРЕН-ки
Ручная регулировка выходного напряжения осуществляется подстроечным резистором R1. При указанных на схеме электронных компонентах и входном напряжение с выпрямителя 24 В соответствующей мощности, напряжение на выходе можно изменять от 3,5 до 22 В, максимальный ток при этом может быть до 8 А.
ИМПУЛЬСНЫЙ СТАБИЛИЗИРОВАННЫЙ БП НА TOP222YN
Основные технические характеристики:
Напряжение питающей сети, В – 60. 265;
Номинальное выходное напряжение, В – 15;
Ток нагрузки, мА - 75. 200;
Стабильность выходного напряжения, % – 5;
Частота преобразования, кГц – 100.
БЛОК ПИТАНИЯ ПО СХЕМЕ ВАНДЕРФИСТЕНА
Блок питания Вандерфистена при номинальном выходном напряжении 12 В и токе нагрузки до 1,2 А сочетает очень высокий КПД (более 92%) и малые пульсации (до 2 мВ).
БП ДЛЯ CD-ROM ПРИ ИСПОЛЬЗОВАНИИ В КАЧЕСТВЕ ПРОИГРЫВАТЕЛЯ
Рассмотрена схема и конструкция импульсного удвоителя напряжения, который избавит от необходимости тщательного выбора блока питания для CD-ROM-а и позволит, например подключить его к бортовой сети автомобиля или использовать с источником питания постоянного напряжения 9…18 В.
Коммутационное оборудование – это устройства, предназначенные для коммутирования (подключения) различных устройств друг к другу. Основной задачей коммутационного оборудования является правильное преобразование различных типов сигналов для их корректного отображения. Коммутационное оборудование выполняет целый ряд вспомогательных функций, связанных с работой основных устройств системы.
Например. компоненты любой электронной системы могут подключаться друг к другу одним из двух способов: постоянным подключением или ограниченным (коммутированным) подключением. Простейший бытовой пример постоянного подключения – монитор, подключенный к системному блоку компьютера.
Очевидно, что при росте числа компонентов системы, обменивающихся данными между собой, постоянное подключение быстро становится неэффективным, т.к. число линий связи пропорционально N * (N – 1) / 2, где N – число компонентов. Так, уже при шести оконечных устройствах потребуется пятнадцать линий связи между ними, причем каждое устройство должно иметь, по меньшей мере, пять портов ввода-вывода. Системы же, построенные на базе ограниченного подключения, требуют гораздо меньших затрат за счет использования узловых точек, к которым временно подключаются (коммутируются) все остальные компоненты системы. Оборудование таких узловых точек и называется коммутационным.
Таким образом, можно дать следующее определение: коммутационное оборудование – это устройства, предназначенные для коммутирования (подключения) различных иных устройств друг к другу. С его помощью осуществляется обмен данными между различными устройствами, входящими в систему, а также согласование их работы – как на физическом уровне (коммутация самих устройств), так и на логическом (преобразование форматов данных, кодирование и декодирование информации и т.д.). Коммутационное оборудование – это тот «цемент», на котором держится все «здание» любой мало-мальски сложной многокомпонентной системы, будь то конференц-система в офисе, интерактивная система голосования в зале заседаний или оборудование концертного зала.
Виды коммутационного оборудования
В зависимости от выполняемой функции коммутационные устройства можно разделить на несколько видов, основные из которых перечислены ниже. Стоит, однако, отметить, что современное коммутационное оборудование часто совмещает множество функций сразу, поэтому приведенная классификация является в известной степени условной.
Усилители-распределители сигнала
Функцией усилителей, что ясно из их названия, является усиление сигнала до требуемого уровня и его распределения.
— Усиление может потребоваться для компенсации ослабления сигнала при передаче по линии или для приведения номинального уровня сигнала одного устройства к номинальному уровню сигнала другого устройства. Те или иные усилительные функции входят в состав практически любых электронных коммутационных устройств.
Коммутаторы и матричные коммутаторы
По своей сути коммутатор – это переключатель, коммутирующий одно устройство к другому. Например, трансляция аналитической программы по команде редактора в студии моментально переключается на рекламный ролик. А во время видеоконференции коммутатор обеспечивает переключение между источниками презентации(докладчиками) и позволяет вывести то или иное изображение на основной экран. Матричные коммутаторы используются для многосигнальной коммутации и отличаются большим числом входов и выходов и богатыми настройками. Основным свойством матричного коммутатора являются возможность переключения сигнала с любого из его "входов" на один, несколько или все "выходы" коммутатора. Матричные коммутатора могут применяться в охранных системах, в домашних кинотеатрах, в студиях, в профессиональных системах отображения и т.д.
Системы управления
Системы управления предназначены для управления другим оборудованием. Здесь можно выделить две составляющие: устройства пользовательского интерфейса, такие как кнопочные панели или сенсорные экраны, и контроллеры. С помощью кнопок, планшетов и интерактивных экранов пользователь может управлять работой оборудования. Например, опустить проекционный экран, задвинуть шторы и включить проектор. Контроллеры же отвечают за непосредственную раздачу управляющих сигналов соответствующим устройствам. Именно контроллер осуществляет, например, инициацию переключения источников сигнала коммутатором, описанную выше. Мощные контроллеры способны управлять самым разным оборудованием и могут иметь десятки портов ввода-вывода: Ethernet, инфракрасный, RS-232, USB и другие протоколы управления.
Преобразователи форматов
К этой категории коммутационного оборудования относятся устройства, преобразующие один тип сигнала в другой, а также выделяющие из сигнала определенные составляющие. Преобразователь форматов используется для конвертации аналогового VGA сигнала в цифровой DVI или цифрового SDI в компонентный YUV, для изменения частоты развертки видеосигнала, для добавления аудио в видеоряд (эмбеддинг) или, наоборот, извлечения аудио из него (деэмбеддинг).
Удлинители интерфейсов, репитеры
Класс устройств, предназначенных для увеличения расстояния передачи сигнала. Известно, например, что максимальная длина кабеля интерфейса VGA составляет 15 метров, для компонентного сигнала и вовсе всего 5 метров. Увеличение расстояния передачи достигается установкой пары устройств – передатчика и приемника. Передатчик принимает входной сигнал (VGA, composite video, YUV и т.д.) и выдает его через интерфейс, допускающий более длинные линии, скажем, через витую пару. Соответственно, приемник осуществляет обратное преобразование. Помимо увеличения расстояния передачи, удлинители интерфейсов позволяют задействовать имеющуюся инфраструктуру связи для передачи управляющих сигналов, например, передачу сигналов управления конференц-оборудованием по телефонной линии.
— Репитеры просто повторяют сигнал, «обновляя» его мощность в линии.
Масштабаторы
Вторичной функцией масштабаторов является преобразование развертки при переходе, например, с DVI сигнала на аналоговый PAL или NTSC. Масштабаторы находят широкое применение в системах конференц-связи и презентационных системах, а также в охранных системах и для объединения множества «разнокалиберных» видеотрансляций на одном экране.
Специальные AV-устройства
— Устройства гальванической развязки позволяют полностью исключить прямую электрическую связь между устройствами. Гальваническая развязка применяется для исключения помех и для защиты оборудования и людей от действия высоких токов.
— Концентраторы используются для расширения штатных возможностей ввода-вывода системы. Например, USB-концентратор позволяет подключать дополнительные USB-устройства.
— Генераторы тестовых сигналов используются для настройки видеооборудования. Генератор посылает в линию испытательные таблицы, динамические тестовые изображения, опорные сигналы и другие данные, позволяющие оператору произвести точную настройку устройств вывода изображения.
— Аппаратные кодеры и декодеры призваны преобразовывать сигнал из исходного формата (например, HDMI) в формат, пригодный для передачи по каналам связи (например, по локальной сети), и обратно. Подобное коммутационное оборудование широко используется в рекламных системах формата Digital Signage.
— Эмуляторы EDID позволяют сохранять информацию о возможностях дисплея при передаче видеосигнала по протоколам, в которых эта информация потерялась бы, либо при объединении множества видеосигналов в один.
Кабели, разъемы и иное оборудование
Наконец, относительно простое, но не менее важное коммутационное оборудование, оказывающее порой огромное влияние на качество видеосигнала. Неправильный выбор кабельной продукции и разъемов запросто может свести на нет все преимущества дорогого AV-оборудования. К коммутационному оборудованию также можно отнести металлические кабельные лотки для прокладки коммуникаций, кабель-каналы, шкафы оборудования, гофро-шланги и различные кронштейны для крепления.
Вторичные источники питания предназначены для получения напряжения, необходимого для непосредственного питания электронных и других устройств. Предполагается, что вторичные источники в свою очередь получают энергию от первичных источников питания, вырабатывающих электричество — от генераторов, аккумуляторов и т. д. Питать электронные устройства непосредственно от первичных источников обычно нельзя.
Рассмотрим типичные структурные схемы источников питания, получающих энергию от промышленной сети с частотой 50 Гц.
Рассмотрим вначале источник питания без преобразователя частоты, структурная схема которого представлена на рис. 2.71.
Трансформатор предназначен для гальванической развязки питающей сети и нагрузки и изменения уровня переменного напряжения. Обычно трансформатор является понижающим. Выпрямитель преобразует переменное напряжение в напряжение одной полярности (пульсирующее). Сглаживающий фильтр уменьшает пульсации напряжения на выходе выпрямителя. Стабилизатор уменьшает изменения напряжения на нагрузке (стабилизирует напряжение), вызванные изменением напряжения сети и изменением тока, потребляемого нагрузкой.
Рассмотрим источник питания с преобразователем частоты (рис. 2.72).
Затем напряжение передается через трансформатор, выпрямляется и фильтруется. Так как трансформатор в этой схеме работает на повышенной частоте, то его вес и габариты, а также вес и габариты сглаживающего фильтра-2 оказываются очень незначительными. Как и в предыдущей схеме, основная роль трансформатора состоит в гальванической развязке сети и нагрузки. Инвертор, трансформатор и выпрямитель-2 образуют конвертор — устройство для изменения уровня постоянного напряжения.
Необходимо отметить, что в такой схеме инвертор выполняет роль стабилизатора напряжения. В качестве активных приборов в инверторе используются транзисторы (биполярные или полевые). Иногда применяются тиристоры.
В любом случае активные приборы работают в ключевом режиме (например, транзистор или включен и находится в режиме насыщения, или выключен и находится в режиме отсечки), поэтому источники питания с преобразованием частоты называют также импульсными. Однако следует иметь в виду, что и в источниках без преобразования частоты могут использоваться импульсные стабилизаторы, я которых транзисторы работают в ключевом режиме.
Рассматриваемые источники питания широко используются в современных устройствах электроники, в частности в компьютерах. Они обладают, как правило, значительно лучшими технико-экономическими показателями в сравнении с рассмотренными выше источниками без преобразования частоты.
Импульсные источники питания (ИИП) заполонили мир. Кажется, что они применяются везде, полностью вытеснив традиционные. На самом деле, этот вопрос неоднозначный.
В обзоре речь пойдет именно об импульсных блоках питания (ИИП) – преобразователях переменного сетевого напряжения в постоянное. Следует отличать такие устройства от импульсных стабилизаторов (стабилизируют входное постоянное напряжение) и преобразователей DC/AC или AC/AC (например, 12VDC/220 VAC, преобразующих напряжение автомобильной бортсети в 220 вольт), хотя в этих устройствах применяются похожие принципы.
Отличия импульсного блока питания от обычного трансформаторного
Традиционный «трансформаторный» блок питания строится по схеме: трансформатор - выпрямитель с фильтром - стабилизатор выходного напряжения (может отсутствовать). Схема несложна и отработана годами, но у нее есть существенный недостаток – при увеличении мощности опережающими темпами растут габариты и вес.
В первую очередь растут размеры и масса трансформатора. Для повышения тока надо увеличивать сечение обмоток, но главный вклад в массогабаритные характеристики вносит сердечник. Не вдаваясь в физические подробности, можно отметить, что эту проблему можно обойти, увеличив частоту, на которой происходит трансформация. Чем выше частота, тем меньшим сердечником можно обойтись. Не зря в авиации и кораблестроении используются электросети на частоту 400 Гц. Многие элементы получаются гораздо легче и компактнее. Но в быту негде взять повышенную частоту. 50 Гц в розетке – все, что доступно потребителю. Поэтому блоки питания на большие токи строят по другому принципу. В них переменное напряжение сети выпрямляется, а затем из него «нарезаются» импульсы более высокой (до нескольких десятков килогерц) частоты. За счет этого трансформатор получается маленьким и легким без потери мощности. Это главное, чем отличается любой импульсный блок питания от обычного.
Еще один источник повышенных размеров и габаритов – стабилизатор. В традиционных БП применяются линейные стабилизаторы. Они требуют повышенного входного напряжения, а разница между входом и выходом, умноженная на ток нагрузки, бесполезно рассеивается. Это ведет к дополнительному увеличению массы трансформатора, который должен обеспечивать необходимый бесполезный запас по мощности, а также требует больших и тяжелых теплоотводящих радиаторов. В ИИП это делается по другому принципу. Напряжение стабилизируется методом изменения ширины импульсов. Это позволяет повысить КПД и не требует отвода излишнего тепла в таком количестве.
В видео-сравнение линейного и импульсного блоков питания.
К недостаткам импульсников можно отнести усложненную схемотехнику и повышенные требования к надежности элементов. Эти минусы сходят на нет с ростом мощности. Считается, что для выходных токов до 2..3 ампер подходят трансформаторные блоки с линейными стабилизаторами, а чем выше нагрузка, тем ярче начинают проявляться преимущества ИИП. При токах от 10 А обычно о трансформаторных БП речь уже не идет.
Среди минусов импульсных источников также надо упомянуть генерацию помех в питающую сеть и «замусоренность» выходного напряжения высокочастотными составляющими.
Какие бывают виды и где применяются
Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:
- однополярные с одним уровнем напряжения;
- ондополярные с несколькими уровнями напряжения;
- двухполярные.
Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.
Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:
- Нестабилизированные источники. У них выходное напряжение зависит от нагрузки. Могут быть применены для питания оконечных устройств аудиоаппаратуры (усилители и т.п.).
- Стабилизированные источники. У таких устройств от нагрузки могут не зависеть напряжение, ток или и то, и другое. Источники со стабилизированным напряжением используются, например, в качестве БП для компьютеров и серверов, или для заряжания кислотно-свинцовых аккумуляторов. Стабилизированный ток подойдет для зарядных устройств для других типов АКБ.
- Регулируемые источники. У них уровень выходного напряжения и тока можно выставлять в определенных пределах в зависимости от потребности. Такие устройства используются в качестве лабораторных источников питания.
Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.
Также можно разделить ИИП по схемотехнике:
- с импульсным трансформатором;
- с накопительной индуктивностью.
В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.
Структурная схема и описание работы основных узлов ИБП
Структурная схема импульсника сложнее, чем у трансформаторного источника. Для понимания принципа работы импульсного блока питания в целом, надо разобрать функционирование каждого узла в отдельности.
Плавкий 5-амперный предохранитель перегорает при превышении номинального тока при аварийной ситуации в БП. Для защиты от повышения напряжения предусмотрен варистор V1. В штатном режиме он не влияет на работу устройства. При скачке в сети от открывается, его сопротивление резко увеличивается, ток через варистор возрастает. Это вызывает перегорание предохранителя.
Терморезистор с отрицательным коэффициентом сопротивления THR1 сначала имеет большое сопротивление и ограничивает ток, идущий на зарядку конденсаторов фильтра высоковольтного выпрямителя. Потом термистор прогревается проходящим через него током, его сопротивление падает, но к тому моменту емкости уже будут заряжены. Конденсаторы CX1, C11, C12, CY3 и синфазный дроссель FL1 защищают сеть от синфазных и дифференциальных помех.
Высоковольтный выпрямитель и фильтр
Высоковольтный выпрямитель обычно строится по традиционной мостовой двухполупериодной схеме и особенностей не имеет. Если в преобразователе применяется полумостовая схема, то фильтр выполняется из двух емкостей, включенных последовательно – так формируется средняя точка с напряжением, равным половине питания.
Иногда параллельно конденсаторам ставят резисторы. Они нужны для разряда емкостей после выключения питания.
Инвертор
Преобразование постоянного напряжения в импульсное происходит с помощью инвертора на полупроводниковых ключах (часто на транзисторах). Открываясь и закрываясь, ключи подают в обмотку импульсы напряжения. Таким методом получается своеобразное переменное напряжение (однополярное), которое может быть трансформировано в напряжение другого уровня обычным способом.
Самая простая схема преобразователя постоянного напряжения в импульсное – однотактная. Для ее реализации нужен минимум элементов. Недостаток такого узла – при росте мощности резко растут габариты и масса трансформатора. Связано это с принципом действия такого преобразователя. Он работает в два цикла – во время первого транзистор открыт, энергия запасается в индуктивности первичной обмотки. Во время второго запасенная энергия отдается в нагрузку. Чем больше мощность, тем больше должна быть индуктивность, тем больше должно быть витков в первичной обмотке (соответственно, увеличивается количество витков во вторичных обмотках).
От этого недостатка свободна двухтактная схема со средней точкой (пушпульная). Первичная обмотка трансформатора разделена на две секции, которые через ключи поочередно подключаются к минусовой шине. На рисунке красной стрелкой показано направление тока для одного цикла, а красной – для другого. Минусом является необходимость иметь удвоенное количество витков в первичке, а также наличие выбросов в момент коммутации. Их амплитуда может достигать двойного значения от напряжения питания, поэтому надо применять транзисторы с соответствующими параметрами. Сфера применения такой схемы – низковольтные преобразователи.
Выбросы отсутствуют, если инвертор выполнен по мостовой схеме. Из четырех транзисторов составлен мост, в диагональ которого включена первичная обмотка трансформатора. Транзисторы открываются попарно:
- первый цикл – верхний левый и нижний правый;
- второй цикл – нижний левый и верхний правый.
Обмотка подключается к плюсу питания то одним выводом, то другим. Минусом является применение 4 транзисторов вместо двух.
Компромиссным вариантом считается применение полумостовой схемы. Здесь коммутируется один конец первичной обмотки, а второй подключен к делителю из двух емкостей. В этой схеме также отсутствуют выбросы напряжения, но применено всего два транзистора. Недостаток такого решения – к первичной обмотке прикладывается только половина питающего напряжения. Вторая проблема – при создании мощных источников емкость конденсаторов делителя растет, и их стоимость становится нецелесообразной.
Если ИИП построен по схеме с регулировкой параметров методом широтно-импульсной модуляции (ШИМ), то в большинстве случаев ключи приводятся в действие не напрямую от микросхемы ШИМ, а через промежуточный узел – драйвер. Связано это с повышенными требованиями к прямоугольности управляющих сигналов.
В схемах всех преобразователей используются как полевые, так и биполярные транзисторы, а также IGBT, сочетающие свойства обоих типов.
Выпрямитель
Трансформированное во вторичные обмотки напряжение надо выпрямить. Если требуется выходное напряжение выше +12 вольт, можно применять обычные мостовые схемы (как и в высоковольтной части).
Если напряжение низкое, то выгодно применять двухполупериодные схемы со средней точкой. Их преимущество в том, что падение напряжение происходит только на одном диоде для каждого полупериода. Это позволяет сократить количество витков в обмотке. Для этой же цели используют диоды Шоттки и сборки на них. Недостаток такого решения – более сложная конструкция вторичной обмотки.
Фильтр
Выпрямленное напряжение надо отфильтровать. Для этой цели применяются как традиционные емкости, так и индуктивности. Для используемых частот преобразования дроссели получаются небольшими, легкими, но работают эффективно.
Цепи обратной связи
Цепи обратной связи служат для стабилизации и регулировки выходного напряжения, а также для ограничения тока. Если источник нестабилизированный, у него эти цепи отсутствуют. У устройств со стабилизацией тока или напряжения эти цепи выполняются на постоянных элементах (иногда с возможностью подстройки). У регулируемых источников (лабораторных и т.п.) в обратную связь включены органы управления для оперативной регулировки параметров.
У компьютерного БП дополнительно имеется схема управления и формирования служебных сигналов (Power_good, Stand By и т.д.).
Как устроен ШИМ контроллер
В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.
Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия
шим контроллера блока питания.
Назначение выводов микросхемы указано в таблице.
Назначение | Обозначение | Номер вывода | Номер вывода | Обозначение | Назначение | |
---|---|---|---|---|---|---|
Прямой вход усилителя ошибки 1 | IN1 | 1 | 16 | IN2 | Прямой вход усилителя ошибки 1 | |
Инверсный вход усилителя ошибки 1 | IN1 | 2 | 15 | IN2 | Инверсный вход усилителя ошибки 1 | |
Выход обратной связи | FB | 3 | 14 | Vref | Выход опорного напряжения | |
Управление временем задержки | DTC | 4 | 13 | ОТС | Выбор режима работы | |
Частотозадающий конденсатор | C | 5 | 12 | VCC | Напряжение питания | |
Частотозадающий резистор | R | 6 | 11 | С2 | Коллектор 2-го транзистора | |
Общий провод | GND | 7 | 10 | E1 | Эмиттер 1-го транзистора | |
Коллектор 1-го транзистора | C1 | 8 | 9 | E2 | Эмиттер 2 -го транзистора |
Частоту генератора задают элементы, подключаемые к выводам 5 и 6. Напряжением на выводе 4 ограничивают ширину выходного импульса. Это необходимо для исключения «перехлеста» открытия транзисторов чтобы избежать ситуации, когда оба ключа оказываются открыты. Через этот вывод также можно организовать мягкий пуск БП. Вывод 13 служит для перевода микросхемы в однотактный режим. Если его подключить к общему проводу, импульсы на выводах обоих ключей станут одинаковыми. На выводе 14 постоянно присутствует образцовое напряжение, равное +5 вольтам. Оно может быть использовано в любых схемотехнических целях.
Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.
В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.
Для наглядности рекомендуем серию тематических видеороликов.
Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.
Читайте также: