Esp8266 подключение к wifi
Программирование по порядку.
В этом скетче модуль пытается подключится к точке доступа и при не удачной попытке сам становится точкой доступа.
Здравствуйте. Пример хороший, но работает не полностью. К точке доступа вифи подключается и отключается (т.к. срабатывает режим энергопотребления, т.к. нет данных для передачи) и в итоге свисток переходит в режим точки доступа
Вот этого не понял. Откуда вы взяли, что срабатывает режим энергосбережения? Что вы видите в терминале при загрузке?
Так и не подскажешь, что там у вас происходит. В терминале, что пишет при загрузке?
Либо не правильно установлена arduino ide и поддержка платы. Либо Путь к файлу скетча содержит русские буквы.
Конечно нельзя делать сети с одинаковыми именами и тем более паролями.
Поставьте два роутера рядом и сделайте у них одинаковые настройки. Что случится?
В алгоритме сделано так, чтобы он создавал сеть только тогда, когда не подключается к вайфаю.
Так почему же он ее созадет?
Если алгоритм мой и не исправлен, то такого быть не может (если только не баг). Единственный случай если вы зададите имя AP такое же как вашего роутера и такой же пароль.
та же беда. как решили проблему?
добрый день
помогите пожалуйта
у меня при компеляции выскакивает такая ошибка
C:\Program Files (x86)\Arduino\libraries\ESP8266WiFi\src/ESP8266WiFiType.h:26:19: fatal error: queue.h: No such file or directory
А подскажите, в чём хитрость поднимать АР функцией типа bool, а не void?
Конечно можно и void иногда требуется поднять флаг и использовать его дальше в коде, но не в этом случае.
Для платы вы загружаете ядро(пакет) это стандартный набор библиотек для этой платы. То есть вам не нужно искать и устанавливать эту библиотеку дополнительно.
У меня плата UNO R3 + WIFI. Это как UNO с подключённым модулем ES8266.
Подскажите пожалуйста. Почему модуль не меняет имя и пароль у меня, при использовании вашей проги. И каким способом выбирается ip адресс?
Добавить комментарий Отменить ответ
Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.
Модуль ESP-01 с чипом ESP8266 предназначен для связи устройства с беспроводными сетями по WiFi.
Видеообзор
Общие сведения
ESP-01 — плата-модуль WiFi на базе популярного чипсета ESP8266EX . На борту платы находится микросхема Flash-памяти объёмом 2 МБ, чип ESP8266EX, кварцевый резонатор, два индикаторных светодиода и миниатюрная антенна из дорожки на верхнем слое печатной платы в виде змейки. Flash-память необходима для хранения программного обеспечения. При каждом включении питания, ПО автоматически загружается в чип ESP8266EX.
По умолчанию модуль настроен на работу через «AT-команды». Управляющая плата посылает команды — Wi-Fi модуль выполняет соответствующую операцию.
Но внутри чипа ESP8266 прячется целый микроконтроллер, который является самодостаточным устройством. Прошивать модуль можно на разных языках программирования. Но обо всё по порядку.
Работа с AT командами
Подключение и настройка
В стандартной прошивке Wi-Fi модуль общается с управляющей платой через «AT-команды» по протоколу UART.
На всех платах Iskra и Arduino присутствует хотя бы один аппаратный UART — HardwareSerial. Если же по каким то причинам он занят другим устройством, можно воспользоваться программным UART — SoftwareSerial.
HardwareSerial
На управляющей плате Iskra JS и платах Arduino с микроконтроллером ATmega32U4 / ATSAMD21G18 данные по USB и общение через пины 0 и 1 осуществляется через два раздельных UART . Это даёт возможность подключить Wi-Fi модуль к аппаратному UART на пинах 0 и 1 .
Список поддерживаемых плат:
Для примера подключим модуль Wi-Fi к платформе Iskra Neo.
Прошейте управляющую платформу кодом ниже.
Код прошивки
SoftwareSerial
Некоторые платы Arduino, например Uno, прошиваются через пины 0 и 1 . Это означает невозможность использовать одновременно прошивку/отладку по USB и общение с Wi-Fi модулем. Решение проблемы — программный UART . Подключите пины TX и RX ESP-модуля к другим контактам управляющей платы и используйте библиотеку SoftwareSerial.
Для примера подключим управляющие пины Wi-Fi модуля TX и RX — на 8 и 9 контакты управляющей платы. Прошейте управляющую платформу кодом ниже.
Код прошивки
HardwareSerial Mega
На платах форм-фактора Arduino Mega 2560 аппаратный UART, который отвечает за передачу данных через пины 1 и 0 , отвечает также за передачу по USB. Это означает невозможность использовать одновременно UART для коммуникации с Wi-Fi модулем и отладки по USB.
Но на платах такого форм-фактора есть ещё дополнительно три аппаратных UART:
Список поддерживаемых плат:
Подключите Wi-Fi модуль к объекту Serial1 на пины 18 и 19 на примере платы Mega 2560 Прошейте управляющую платформу кодом ниже.
Код прошивки
Примеры работы
Рассмотрим несколько примеров по работе с «AT-командами»
Тестовая команда «AT»
Настройка режима работы
Wi-Fi модуль умеет работать в трёх режимах:
Переведём чип в смешанный режим командой:
После установки модуль должен ответить «OK»:
В отличии от аппаратного UART (HardwareSerial), за работу программного UART (SoftwareSerial) отвечает микроконтроллер, который назначает другие пины в режим работы RX и TX , соответственно и данные которые приходят от Wi-Fi модуля обрабатывает сам микроконтроллер во время программы. По умолчанию скорость общения Troyka Wi-Fi равна 115200 , что значительно выше чем позволяет библиотека SoftwareSerial. В итоге часть информации которая приходит с Wi-Fi модуля будет утеряна. Если вы используете плату с HardwareSerial подключением модуля можете пропустить пункт настройки скорости и сразу перейти к дальнейшей работе с модулем.
AT установка скорости общения
Для корректной работы с большими объемами необходимо понизить скорость соединения модуля и микроконтроллера. Для этого используйте «AT-команду»:
После проделанной операции, измените скорость программного UART в скетче программы и прошейте плату.
По итогу программный UART успеет обработать каждый пришедший байт с Wi-Fi модуля.
AT сканирование WI-FI сетей
Откройте Serial-порт и отправьте на модуль «AT-команду» для сканирования всех доступных Wi-Fi сетей:
Для продолжение работы используйте перечень «AT-команд»
Wi-Fi модуль как самостоятельный контроллер
ESP-01 (ESP8266) — очень умный модуль. Внутри чипа прячется целый микроконтроллер, который можно программировать на языке C++ через Arduino IDE и JavaScript через Espruino Web IDE .
Настройка железа
Ввиду отсутствия у платформы ESP-01 собственного USB-порта, понижающего преобразователя и отсутствия толерантности к 5 вольтам, подключите её к компьютеру, используя один из перечисленных способов:
Схема через Arduino Uno
Для сборки программатора понадобится:
Необходимо каждый раз выполнять перед прошивкой модуля.
Притяните пин 0 к 3.3V — фиолетовый провод через резистор к питанию.Схема через USB-Serial адаптер
Для сборки программатора понадобится:
Необходимо каждый раз выполнять перед прошивкой модуля.
Притяните пин 0 к 3.3V — фиолетовый провод через резистор к питанию.Программирование на C++
После выполненных действий модуль ESP-01 готов к программированию через Arduino IDE.
Подробности о функциях и методах работы ESP-01 (ESP8266) на языке C++ читайте на ESP8266 Arduino Cores.
Программирование на JavaScript
После выполненных действий модуль ESP-01 готов к программированию через Espruino Web IDE.
Подробнее о функциях и методах работы ESP8266 на языке JavaScript читайте на Espruino.
Восстановление стандартной АТ-прошивки
После программирования платформы в режиме самостоятельного контроллера может понадобиться восстановить на модуле стандартную AT-прошивку. Для этого необходимо воспользоваться утилитой Flash Download Tool.
Элементы платы
Чип ESP8266EX
Чип ESP8266 — выполнен по технологии SoC (англ. System-on-a-Chip — система на кристалле). В основе кристалла входит процессор семейства Xtensa — 32-х битный Tensilica L106 с частой 80 МГц с ультранизким энергопотреблением, радиочастотный трансивер с физическим уровнем WiFi IEEE 802.11 b/g/ и блоки памяти SRAM. Мощности процессорного ядра хватает для работы сложных пользовательских приложений и цифровой сигнальной обработки.
Программное приложение пользователя должно храниться на внешней микросхеме Flash-памяти и загружаться в ESP8266EX через один из доступных интерфейсов (SPI, UART, SDIO и др.) каждый раз в момент включения питания системы.
Чип ESP8266 не содержит в себе Flash-память и многих других компонентов для пользовательского старта. Микросхема является основой на базе которой выпускаются модули с необходимой периферией, например ESP-01.
Светодиодная индикация
Имя светодиода | Назначение |
---|---|
LED | Индикаторный светодиод подключённый к цифровому пину 1 |
POWER | Индикатор питание на модуле |
Распиновка
Пины питания
3.3V: Вывод питания модуля. Потребляемый ток не менее 250 мА.Пины ввода/вывода
В отличии от большинства плат Arduino, родным напряжением платформы ESP-01 является 3,3 В, а не 5 В. Выходы для логической единицы выдают 3,3 В, а в режиме входа ожидают принимать не более 3,3 В. Большее напряжение может повредить модуль!
Будьте внимательны при подключении периферии: убедитесь, что она может корректно функционировать в этом диапазоне напряжений.
Как проверить ESP8266
Для проверки ESP8266, который вы только что приобрели, потребуется источник стабилизированного напряжения на 3,3 вольта.
Внимание! Допустимый диапазон напряжения питания модуля ESP8266 от 3,0 до 3,6 вольт. Подача повышенного напряжения питания на модуль гарантированно приведет к выходу ESP8266 из строя.
Чтобы проверить ESP8266 ESP-01 достаточно подключить три пина: VCC и CH_PD (chip enable) к питанию 3,3 вольт, а GND к земле. Если у вас не ESP-01, а другой модуль и на нем выведен GPIO15, то дополнительно еще потребуется подключить GPIO15 к земле.
Как быстро подключить ESP8266
В минимальный набор для подключения и прошивки модуля ESP8266 входит:
1. Модулей ESP8266 достаточно много и первое, что вам потребуется, это идентифицировать ваш модуль и определить его распиновку. На нашем сайте есть замечательная таблица с фотографиями модулей и их распиновкой. Далее в этом кратком пособии для начинающих, мы будем подразумевать, что работаем с модулем ESP8266 ESP-01 V090. Если у вас другой модуль (например, ESP-07 или ESP-12) и на нем выведен пин GPIO15 (MTDO, HSPICS), то этот пин необходимо притянуть к земле как для обычного старта модуля, так и для режима прошивки.
2. Убедиться два раза, что питающее напряжение для модуля составляет 3,3 вольта.
Внимание! Допустимый диапазон напряжения питания модуля ESP8266 от 3,0 до 3,6 вольт. Подача повышенного напряжения питания на модуль гарантированно приведет к выходу ESP8266 из строя. Питающее напряжение может быть и существенно ниже 3 вольт, заявленных в документации
3. Если вы счастливый обладатель USB-TTL конвертера на 3,3 вольта то подключите модуль, как на рисунке ниже (левая часть). Если у вас только пятивольтовый USB-TTL, то используйте в качестве инструкции правую часть рисунка.
Внимание! На правом рисунке подключение UTXD (TX) и URXD (RX) модуля ESP8266 к пятивольтовой TTL логике вы осуществляете на свой страх и риск! Документация на SoC ESP8266 сообщает, что модуль толерантен только к 3.3 вольтовой логике. В большинстве случаев подключение ESP8266 к пятивольтовой логике НЕ ПРИВОДИТ к выходу из строя ESP8266, однако именно вашему модулю может не повезти. Для исключение риска выхода модуля ESP8266 из строя рекомендуется использовать USB-TTL конвертер на 3,3 вольта, либо TTL 5v-3.3v конвертеры либо делитель на резисторах (на рисунке не показан). Более подробно о согласовании логических уровней можете прочитать здесь. Рисковые гики, вроде меня, подключают ESP8266 к пятивольтовой TTL логике напрямую и не заморачиваются.
Как правильно подключить ESP8266
Если вы планируете заниматься с ESP8266 больше, чем один вечер, то вам потребуется вариант подключения, обеспечивающий более высокую стабильность. Ниже приводятся две схемы подключения: с поддержкой автозагрузки прошивки из Arduino IDE, UDK, Sming и без нее.
Схема подключения ESP8266 (без автозагрузки прошивки, прошиваемся предварительно установив перемычку BURN и перезагрузив модуль)
Схема подключения с поддержкой автозагрузки прошивки из Arduino IDE, UDK, Sming. Для Flash Download Tool и XTCOM_UTIL, возможно, потребуется отключение RTS/DTR. Если RTS и DTR вам отключать неудобно, то можно добавить в схему перемычки
Соединение RESET и GPIO16 через резистор deep sleep на 470 Ом вам потребуется, если вы будете использовать режим deep sleep: для выхода из режима глубокого сна модуль перезагружает сам себя, подавая низкий уровень на GPIO16. Без этого соединения глубокий сон будет вечным для вашего модуля.
На первый взгляд на этих схемах кажется, что GPIO0, GPIO2, GPIO15, GPIO1 (TX), GPIO3 (RX) заняты и вы не можете их использовать для своих целей, но это не так. Высокий уровень на GPIO0 и GPIO2, низкий на GPIO15 требуются только для старта модуля, а в последующем вы можете использовать их по своему усмотрению, только не забудьте обеспечить требуемые уровни до перезагрузки модуля.
Можно использовать и TX, RX как GPIO1 и GPIO3 соответственно, не забывая о том, что при старте модуля любая прошивка будет дергать TX, отправляя отладочную информацию в UART0 на скорости 74480, но после успешной загрузки вы можете использовать их не только как UART0 для обмена данными с другим устройством, но и как обычные GPIO.
Данные схемы подключения родились после множества экспериментов, проведенных нашими форумчанами и собраны по крупицам из разрозненной и недоступной изначально документации нашим сообществом, я всего лишь постарался объединить эти знания в одном месте. Множество советов по подключению вы найдете на нашем форуме. Там же вы сможете задать интересующие вас вопросы или найти помощь в решении проблем. Если вы увидели ошибку, неточность в этой статье или вам есть что добавить, то сообщите мне об этом в специальной теме на нашем форуме.
Правильным будет сказать вам, что не существует идеальной и в тоже время универсальной схемы подключения ESP8266. Все дело в том, что очень многое зависит от прошивки, которую вы собираетесь туда залить. Вышеприведенные схемы рассчитаны на новичков, которые только начинают осваивать ESP8266, для экспериментов. Для реальных проектов, возможно, вам придется немного изменить схему. Например, для прошивки TCP2UART нужно подключить RTS к GPIO15, а CTS к GPIO13. Также в реальных проектах рекомендую уделить особое внимание питанию.
Подключение ESP8266 через Arduino
Если у вас под рукой не оказалось USB-TTL конвертера на 3,3в, но есть Arduino со встроенным USB-TTL конвертером, то можно использовать такую схему подключения
ESP8266 подключение через Arduino
На что обратить внимание:
1. Arduino Reset подключен к GND (синий провод) чтобы не запускался микроконтроллер на Arduino, в данном виде мы используем Arduino как прозрачный USB-TTL конвертер
3. Все остальное подключено так же, как и в предыдущих примерах
Внимание! В этой схеме также требуется согласовывать уровни TTL 5 вольт Arduino и 3.3 вольта на ESP8266, однако неплохо работает и так.
Внимание! На Arduino может быть установлен стабилизатор питания, который не выдержит ток, требуемый для ESP8266, поэтому прежде, чем производить подключение сверьтесь с даташитом на тот стабилизатор, который установлен именно у вас. Не подключайте другие энергопотребляющие компоненты одновременно с ESP8266 в связи с риском выхода из строя встроенного в Arduino стабилизатора питания.
Существует и другая схема подключения Arduino и ESP8266 с использованием SoftSerial. В виду того, что для библиотеки SoftSerial скорость порта в 115200 является слишком большой и не гарантирует стабильную работу, мы не рекомендуем использовать такой способ подключения, хотя есть люди, у которых все стабильно работает (правда только на скорости 9600). Скетч для такой схемы подключения (спасибо nec3540A)
Подключение ESP8266 через RaspberryPi
Настройка ESP8266
Большой популярностью пользуется программа CoolTerm (есть версии для Win/MAC/Linux).
В этом уроке мы подключим наш микроконтроллер Arduino Uno к Интернету, используя модуль ESP8266 WiFi.
Шаг 1. Комплектующие
Модуль ESP8266 WiFi представляет собой полноценную сеть Wi-Fi, а вы можете легко подключиться в качестве обслуживающего адаптера Wi-Fi, интерфейса беспроводного доступа в Интернет к любому устройству на основе микроконтроллера благодаря простому подключению через последовательный интерфейс или интерфейс UART.
Добавление этого модуля в проекты где используется Arduino откроет новые интересные возможности.
Детали, используемые в проекте Arduino WiFi мы перечислим ниже. Компоненты оборудования:
-
× 1
- ESP8266 ESP-01 × 1
- Перемычки (на выбор) × 1
- Резистор 10 кОм × 1
- Резистор 1 кОм × 2
Шаг 2. Суть проекта
Есть много способов использовать ESP866 для коммуникаций. Некоторые могут использовать его для отправки/получения данных онлайн или регулярной загрузки данных. В этом уроке мы покажем, как мы можем общаться с Arduino по беспроводной связи, используя ваш телефон (Android или iPhone). Всё будет сделано в автономном режиме, поэтому не нужно иметь подключение к интернету.
ESP8266 будет служить точкой доступа (режим AP), то есть он будет предоставлять доступ к сети Wi-Fi другим устройствам (станциям) и далее подключать их к проводной сети. Процесс этот довольно прост.
Распиновка ESP
Шаг 3. Схема соединения
Мы можем соединить Ардуино и WiFi модуль двумя способами - первый с резисторами и второй вариант без резисторов. Остановимся на обеих схемах.
Вариант 1
Соединяем контакты, как описано на прилагаемой таблице контактов ниже:
Следуйте этим шагам:
- подключите красный провод к VIN (3,3 В) к питанию + 3,3 В от микроконтроллера;
- подключите черный провод к земле;
- подключите зеленый провод к TX модуля Wifi и микроконтроллера;
- подключите желтый провод к RX модуля Wi-Fi и микроконтроллера.
Подключите VIN к 3,3 В для включения питания, а также контакт ENABLE для включения модуля.
TX подключен к RX, что означает, что все, что мы хотим передать в ESP8266, получит Arduino UNO. И наоборот для RX в TX. Создав эту схему, мы теперь готовы запустить WiFi с Arduino UNO.
Вариант 2
Соедините контакты, соответственно этой таблице контактов ниже:
Следуй этим шагам:
- подключите оба контакта ECC VCC / 3.3V / Power Pin и Enable (красные провода) к резистору 10 кОм, а затем к выводу питания Uno + 3.3V;
- соедините контакт заземления / заземления ESP (черный провод) с выводом заземления / заземления Arduino Uno;
- подключите TX ESP (зеленый провод) к контакту 3 Uno;
- подключите RSP (синий провод) ESP к резистору 1 кОм, затем к контакту 2 Uno;
- подключите RX (синий провод) ESP к резистору 1 кОм, затем к выводу GND заземления Uno.
О схеме
Вывод питания ESP на ESP11 имеет маркировку VIN, однако для некоторых версий это может быть 3,3 В или Power или VCC. Вам также нужно будет включить вывод ESP CH_EN или Enable, чтобы он работал.
Как мы уже обсуждали, - не используйте напряжение на ESP больше чем 3.3 В. ESP8266 строго использует 3,3 В. Более того, это разрушит модуль. Так как Arduino имеет 5 В, нам пришлось поставить делитель напряжения - это резисторы.
TX ESP подключен к RX Arduino Uno, что означает, что все, что мы хотим передать (TX) в ESP, получит (RX) от Uno, и наоборот. Создав эту схему, мы теперь готовы запустить WIFI с Arduino UNO.
Внимание! Если вы подключите последовательный отладчик через USB-кабель или откроете COM-порт, связь между ESP и Arduino будет нарушена и не сможет работать. Поэтому, прежде чем прошивать Uno, сначала удалите Rx / Tx из ESP.Шаг 4. Настройка соединения
После того, как все настроено, вы заметите, что ваш ESP8266 Wifi будет доступен в радиусе действия вашего телефона.
Вы можете скачать любой TCP-клиент, доступный в Play Store, но я использовал TCP-клиент от Sollae Systems
2. Со своего телефона подключитесь к вашему ESP8266 Wifi
Если ваш Wi-Fi ESP8266 не отображается в доступных сетях Wi-Fi, убедитесь, что ваш Arduino работает и все подключено правильно. Если нет, устраните неполадки вашего ESP, следуя документации модуля.
Обычно имя wifi / ssid начинается в ESP после его названия версии, у меня ESP11.
3. После подключения получите статический IP-адрес.
Важно! Вы можете проверить IP-адрес ESP, зайдя в настройки Wi-Fi своего телефона и щелкнув информацию о сети.IP-адрес по умолчанию в режиме AP - 192.168.4.1.
Вы можете изменить статический IP-адрес, следуя этой Wifi.config() ссылке.
4. Откройте TCP Client, который вы загрузили ранее.
Создайте соединение, нажав кнопку «Подключить», добавьте IP-адрес ESP и порт 80 следующим образом:
80 - это порт, который я использовал для нашего сервера ESP, но вы можете изменить его, заменив 80 на любой номер порта из нашего кода в строке 23.
Шаг 5. Общаемся с Arduino Uno через смартфон
После подключения отправьте запрос, введя следующий код для клиента TCP:
Связь с ESP8266 осуществляется через Attention Command или AT Commands (AT команды). Посмотрите таблицу AT команд выше, прилагаемую для просмотра кодов.Или включите встроенный светодиод с помощью команды:
Или выключите встроенный светодиод с помощью команды:
Или просто скажите:
Вы можете изменить ответ от того, что отправляете, в зависимости от логики, которую вы вставили в код.
Шаг 6. Код проекта
Существуют разные типы ESP8266. Измените скорость передачи в коде в строке 16 в зависимости от того, что использует ваш ESP8266.
Весь наш запрос будет прочитан и разобран в функции loop():
Мы добавили некоторую функцию для связи с ESP8266:
Если вы знакомы с созданием мобильных приложений, веб-приложений, веб-служб или веб-разработкой в целом, вы можете создавать клиентские приложения, которые могут отправлять TCP-запросы в ESP. Примеры приложений, которые вы можете сделать: удаленное управление устройствами, веб-панель управления, чат-бот, приложение с кнопками и т.д
Читайте также: