Fc коммутатор что это
Краткий общий обзор технологии Fibre Channel. Если говорить кратко, Fibre Channel представляет собой сверхвысокоскоростную (до 1 Гбит/с и выше) схему полнодуплексной передачи данных с малой задержкой (10-30 мкс) на расстояния до 10 км.
Краткий общий обзор технологии Fibre Channel.
Если говорить кратко, Fibre Channel представляет собой сверхвысокоскоростную (до 1 Гбит/с и выше) схему полнодуплексной передачи данных с малой задержкой (10—30 мкс) на расстояния до 10 км. Она в равной мере может использоваться и как технология ввода/вывода, и как технология локальной сети.
В названии технологии («волоконный канал», как можно было бы перевести Fibre Channel на русский язык) оба слова не вполне соответствуют действительности. Физической средой передачи может быть не только оптическое волокно, но и коаксиал, и витая пара, а архитектура представляет собой смесь канальной и сетевой топологии!
УРОВНЕВАЯ МОДЕЛЬ
Уровень FC-0 описывает физические характеристики и возможные типы интерфейсов и среды передачи, в том числе кабели, соединители, излучатели, передатчики и приемники. FC-1 определяет схему кодирования и декодирования сигнала 8B/10B. FC-2 выполняет основные функции Fibre Channel, в том числе сигнализацию, т. е. установление соединения между отправителем и получателем; сегментацию, сборку и упорядочивание передаваемых кадров; контроль потоков с помощью схемы скользящего окна, обнаружение и исправление ошибок; реализацию сервисных классов. Все вместе эти три уровня образуют так называемый физический уровень Fibre Channel (Fibre Channel Physical, FC-PH).
FC-3 описывает общие процедуры (хотя, наверно, их было бы правильнее назвать специальными) для таких особых ситуаций, как запись данных с чередованием на дисковый массив или многоадресная рассылка через видеосервер. FC-4 обеспечивает преобразование различных сетевых протоколов и приложений для их реализации поверх Fibre Channel. Как можно видеть из Рисунка 1, Fibre Channel способен поддерживать самые разные по своей природе сетевые протоколы, интерфейсы ввода/вывода и приложения.
ТОПОЛОГИЯ
Простейшей топологией является, очевидно, «точка-точка». Она состоит из двух устройств Fibre Channel и прямого соединения между ними. Одно волокно связывает приемник на одном устройстве с передатчиком на другом устройстве, а второе — передатчик с приемником. (В этой статье под волокном мы будем подразумевать как оптическое волокно, так и отдельную витую пару и жилу коаксиального кабеля.) Оба устройства могут, естественно, использовать всю пропускную способность соединения, но при этом они должны работать на одной скорости.
Наиболее распространенной и вместе с тем наиболее сложной топологией является арбитражная петля. Она позволяет подключить по кольцу до 127 портов без использования коммутатора. Однако, в отличие от двух других топологий, пропускная способность является разделяемой, т. е. в один конкретный момент времени только два устройства могут взаимодействовать друг с другом. В случае конкуренции за доступ к среде передачи между несколькими устройствами арбитраж выигрывает устройство с наименьшим адресом. Все устройства в петле должны функционировать на одной скорости. Петля может подключаться к порту коммутатора, но только к одному.
За неимением лучшего русскоязычного термина мы будем называть топологию Fabric коммутирующей структурой. Коммутируемая топология предусматривает использование коммутатора(-ов), но позволяет за счет этого подключить свыше 16 млн устройств. К коммутатору могут подключаться устройства с разными скоростями передачи и по разным физическим средам.
ТИПЫ ПОРТОВ
В зависимости от типа устройства, своего назначения и поддерживаемой топологии порты делятся на несколько типов. Порт Fibre Channel на конечном устройстве (сервере, дисковом массиве, принтере и т. п.) называется «узловой порт» (Node Port, N_Port). Порт на коммутаторе, к которому подключается узловой порт, называется «коммутирующий порт» (Fabric Port, F_Port). Если же эти порты могут подключаться к арбитражной петле, то они маркируются дополнительно буквой L от английского loop, т. е. «петля». Таким образом, соответствующие порты на узле и коммутаторе будут обозначаться как NL_Port и FL_Port.
Помимо F_Port коммутатор может иметь еще и порт расширения (Expansion Port, E_Port). Этот порт предназначен для подключения одного коммутатора к другому. Если к порту расширения может быть подключен не только другой коммутатор, но и узел, то такой порт именуется универсальным портом (Generic Port, G_Port). При условии, что он поддерживает арбитражную петлю, универсальный порт может маркироваться как GL_Port.
РАЗНОВИДНОСТИ ОБОРУДОВАНИЯ
Помимо разделения пропускной способности арбитражная петля имеет и другие недостатки. В частности, при отказе адаптера на каком-либо устройстве или разрыве в соединяющем кабеле петля оказывается полностью неработоспособной. Кроме того, при добавлении нового устройства вся петля должна быть инициализирована заново (чтобы подключенное устройство могло получить адрес), причем эта процедура может занимать достаточно много времени.
Эти проблемы можно решить за счет использования концентраторов Fibre Channel. Кроме того, физическая топология «звезда» (хотя логически это по-прежнему кольцо), как правило, гораздо удобнее с точки зрения подключения узлов, чем кольцо. Обычно концентраторы имеют не более 10 портов. Однако это ограничение легко преодолеть за счет каскадного подключения концентраторов. Правда, как показывает практика, оптимально арбитражная петля функционирует, когда число узлов не превышает 30.
Отказоустойчивость концентраторов к разрывам петли достигается за счет применения схемы обхода портов (Port Bypass Circuit, PBC). PBC позволяет автоматически обнаружить наличие узла и включить его в петлю. Аналогично PBC обнаруживает отказ узла и исключает его из петли (PBC также может быть реализована на уровне внутренней шины дискового массива). Наиболее продвинутые концентраторы поддерживают удаленное управление и другие развитые функции.
Как и в случае других сетевых технологий, коммутаторы Fibre Channel являются существенно более дорогими устройствами, чем концентраторы Fibre Channel. В отличие от концентраторов, они позволяют предоставить узлу выделенную пропускную способность и, как уже упоминалось, создавать топологии с несравнимо большим числом узлов (224). Кроме того, коммутаторы могут иметь порты с поддержкой разных скоростей и сред передачи.
Коммутатор Fibre Channel, по сути, объединяет два типа коммутаторов в одном устройстве, так как поддерживает коммутацию как с установлением соединения, так и без оного (условно говоря, он обладает чертами как телефонного коммутатора каналов, так и локально-сетевого коммутатора кадров). Некоторые производимые коммутаторы осуществляют только коммутацию каналов (как первый появившийся на рынке коммутатор компании Ancor Communications), другие же — только коммутацию кадров.
Коммутаторы Fibre Channel просты в установке и использовании благодаря самоконфигурации и самоуправлению. При подключении узла к коммутатору он регистрируется на коммутаторе и согласует с ним взаимоприемлемые параметры. При подключении коммутатора к коммутатору они определяют конфигурацию и адреса. Все операции осуществляются автоматически. В случае универсального порта (GL_Port) коммутатор также сам устанавливает, к чему он подключен — к другому коммутатору, к петле или к узлу.
Однако для организации взаимодействия между устройствами в нескольких петлях дешевле использовать не коммутатор, а коммутирующий (или гибридный) концентратор. Наиболее редко встречающимся устройством является маршрутизатор Fibre Channel (хотя, возможно, более правильно было бы называть его мостом). Он позволяет подключить сеть Fibre Channel к другой среде передачи, например к SCSI или Ethernet.
До сих пор мы говорили о, так сказать, структурообразующих устройствах Fibre Channel. Однако самыми распространенными устройствами являются, естественно, адаптеры Fibre Channel. Без них никакой узел не смог бы взаимодействовать с коммутирующей структурой Fibre Channel. Одни и те же адаптеры могут служить для соединения как с локальной сетью (другими узлами), так и с периферией. Это позволяет, в частности, сократить число необходимых слотов ввода/вывода. Большинство адаптеров выпускается для шины PCI. Часто вместе с адаптерами используются «гигабитные переходники» (GigaBit Interface Converter). Они служат для преобразования оптических сигналов в электрические и обратно.
КЛАССЫ СЕРВИСА
Коммутаторы и узлы могут поддерживать один или более видов сервиса. Никакой ручной настройки не требуется, так как общие поддерживаемые коммутаторами и узлами сервисы определяются во время процедуры регистрации. Благодаря сервисам Fibre Channel может поддерживать множество различных приложений. Сервисы делятся на классы. Основными являются Классы 1, 2 и 3. Всего же Fibre Channel имеет 6 или 7 разных видов сервиса (такая неопределенность связана с тем, что Класс 5, видимо, так и не будет определен, а Класс Intermix не имеет собственного номера и часто не рассматривается как отдельный вид сервиса).
Класс 1 соответствует сервису с установлением соединения и гарантированной доставкой. Соединение через коммутирующую структуру (совокупность коммутаторов) устанавливается за несколько микросекунд. Соединение является выделенным, так что никакое иное устройство не может связаться с портами получателя и отправителя, пока соединение не будет закрыто. Гарантированная доставка обеспечивается за счет подтверждения получения. Наилучшим образом этот класс сервиса подходит для обмена большими объемами данных, в частности для резервного копирования, графических приложений и взаимодействия между суперкомпьютерами.
Класс 2 представляет сервис без установления соединения, но с гарантированной доставкой (как и в предыдущем случае, с помощью подтверждений). Каждый поступающий кадр коммутируется независимо от остальных, а конечные порты могут передавать или получать кадры от нескольких других узлов. По сути, коммутатор мультиплексирует трафик от узловых портов, поэтому этот класс сервиса иногда называют мультиплексным. Кадры могут доставляться не в том порядке, в каком они были отправлены. Наилучшим образом этот класс сервиса подходит для передачи нерегулярного (пакетного) или интерактивного трафика по типу трафика локальных сетей.
Класс 3 аналогичен Классу 2, за исключением того, что он не гарантирует доставку кадров (подтверждения получения). Он позволяет добиться несколько большей реальной пропускной способности за счет отсутствия подтверждений. По сути, он является аналогом передачи дейтаграмм. Наилучшим образом этот класс сервиса подходит для многоадресной и широковещательной рассылки.
Остальные классы часто не выделяются в самостоятельные, а считаются подвидами перечисленных. Класс Intermix представляет собой комбинацию Класса 1 и Класса 2 (3). Он позволяет передавать кадры Класса 2 или 3, когда кадры Класса 1 не передаются, причем кадры Классов 2 или 3 вовсе не обязательно должны быть адресованы тому же получателю, что и кадры Класса 1.
Как и Класс 1, Класс 4 предполагает установление соединения, гарантию доставки, фиксированную задержку, соблюдение исходного порядка кадров. Однако он требует резервирования лишь части пропускной способности, т. е. узловой порт может иметь и другие соединения. Узел может зарезервировать до 256 соединений Класса 4 одновременно, причем каждое из них может иметь свои параметры QoS. Иногда этот класс сервиса называется изохронным. Наилучшим образом он подходит для передачи цифрового видео и аудио.
Как Intermix и Класс 4, Класс 6 представляет собой разновидность Класса 1. Он используется, когда узлу необходимо передать кадры сразу нескольким узлам одновременно, т. е. в случае многоадресной рассылки. Для этого узел устанавливает выделенное соединение с сервером многоадресной рассылки, адрес которого фиксирован (FFFFF5 в шестнадцатеричном формате), а тот уже берет на себя задачу тиражирования и пересылки кадров всем получателям в многоадресной группе.
ХАРАКТЕРИСТИКИ FIBRE CHANNEL
Завершая описание Fibre Channel, нельзя не упомянуть основные характеристики этой технологии. Fibre Channel позволяет поддерживать самые разные скорости — от 133 Кбит/с до 4,252 Мбит/с и даже более. Одна из целей разработки Fibre Channel состояла, в частности, в поддержке HIPPI на 100 Мбайт/с. Поэтому основной скоростью передачи данных — так называемой полной скоростью — является 100 Мбайт/с (остальные скорости указываются часто в долях от основной скорости — одна восьмая, четвертая, вторая, двойная, учетверенная). Однако, с учетом накладных расходов на кодирование 8B/10B, заголовки кадров и т. д., скорость передачи собственно битов составляет 1,063 Мбит/с. Таким образом, производители приводят, как правило, две скорости — «полезную», в байтах за секунду, и «чистую», в битах за секунду.
Поддерживаемые расстояния и скорости передачи зависят от типа используемой среды передачи и генераторов сигнала. Как уже упоминалось, Fibre Channel может функционировать как по оптической, так и по медной среде передачи, при этом одно волокно предназначено для передачи сигнала, а другое — для приема. В случае оптики это может быть многомодовое волокно 50/125 мкм и 62,5/125 мкм и одномодовое волокно с соединителями SC. В случае меди это может быть коаксиальный кабель, в частности видеокабель с соединителями TNC (приемник) и BNC (передатчик), а также экранированная витая пара с соединителями DB-9.
Наибольшие скорости (до 4 Гбит/с) и расстояния (до 10 км) достигаются в случае применения одномодового оптического волокна и низкочастотных лазеров. Многомодовое волокно способно поддерживать такие же скорости, но на гораздо меньших расстояниях, в частности 100 Мбайт/с на расстояниях до 500 м в случае многомодового волокна 50/125 мкм с высокочастотным лазером. Медная среда передачи позволяет поддерживать скорости не выше основной на небольших расстояниях (100 м и менее).
ПРОМЕЖУТОЧНЫЙ ФИНИШ
Хотя и не настолько сложная как ATM, технология Fibre Channel описывается несколькими стандартами (некоторые даже считают, что расширение ее возможностей и, как следствие, ее усложнение — может отрицательно сказаться на ее перспективах). Очевидно, что в одной небольшой ознакомительной статье можно дать только общее описание технологии, что мы и постарались сделать. Однако многие важные подробности пришлось опустить, в частности, как осуществляется арбитраж и управление потоками, что собой представляют кадры Fibre Channel и кодирование 8B/10B и т. д. Поэтому мы намерены продолжить рассмотрение этой темы в следующем номере.
Сетевые компьютерные системы, как и глобальные программные решения, используемые корпорациями, становятся все сложнее. Расширение их структуры обуславливает потребность в появлении технологии, обеспечивающей эффективное и надежное хранение информации. Подобным решением стали сторедж-системы, представляющие пользователям широкий функционал масштабирования и обеспечивающие высокую производительность. Именно они открыли доступ к использованию сторонних носителей, гарантируя при этом не только безопасность размещения, но и высокоскоростное чтение данных. Разработка и внедрение стандартов FC-AL (Fibre Channel — Arbitrated Loop) и SAN (Storage Area Network) — революционное для data-driven событие, заметно повлиявшее на дальнейшее развитие технических возможностей.
Общее представление
С технической точки зрения речь идет о решении, позволяющем подключать внешние накопители и устройства различных форматов, распознаваемые операционной системой в качестве локальных объектов. Использование подобных инструментов не только снижает совокупные издержки, но и обеспечивает условия, необходимые для организации надежного и безопасного хранилища информации.
Характеристика, предложенная международной ассоциацией, определяет, что сеть хранения данных SAN — это коммуникационная система, основной целью функционирования которой является обмен информацией между съемными БД и операционкой компьютера. Коммутаторы обеспечивают связь между устройствами, создавая полноценный пропускной канал, и отвечают за поддержание управленческого интерфейса, объединяющего сторедж и ОС.
История создания и развития
Технический прогресс обусловил формирование двух решений: серверов Network Attached Storage, или NAS, применяемых для размещения информации на файловом уровне, и сетевых хранилищ SAN, поддерживающих обмен в блочном формате. Для разделения традиционных и модернизированных систем в обращение был введен еще один термин — DAS, или Direct, обозначающий прямое подключение.
Последовательное появление на рынке указанных решений является отражением цикла эволюции программных продуктов, взаимодействующих с данными и байтами носителей, в которых они записаны. На ранних этапах развития приложения самостоятельно «читали и записывали» блоки, затем были внедрены драйверы, являющиеся частью ОС. Современная цепь объединяет три звена: генерацию массива Redundant Array of Independent Disks, обработку интерпретирующих метаданных, а также сервисы, передающие их приложению. Отличие между DAS, SAN и NAS сводится к специфике реализации указанных элементов: в первом случае конфигурация отвечает только за хранение и доступ, тогда как остальной функционал реализуется на серверной стороне; второй формат предусматривает перенос RAID в зону ответственности сети; третий — требует только лишь поддержки сервиса, поскольку файловая информация также переносится в систему.
Возникновению СХД (системы хранения данных) способствовала разработка протокола FC, принятого в 1994 году в качестве стандарта ANSI. В дальнейшем его место занял Ethernet, и, как следствие, массовое распространение получили новые сетевые конфигурации, включая IP-SAN.
- Изменение конфигураций хранилищ не затрагивает работу серверов и сервисов
- Расстояние между устройствами позволило строить катастрофоустойчивые хранилища, расположенные на удалённых площадках
- Любой сервер может получить доступ к любому устройству хранения в SAN сети
Brocade 6505
Fibre channel, как сетевой протокол, состоит из нескольких уровней:
FC-0 Физический: в котором описывается среда передачи данных, характеристики кабелей, трансиверов, HBA. Физические и электрические характеристики, скорость передачи данных.
FC-1 Кодирование: описывает как данные будут кодироваться/декодироваться (8/10 или 64/66) для передачи
FC-2 Кадрирование и сигнализация: определяет структуру передаваемой информации, занимается контролем целостности данных и управляет непосредственно передачей данных. На этом уровне происходит разбиение потока данных на кадры и сборка кадров. Определяет правила передачи данных между двумя портами, классы обслуживания.
FC-3 Общий для узла служб: заложен для нового функционала, который может быть реализован в протоколе, но на данный момент этот уровень не используется
FC-4 Отображения протоколов: описывает протоколы, которые для своей работы могут использоваться FC: проброс SCSI (SCSI-FCP) или TCP/IP (FC-LE)
Формат фрейма Fibre Channel
Последовательность представляет собой набор кадров, которые передаются из одной точки в другую. Для исправления возможных ошибок каждый кадр содержит уникальный счетчик последовательности. Исправление ошибок осуществляется протоколом более высокого уровня, обычно на уровне FC-4. Несколько последовательностей составляют обмен (exchange). Обмены представляют собой последовательности двусторонних направлений; т.е. в обмен входят последовательности данных, передающихся в разных направлениях, хотя каждая последовательность передается только в одном направлении. При каждом обмене только одна последовательность может быть активна в текущий момент времени. Но, так как одновременно могут быть активны несколько обменов, различные последовательности из этих обменов также могут быть активны одновременно. Каждый обмен выполняет одну функцию, например реализует команду SCSI Read.
Brocade DCX 8510-4 Backbone
Типы портов:
Порты узлов:
N_Port (Node port), порт устройства с поддержкой топологии FC-P2P («Точка-Точка») или FC-SW (с коммутатором).
NL_Port (Node Loop port), порт устройства с поддержкой топологии FC-AL (arbitrated loop — управляемая петля).
Порты коммутатора/маршрутизатора (только для топологии FC-SW):
F_Port (Fabric port), порт «фабрики» (switched fabric — коммутируемая связная архитектура). Используется для подключения портов типа N_Port к коммутатору. Не поддерживает топологию петли.
FL_Port (Fabric Loop port), порт «фабрики» с поддержкой петли. Используется для подключения портов типа NL_Port к коммутатору.
E_Port (Expansion port), порт расширения. Используется для соединения коммутаторов. Может быть соединён только с портом типа E_Port.
EX_port порт для соединения FC-маршрутизатора и FC-коммутатора. Со стороны коммутатора он выглядит как обычный E_port, а со стороны маршрутизатора это EX_port.
TE_port (Trunking Expansion port (E_port)) внесен в Fibre Channel компанией CISCO, сейчас принят как стандарт. Это расширенный ISL или EISL. TE_port предоставляет, помимо стандартных возможностей E_port, маршрутизацию множественных VSANs (Virtual SANs). Это реализовано применением нестандартного кадра Fibre Channel (vsan-тегирование).
Общий случай:
U_Port (Universal port), порт, который ещё не определился в каком режиме он работает. Обычно после инициализации становится F_Port или E_Port.
L_Port (Loop port), любой порт устройства с поддержкой топологии «Петля» — NL_port или FL_port.
G_port (Generic port), порт с автоопределением. Автоматически может определяться как порт типа E_Port, N_Port, NL_Port.
SAN состоит из:
- Узлы, ноды
- Дисковые массивы (системы хранения данных)
- Серверы
- Ленточные библиотеки
- Коммутаторы (и маршрутизаторы в сложных и распределённых системах)
- Директоры — многопортовые модульные коммутаторы с высокой степенью доступности.
- Выделенные коммутаторы (standalone switches) — коммутаторы с фиксированным количеством портов.
- Стэкируемые коммутаторы (stackable switches) — коммутаторы, имеющие дополнительные высокопроизводительные порты для связи независимых шасси между собой.
- Встраиваемые коммутаторы (embedded switches) — коммутаторы, встраиваемые в блейд-корзину, где есть разделение портов на функции (порты, предназначенные для подключения blade-серверов, не могут быть использованы для межкоммутаторных соединений).
Он обеспечивает плавный переход между FC-0 и FC-1, занимаясь:
- Encoder / Decoder — обеспечивает кодирование каждых 8 бит передаваемых данных в 10-битное представление. И декодирование обратно принимаемых данных.
- SERDES (Serializer / Deserializer) — преобразует параллельный поток 10-битных порций данных в последовательный поток 10-битных порций данных.
- Transceiver — преобразует электрические импульсы в световые сигналы.
И раз уж на картинке выше у нас есть SFP:
SFP — это отдельные модули, необходимые для подключения кабеля к порту, но о них подробнее, о их типах и различиях я буду говорить в следующих материалах.Казалось бы, зачем тратиться на закупку и обслуживание FC SAN, если можно просто поставить сервер со SCSI или SAS — массивом и обмениваться данными через Ethernet? Бесспорно можно, но в момент производительность гигабитной сети исчерпается, «окна» резервного копирования перестанут укладываться в нерабочее время, пользователи забросают жалобами на низкую производительность сети.
Высочайшая производительность (использование оптических каналов, нет лишних серверов, прямой доступ к любому дисковому массиву) Отказоустойчивость (выход из строя грамотно спроектированной сети практически невероятен)
Преимущества FC SAN:Традиционно сеть компании выглядит приблизительно следующим образом:
Это и дополнительные «точки отказа», и высокая стоимость обслуживания, и зависимость производительности дискового массива от мощности сервера.
Использование специализированной сети хранения позволяет полностью отказаться от промежуточных серверов и скоммутировать все сервера и системы хранения \ архивирования данных в единую среду.
Преимущества SAN на основе FC: высочайшая производительность, низкая чувствительность к отказам отдельных элементов, удобство расширения, дешевизна при использовании на средних и больших объектах.
Подбор оборудования для Fibre Channel SAN и внедрение системы на предприятии — непростая задача, нужно учесть огромное число различных факторов. Какой эффект Вы рассчитываете получить от внедрения SAN? Какие задачи она будет решать сегодня и какие — в перспективе? Каков объем хранимых данных, какие требования будут предъявлены в пропускной способности каналов, как долго должна храниться информация? Отдать ли предпочтение готовому решению от одного из мировых производителей или создать свою сеть с нуля?
Хотя от ответа на эти вопросы и зависит конкретный набор закупаемого оборудования и ПО, для построения FC SAN потребуются следующие элементы:
- FC хост — адаптеры для серверов
- Дисковые массивы или ленточные накопители с FC
- (как правило, от 2 шт.)
- Интерфейсные мосты (опционально)
FC хост — адаптеры:
Хост — адаптер представляет собой плату с припаянным к ней SFP модулем, предназначенную для преобразования оптического сигнала в «понятный» операционной системе формат. Ассортимент FC на рынке велик и разнообразен, основные игроки на нем — Qlogic, Emulex и ATTO.
Основные отличия одного от другого:
— Интерфейс подключения (PCIe, PC, PCI)
— Количество (1–4)
— Тип FC (1Gbit, 2Gbit, 4Gbit)Отдельно стоит упомянуть об устройстве ATTO Celerity , единственном на сегодняшнем рынке FC хост — адаптере с интерфейсом PCI.
Дисковые массивы представляют собой стоечные устройства , емкостью до нескольких терабайт и снабженые встроенными функциями для защиты данных от любых неприятностей — отключения питания, выхода из строя одного или нескольких накопителей, потери работоспособности отдельных своих компонентов.
Среди известных производителей можно указать PetaStor и Infortrend.
Дисковый массив Infortrend
Дисковые массивы имеют множество параметров, мы укажем только самые важные из них:— Тип (, , )
— Тип дисков (SATA, FC, SCSI, SAS)
— Количество дисков (до 24)
— Количество (как правило, до 4)
— Объем (до 4Gb)
— Тип процессора
— Поддерживаемые уровни RAID
— Наличие дублированных компонентов (блоков питания и охлаждения, контроллеров )
— Дополнительные возможности (встроенная поддержка snapshot’ов )Ленточные накопители давно и прочно заняли лидирующие позиции в области долговременного хранения информации. Их задача — хранить максимально возможный объем данных на протяжении максимально долгого времени и, естественно, с минимальными затратами.
Ленточная библиотека MSL6000
Основные характеристики ленточных библиотек:
— Тип используемых картриджей
— Количество картриджей
— Количество приводов
— Количество хост — каналов
— наличие дублированных компонентовFC коммутаторы выполняют те же функции, что и обычные Ethernet свичи и работают по аналогичным принципам. Одним из ведущих производителей коммутаторов является компания Qlogic
Коммутатор Qlogic SanBox 9000
Отдельного внимания заслуживает комутатор Director — класса QLogic SANbox 9000. Представьте себе стоечный коммутатор 4U, позволяющий, в зависимости установленных блейдов, работать с интерфейсами 4GB Fibre Channel, iSCSI и Infiniband и расширяющийся до 256 FC портов!
Читайте также: