Что является коммутатором в односегментной сети ethernet на разделяемой среде
Коммутация позволяет преодолеть многие ограничения разделяемых сетей Ethernet и Fast Ethernet. ЧТО ТАКОЕ КОММУТАТОР? АРХИТЕКТУРА КОММУТАТОРА ПОЛНОДУПЛЕКСНЫЙ ETHERNET АВТОМАТИЧЕСКОЕ СОГЛАСОВАНИЕ ПРЕДОТВРАЩЕНИЕ ПЕРЕГРУЗОК УПРАВЛЕНИЕ КОММУТАТОРОМ РАЗНОВИДНОСТИ КОММУТАТОРОВ ДОСТОИНСТВА КОММУТАЦИИ
Коммутация позволяет преодолеть многие ограничения разделяемых сетей Ethernet и Fast Ethernet.
Еще в первом номере журнала LAN, в разделе "Первые уроки", мы опубликовали статью С. Штайнке "Ethernet-коммутация" об основах данной технологии и не ошиблись с выбором: за последующие три года коммутация Ethernet стала одной из самых "горячих" технологий. Позднее мы не раз возвращались к этой теме (см., в частности, статью Д. Ганьжи "Коммутаторы в локальных сетях" в апрельском номере LAN за 1997 год). Первая статья появилась в то время, когда Fast Ethernet еще боролась за место под солнцем с 100VG-AnyLAN, и исход борьбы был далеко не ясен, поэтому она была посвящена прежде всего коммутации на 10 Мбит/с. Вторая из названных статей касалась, главным образом, общих аспектов коммутации. Учитывая перечисленные обстоятельства, а также важность коммутации как таковой, мы сочли возможным и даже необходимым вернуться к этой теме еще раз, тем более что цикл статей об Ethernet без ее рассмотрения был бы не полон.
ЧТО ТАКОЕ КОММУТАТОР?
Коммутатор представляет собой, по сути, многопортовый мост, поэтому, как и мост, он принимает поступающие пакеты, временно сохраняет их и затем передает на другой порт в соответствии с адресом получателя данного пакета. Коммутаторы можно использовать для соединения различных локальных сетей, для сегментации локальной сети (т. е. уменьшения числа конкурирующих за среду узлов в одном домене коллизий) и для преодоления ограничений на диаметр сегмента. Последнее применение особенно важно в случае сетей Fast Ethernet, где диаметр сегмента не может превышать 205 м для кабеля витой пары.
Рисунок 1.
На основании адреса получателя коммутатор определяет, на какой порт передавать поступивший пакет.
В коммутаторе Ethernet передача данных между непересекающимися парами портов может происходить одновременно. Например, узел А может передавать пакет узлу D в то же время, когда узел B отправляет пакет узлу C. Оба диалога ведутся одновременно, поэтому в случае Ethernet совокупная пропускная способность (производительность) коммутатора в нашем примере составляет 20 Мбит/с. Она определяется посредством суммирования доступной для каждого соединения пропускной способности, скажем в случае 12-портового коммутатора Ethernet теоретически она равняется 60 Мбит/с. Для сравнения повторитель Ethernet всегда имеет одну и ту же совокупную пропускную способность в 10 Мбит/с, независимо от числа портов. К тому же реальная пропускная способность концентратора может оказаться намного меньше, когда несколько устройств конкурируют за доступ к среде передачи. Однако и реальная совокупная пропускная способность коммутатора может оказаться ниже теоретически рассчитанной из-за недостатков конструкции коммутатора, например из-за неадекватной пропускной способности внутренней шины. В этом случае говорят, что коммутатор имеет блокирующую архитектуру.
АРХИТЕКТУРА КОММУТАТОРА
Архитектура коммутатора определяется четырьмя основными факторами - типом портов, размерами буфера, механизмом продвижения пакетов и внутренней шиной (см. Рисунок 2).
Рисунок 2.
При всем многообразии конструкции коммутаторов базовая архитектура этих устройств определяется четырьмя компонентами: портами, буферами, внутренней шиной и механизмом продвижения пакетов.
Порты могут иметь скорость 10 и 100 Мбит/с и работать в полудуплексном и полнодуплексном режиме. Многие модели старшего класса могут также содержать порты FDDI, ATM, Gigabit Ethernet и т. п., но здесь этой темы мы касаться не будем, тем более что уже кратко рассматривали ее ранее.
Наличие буферов достаточной емкости имеет большое значение для коммутации, в частности в случае использования в сети протоколов по типу скользящего окна, когда абонент подтверждает получение не каждого пакета, а их серии. Вообще говоря, чем больше емкость буфера, тем лучше, однако - тем и дороже. Поэтому разработчикам приходится выбирать между производительностью и ценой. Но у них есть и другое решение - управление потоками (см. ниже).
Механизм продвижения пакетов может быть одним из следующих трех: коммутация с промежуточной буферизацией, сквозная коммутация и гибридная сквозная коммутация. Мы уже неоднократно их рассматривали, поэтому лишь напомним, что они собой представляют. В первом случае пакет полностью сохраняется в буфере, прежде чем быть переданным далее, поэтому данный метод вносит наибольшую задержку, но и не позволяет ошибочным пакетам выходить за пределы сегмента. Во втором случае, считав адрес получателя, коммутатор сразу же передает кадр дальше. Как нетрудно понять, он обладает прямо противоположными достоинствами и недостатками - малой задержкой и отсутствием адекватной проверки кадров.
В третьем случае коммутатор считывает первые 64 байта пакета, прежде чем передавать его дальше. Таким образом, он действует как коммутатор с промежуточной буферизацией по отношению к коротким кадрам и как коммутатор со сквозной коммутацией по отношению к длинным кадрам. Методы продвижения кадров проиллюстрированы на Рисунке 3.
Рисунок 3.
Механизмы продвижения пакетов различаются тем, в какой момент пакет передается дальше.
Архитектура внутренней шины определяет, каким образом кадры передаются с одного порта на другой с помощью внутренней электроники коммутатора. Она имеет решающее значение для эффективности работы коммутатора: производитель может заявить, что внутренняя шина имеет пропускную способность 1-2 Гбит/с, но при этом умолчать, что она достигается лишь при определенном виде трафика. Например, коммутатор с буферами малой емкости может показывать свою максимальную производительность, только если все порты работают на одной и той же скорости, а трафик распределен равномерно между всеми портами.
Шина может обслуживать порты циклически или по приоритетам. При циклическом обслуживании бездействующий порт пропускается. Такая архитектура наилучшим образом подходит для случаев, когда трафик через каждый порт примерно одинаков. При обслуживании по приоритетам активные порты конкурируют друг с другом за внутреннюю шину. Такого рода архитектура лучше всего подходит при работе с коммутаторами, порты которых имеют разную скорость. Некоторые производители предлагают коммутаторы с возможностью изменения типа архитектуры шины.
ПОЛНОДУПЛЕКСНЫЙ ETHERNET
Обычный Ethernet (и Fast Ethernet) представляет собой разделяемую среду передачи, а все разделяемые сети являются полудуплексными по определению: в конкретный момент времени только одна станция имеет право осуществлять передачу, а все остальные должны ее слушать. Или, иначе говоря, станция может выполнять прием или передачу, но не обе эти задачи одновременно.
Широкое распространение четырехпарной проводки открыло принципиальную возможность для передачи и приема данных по отдельным путям (разным парам), каковой не было, когда физическая среда передачи представляла собой коаксиальный кабель.
В случае, когда к каждому порту коммутатора подключен только один узел (подчеркнем, один), конкуренция за доступ к среде передачи отсутствует, поэтому никаких коллизий не может возникнуть в принципе и схема множественного доступа CSMA/CD больше не нужна.
Таким образом, если два узла подключены напрямую к портам коммутатора, то они могут вести прием и передачу данных одновременно по разным парам, в результате теоретическая пропускная способность такого соединения составляет 20 Мбит/с в случае Ethernet и 200 Мбит/с в случае Fast Ethernet. Кроме того, благодаря отсутствию конкуренции, реальная средняя пропускная способность соединения приближается к номинальной и составляет свыше 80% от вышеприведенных значений.
АВТОМАТИЧЕСКОЕ СОГЛАСОВАНИЕ
Некоторые коммутаторы имеют порты как на 10 Мбит/с, так и на 100 Мбит/с (о том, к каким проблемам это может привести, см. в разделе "Предотвращение перегрузок"). Более того, они способны автоматически определять, на какой скорости работают подключенные к нему станции, концентраторы и т. п. Наконец, если только один узел подключен к порту коммутатора, то обе стороны могут выбрать полнодуплексный режим работы (при условии, что он поддерживается обоими).
Один и тот же стандартный соединитель RJ-45 может передавать сигналы 10BaseT, полнодуплексного 10BaseT, 100BaseTX, полнодуплексного 100BaseTX и 100BaseT4. Поэтому IEEE предложил схему автоматического согласования режима работы под названием nWAY для определения того, по какому стандарту работает устройство на другом конце кабеля. Порядок приоритетов для режимов работы следующий:
- полнодуплексный 100BaseTX;
- 100BaseT4;
- 100BaseTX;
- полнодуплексный 10BaseT;
- 10BaseT.
При автосогласовании "договаривающиеся стороны" используют аналог импульсов Link Integrity в 10BaseT под названием Fast Link Pulse. Такие импульсы отправляют оба устройства, и по ним каждое из них определяет, в каком из режимов передачи способна работать другая сторона.
Многие коммутаторы поддерживают все пять возможных режимов, поэтому, если даже подключенный узел не имеет функции автосогласования, порт коммутатора будет взаимодействовать с ним на той максимальной скорости, на которую он способен. Кроме того, реализация данной функции весьма проста и не ведет к какому-либо заметному удорожанию оборудования. Наконец, стандарт предусматривает возможность отключения автосогласования, так что пользователь может установить нужный режим передачи вручную, если это ему необходимо.
ПРЕДОТВРАЩЕНИЕ ПЕРЕГРУЗОК
Коммутаторам часто приходится выполнять роль моста между портами на 10 и 100 Мбит/с, например, когда коммутатор имеет один высокоскоростной порт для подключения сервера и некоторое количество портов на 10 Мбит/с для подключения рабочих станций. В случае, когда трафик передается с порта на 10 Мбит/с порту на 100 Мбит/с никаких проблем не возникает, но вот если трафик идет в обратном направлении. Поток данных в 100 Мбит/с
УПРАВЛЕНИЕ КОММУТАТОРОМ
Контроль за функционированием коммутатора - одна из самых серьезных проблем, стоящих как перед производителями оборудования, так и перед администраторами сетей. В случае разделяемых сетей управление не представляет особых сложностей, так как трафик через один порт пересылается на все остальные порты концентратора. В случае же коммутатора трафик между парами портов каждого виртуального соединения различен, поэтому задача сбора статистических данных о работе маршрутизатора намного усложняется. Производители поддерживают, как правило, два следующих метода сбора статистики.
Один из них состоит во включении управления в архитектуру объединительной шины коммутатора. Статистика собирается о каждом передаваемом по шине пакете и сохраняется в управляющем устройстве в соответствии с его MAC-адресом. Программа управления может обратиться к этому устройству за статистикой по локальной сети. Единственная проблема с таким методом - каждый производитель коммутаторов реализует свою собственную схему, поэтому совместимость ограничивается обычно статистикой SNMP.
Второй метод известен как зеркальное копирование портов. В этом случае весь трафик через заданный порт копируется на выделенный порт управления. Данный порт подключается обычно к терминалу управления, а тот уже собирает статистику по каждому конкретному порту. Однако подобный метод имеет то ограничение, что он не позволяет видеть, что происходит в это время на других портах коммутатора.
Некоторые производители коммутаторов включают в свои модели, как правило, старшего класса базы управляющей информации для удаленного мониторинга (Remote Monitor MIB, RMON) с целью сбора статистики о функционировании каждого порта коммутатора. Но очень часто они включают далеко не все определенные стандартом группы, а, кроме того, поддержка RMON MIB значительно увеличивает стоимость коммутатора.
РАЗНОВИДНОСТИ КОММУТАТОРОВ
Коммутаторы можно классифицировать по-разному. Если исходить из назначения, то все их можно разделить на две большие группы - коммутаторы для рабочих групп и коммутаторы для магистрали.
Отличительной особенностью многих коммутаторов для рабочих групп является небольшое число поддерживаемых каждым портом адресов. Всякий порт действует как мост, поэтому он должен знать, к каким адресам может получить доступ через другие порты. Подобные списки соответствия портов MAC-адресам могут оказаться весьма длинными и занимать значительный объем дорогостоящей памяти. Поэтому коммутаторы для рабочих групп поддерживают обычно не слишком много MAC-адресов. Некоторые из них вообще запоминают только один адрес для каждого порта - в этом случае к порту может быть подключен один и только один узел.
Магистральные коммутаторы отличаются большим числом высокоскоростных портов, в том числе полнодуплексных, наличием дополнительных функций управления сетью типа виртуальных локальных сетей и расширенной фильтрации пакетов и т. п. В общем случае магистральный коммутатор намного дороже и производительней, чем его аналог для рабочих групп.
ДОСТОИНСТВА КОММУТАЦИИ
Коммутация стала столь популярной технологией потому, что она позволяет увеличить доступную каждому узлу реальную пропускную способность. В результате без изменения базовой технологии и существенной перекройки топологии сети компании смогли расчистить заторы трафика и расширить узкие места. Кроме того, она позволяет увеличить протяженность сети. Особенно это обстоятельство ценно в случае Fast Ethernet - например посредством установки моста (двухпортового коммутатора, с точки зрения некоторых производителей) между двумя концентраторами расстояние между конечными станциями может быть увеличено до 400 м.
Рассмотрим, каким образом описанные выше концепции воплощены в одной из первых стандартных сетевых технологий — технологии Ethernet на разделяемой среде. В этом разделе мы коснемся только самых общих принципов функционирования одного из вариантов Ethernet. Детальное описание всех вариантов Ethernet, в том числе и коммутируемой сети Ethernet, вы найдете в части III.
Коаксиальный Рис. 3.21. Сеть Ethernet |
В сетях с коммутацией каналов по запросу пользователя создается непрерывный информационный канал, который образуется путем резервирования «цепочки» линий связи, соединяющих абонентов на время передачи данных. На всем своем протяжении канал передает данные с одной и той же скоростью. Это означает, что через сеть с коммутацией каналов можно качественно передавать данные, чувствительные к задержкам (голос, видео). Однако невозможность динамического перераспределения пропускной способности физического канала является принципиальным недостатком сети с коммутацией каналов, который делает ее неэффективной для передачи пульсирующего компьютерного трафика.
При коммутации пакетов передаваемые данные разбиваются в исходном узле на небольшие части — пакеты. Пакет снабжается заголовком, в котором указывается адрес назначения, поэтому он может быть обработан коммутатором независимо от остальных данных. Способ коммутации пакетов повышает производительность сети при передаче пульсирующего трафика, так как при обслуживании большого числа независимых потоков периоды их активности не всегда совпадают во времени. Пакеты поступают в сеть без предварительного резервирования ресурсов в том темпе, в котором их генерирует источник. Однако этот способ коммутации имеет и отрицательные стороны: задержки передачи носят случайный характер, поэтому возникают проблемы при передаче трафика реального времени.
В сетях с коммутацией пакетов может использоваться один из трех алгоритмов продвижения пакетов: дейтаграммная передача, передача с установлением логического соединения и передача с установлением виртуального канала.
Разделяемой средой называется физическая среда передачи данных (коаксиальный кабель, витая пара, оптическое волокно, радиоволны), к которой непосредственно подключено несколько конечных узлов сети и которой они могут пользоваться только по очереди. В основе таких хорошо известных технологий, как Ethernet, FDDI, Token Ring, лежит принцип разделяемой среды. Хотя, казалось бы, сети на разделяемых средах уже пережили пик своей популярности, сегодня существуют явные признаки возрождения интереса к этой технологии, о чем свидетельствуют домашние проводные сети, персональные и локальные беспроводные сети, RadioEthernet — во всех этих современных технологиях используется принцип разделения среды.
Вопросы и задания
1. Какие типы мультиплексирования и коммутации используются в телефонных сетях?
2. Какие свойства сетей с коммутацией каналов свидетельствую об их недостатках?
3. Какие свойства сетей с коммутацией пакетов негативно сказываются на передаче мультимедийной информации?
4. Используется ли буферизация в сетях с коммутацией каналов?
5. Какой элемент сети с коммутацией каналов может отказать узлу в запросе на установление составного канала:
6. Какие концепции характерны для сетевой технологии Ethernet?
7. Учитывается ли в дейтаграммных сетях существование потоков данных?
8. Дайте определение логического соединения.
9. Можно ли организовать надежную передачу данных между двумя конечными узлами без установления логического соединения?
10. Какое логическое соединение может быть названо виртуальным каналом?
11. В каких сетях используется технология виртуальных каналов?
12. Укажите, какие из перечисленных устройств являются функционально подобными:
О коммутатор; О концентратор; О повторитель; О маршрутизатор; О мост.
13. Чем отличается мост от коммутатора?
14. Верно ли следующее утверждение: «Сеть Ethernet, имеющая звездообразную топологию с концентратором в центре, надежнее, чем та же сеть на коаксиальном кабеле, имеющая топологию общей шины»?
15. Как можно повысить пропускную способность, приходящуюся на компьютер каждого конечного пользователя, в сети, построенной на основе концентраторов?
16. Определите, на сколько увеличится время передачи данных в сети с коммутацией пакетов по сравнению с сетью коммутации каналов, если известно:
О общий объем передаваемых данных — 200 Кбайт;
О суммарная длина канала — 5000 км;
О скорость передачи сигнала — 0,66 скорости света;
О пропускная способность канала — 2 Мбит/с;
О размер пакета без учета заголовка — 4 Кбайт;
О размер заголовка — 40 байт; О интервал между пакетами — 1 мс; О количество промежуточных коммутаторов — 10; О время коммутации на каждом коммутаторе — 2 мс.
Считайте, что сеть работает в недогруженном режиме, так что очереди в коммутаторах отсутствуют.
17. Если все коммуникационные устройства в приведенном на рис. 3.22 фрагменте сети являются концентраторами, то на каких портах появится кадр, если его отправил компьютер А компьютеру В?
Рис. 3.22. Фрагмент сети |
18. Если все коммуникационные устройства в приведенном на рис. 3.22 фрагменте сети являются коммутаторами, то на каких портах появится кадр, если его отправил компьютер А компьютеру В?
19. Если все коммуникационные устройства в приведенном на рис. 3.22 фрагменте сети являются коммутаторами, кроме одного концентратора, к которому подключены компьютеры А и В, то на каких портах появится кадр, если его отправил компьютер А компьютеру D?
22. Сеть построена на разделяемой среде с пропускной способностью 10 Мбит/с и состоит из 100 узлов. С какой максимальной скоростью могут обмениваться данными два узла в сети?
23. Сеть может передавать данные в двух режимах: с помощью дейтаграмм и по виртуальным каналам. Какие соображения вы бы приняли во внимание при выборе того или иного режима для передачи ваших данных, если главным критерием выбора для вас является скорость и надежность доставки?
24. Считаете ли вы, что сети с коммутацией каналов в ближайшем будущем будут заменены сетями с коммутацией пакетов? Или же напротив, сети с коммутацией пакетов будут вытеснены сетями с коммутацией каналов? Или же эти технологии будут сосуществовать? Приведите аргументы в пользу вашего мнения. Рассмотрите разные области использования этих технологий.
Рассмотрим, каким образом описанные ранее концепции воплощены в одной из первых стандартных сетевых технологий — технологии Ethernet, работающей с битовой скоростью 10 Мбит/с. В этом разделе мы коснемся только самых общих принципов функционирования Ethernet.
Наши партнеры:
- Возможно эта информация Вас заинтересует:
- Посмотрите интересные ссылочки вот тут:
• Топология. Существует два варианта технологии Ethernet: Ethernet на разделяемой среде и коммутируемый вариант Ethernet. В первом случае все узлы сети разделяют общую среду передачи данных, и сеть строится по топологии общей шины. На рис. 1 показан простейший вариант топологии — все компьютеры сети подключены к общей разделяемой среде, состоящей из одного сегмента коаксиального кабеля.
В том случае, когда сеть Ethernet не использует разделяемую среду, а строится на коммутаторах, объединенных дуплексными каналами связи, говорят о коммутируемом варианте Ethernet. Топология в этом случае является топологией дерева, то есть такой, при которой между двумя любыми узлами сеть существует ровно один путь. Пример топологии коммутируемой сети Ethernet показан на рис. 2.
Топологические ограничения (только древовидная структура связей коммутаторов)связаны со способом построения таблиц продвижения коммутаторами Ethernet.
• Способ коммутации. В технологии Ethernet используется дейтаграммная коммутация пакетов. Единицы данных, которыми обмениваются компьютеры в сети Ethernet, называются кадрами. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную информацию. В том случае, когда сеть Ethernet построена на коммутаторах, каждый коммутатор продвигает кадры в соответствии с теми принципами коммутации пакетов, которые были описаны ранее. А вот в случае односегментной сети Ethernet возникает законный вопрос: где же выполняется коммутация? Где хотя бы один коммутатор, который, как мы сказали, является главным элементом любой сети с коммутацией пакетов? Или же Ethernet поддерживает особый вид коммутации? Оказывается, коммутатор в односегментной сети Ethernet существует, но его не так просто разглядеть, потому что его функции распределены по всей сети. «Коммутатор» Ethernet состоит из сетевых адаптеров и разделяемой среды. Сетевые адаптеры представляют собой интерфейсы такого виртуального коммутатора, а разделяемая среда — коммутационный блок, который передает кадры между интерфейсами. Часть функций коммутационного блока выполняют адаптеры, так как они решают, какой кадр адресован их компьютеру, а какой — нет.
• Адресация. Каждый компьютер, а точнее каждый сетевой адаптер, имеет уникальный аппаратный адрес. Адрес Ethernet является плоским числовым адресом, иерархия здесь не используется. Поддерживаются адреса для выборочной, широковещательной и групповойрассылки.
• Разделение среды и мультиплексирование. В сети Ethernet на коммутаторах каждый канал является дуплексным каналом связи, и проблемы его разделения между интерфейсами узлов не возникает. Передатчики коммутаторов Ethernet используют дуплексные каналы связи для мультиплексирования потоков кадров от разных конечных узлов. В случае Ethernet на разделяемой среде конечные узлы применяют специальный метод доступа с целью синхронизации использования единственного полудуплексного канала связи, объединяющего все компьютеры сети. Единого арбитра в сети Ethernet на разделяемой среде нет, вместо этого все узлы прибегают к распределенному случайному методу доступа. Информационные потоки, поступающие от конечных узлов сети Ethernet, мультиплексируются в единственном передающем канале в режиме разделения времени. То есть кадрам разных потоков поочередно предоставляется канал. Чтобы подчеркнуть не всегда очевидную разницу между понятиями мультиплексирования и разделения среды, рассмотрим ситуацию, когда из всех компьютеров сети Ethernet только одному нужно передавать данные, причем данные от нескольких приложений. В этом случае проблема разделения среды между сетевыми интерфейсами не возникает, в то время как задача передачи нескольких информационных потоков по общей линии связи (то есть мультиплексирование) остается.
• Кодирование. Адаптеры Ethernet работают с тактовой частотой 20 МГц, передавая в среду прямоугольные импульсы, соответствующие единицам и нулям данных компьютера. Когда начинается передача кадра, то все его биты передаются в сеть с постоянной скоростью 10 Мбит/с (каждый бит передается за два такта). Эта скорость определяется пропускной способностью линии связи в сети Ethernet.
• Надежность. Для повышения надежности передачи данных в Ethernet используется стандартный прием — подсчет контрольной суммы и передача ее в концевике кадра. Если принимающий адаптер путем повторного подсчета контрольной суммы обнаруживает ошибку в данных кадра, то такой кадр отбрасывается. Повторная передача кадра протоколом Ethernet не выполняется, эта задача должна решаться другими технологиями, например протоколом TCP в сетях TCP/IP.
• Очереди. В коммутируемых сетях Ethernet очереди кадров, готовых к отправке, организуются обычным для сетей с коммутацией пакетов способом, то есть с помощью буферной памяти интерфейсов коммутатора. В сетях Ethernet на разделяемой среде коммутаторы отсутствуют. На первый взгляд может показаться, что в Ethernet на разделяемой среде нет очередей, свойственных сетям с коммутацией пакетов. Однако отсутствие коммутатора с буферной памятью в сети Ethernet не означает, что очередей в ней нет. Просто здесь очереди переместились в буферную память сетевого адаптера. В те периоды времени, когда среда занята передачей кадров других сетевых адаптеров, данные (предложенная нагрузка) по-прежнему поступают в сетевой адаптер. Так как они не могут быть переданы в это время в сеть, они начинают накапливаться во внутреннем буфере адаптера Ethernet, образуя очередь. Поэтому в сети Ethernet существуют переменные задержки доставки кадров, как и во всех сетях с коммутацией пакетов.
□ Топология. Существует два варианта технологии Ethernet: Ethernet на разделяемой среде и коммутируемый вариант Ethernet. В первом случае все узлы сети разделяют общую среду передачи данных, и сеть строится по топологии общей шины. На рис. 3.16 показан простейший вариант топологии — все компьютеры сети подключены к общей разделяемой среде, состоящей из одного сегмента коаксиального кабеля.
Коаксиальный |
---|
Рис. 3.16. Сеть Ethernet на разделяемой среде |
В том случае, когда сеть Ethernet не использует разделяемую среду, а строится на коммутаторах, объединенных дуплексными каналами связи, говорят о коммутируемом варианте Ethernet. Топология в этом случае является топологией дерева, то есть такой, при которой между двумя любыми узлами сеть существует ровно один путь. Пример топологии коммутируемой сети Ethernet показан на рис. 3.17.
Топологические ограничения (только древовидная структура связей коммутаторов) связаны со способом построения таблиц продвижения коммутаторами Ethernet.
□ Способ коммутации. В технологии Ethernet используется дейтаграммная коммутация пакетов. Единицы данных, которыми обмениваются компьютеры в сети Ethernet, называются кадрами. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную информацию. В том случае, когда сеть Ethernet построена на коммутаторах, каждый коммутатор продвигает кадры в соответствии с теми принципами коммутации пакетов, которые были описаны ранее. А вот в случае односегментной сети Ethernet возникает законный вопрос: где же выполняется коммутация? Где хотя бы один коммутатор, который, как мы сказали, является главным элементом любой сети с коммутацией пакетов? Или же Ethernet поддерживает особый вид коммутации? Оказывается, коммутатор в односегментной сети Ethernet существует, но его не так просто разглядеть, потому что его функции распределены по всей сети. «Коммутатор» Ethernet состоит из сетевых адаптеров и разделяемой среды. Сетевые адаптеры представляют собой интерфейсы такого виртуального коммутатора, а разделяемая среда — коммутационный блок, который передает кадры между интерфейсами. Часть функций коммутационного блока выполняют адаптеры, так как они решают, какой кадр адресован их компьютеру, а какой — нет.
□ Адресация. Каждый компьютер, а точнее каждый сетевой адаптер, имеет уникальный аппаратный адрес (так называемый МАС-адрес, вы уже встречали этот акроним в главе 2). Адрес Ethernet является плоским числовым адресом, иерархия здесь не используется. Поддерживаются адреса для выборочной, широковещательной и групповой рассылки.
□ Разделение среды и мультиплексирование. В сети Ethernet на коммутаторах каждый канал является дуплексным каналом связи, и проблемы его разделения между интерфейсами узлов не возникает. Передатчики коммутаторов Ethernet используют дуплексные каналы связи для мультиплексирования потоков кадров от разных конечных узлов.
В случае Ethernet на разделяемой среде конечные узлы применяют специальный метод доступа с целью синхронизации использования единственного полудуплексного канала связи, объединяющего все компьютер^ сети. Единого арбитра в сети Ethernet на разделяемой среде нет, вместо этого все узлы прибегают к распределенному случайному методу доступа. Информационные потоки, поступающие от конечных узлов сети Ethernet, мультиплексируются в единственном передающем канале в режиме разделения времени. То есть кадрам разных потоков поочередно предоставляется канал. Чтобы подчеркнуть не всегда очевидную разницу между понятиями мультиплексирования и разделения среды, рассмотрим ситуацию, когда из всех компьютеров сети Ethernet только одному нужно передавать данные, причем данные от нескольких приложений. В этом случае проблема разделения среды между сетевыми интерфейсами не возникает, в то время как задача передачи нескольких информационных потоков по общей линии связи (то есть мультиплексирование) остается.
□ Кодирование. Адаптеры Ethernet работают с тактовой частотой 20 МГц, передавая в среду прямоугольные импульсы, соответствующие единицам и нулям данных компьютера. Когда начинается передача кадра, то все его биты передаются в сеть с постоянной скоростью 10 Мбит/с (каждый бит передается за два такта). Эта скорость определяется пропускной способностью линии связи в сети Ethernet.
Ethernet – технология локальных сетей, отвечающая за передачу данных по кабелю, доступную для устройств компьютерных и промышленных сетей. Данная технология располагается на канальном (подуровни LLC и MAC) и физическом уровнях модели OSI.
По скорости передачи данных существуют такие технологии:
- Ethernet – 10 Мб/с
- Fast Ethernet – 100 Мб/с
- Gigabit Ethernet – 1 Гб/с
- 10G Ethernet – 10 Гб/с
Современное оборудование позволяет достигать скорости в 40 Гб/с и 100 Гб/с: такие технологии получили название 40GbE и 100GbE соответственно.
Также стоит выделить классический и коммутируемый Ethernet. Первый изначально использовал разделяемую среду в виде коаксиального кабеля, который позже был вытеснен концентраторами (hub). Основные недостатки – низкая безопасность и плохая масштабируемость (искажение данных при одновременной передаче 2-мя и более компьютерами, также известное как "коллизия").
Коммутируемый Ethernet является более новой и усовершенствованной технологией, которая используется по сей день. Чтобы устранить недостатки предыдущей версии, разделяемую среду исключили и использовали соединение точка-точка. Это стало возможным благодаря новым устройствам под названием "коммутаторы" (switch).
Классическая технология Ethernet давно и успешно заменена новыми технологиями, но некоторые нюансы работы сохранились. Рассмотрим классическую версию.
Физический уровень включает в себя 3 варианта работы Ethernet, которые зависят от сред передачи данных. Это:
- коаксиальный кабель
- витая пара
- оптоволокно
Канальный, в свою очередь, включил методы доступа, а также протоколы, что ничем не отличаются для различных сред передачи данных. Подуровни LLC и MAC в классической технологии присутствуют вместе.
MAC-адреса позволяют идентифицировать устройства, подключенные к сети Ethernet, и идентичных при этом быть не должно, в противном случае из нескольких устройств с одинаковыми адресами будет работать только одно.
По типам MAC-адреса разделяются на:
- Индивидуальные (для отдельных компьютеров).
- Групповые (для нескольких компьютеров).
- Широковещательные (для всех компьютеров сети).
Адреса могут назначаться как производителем оборудования (централизованно), так и администратором сети (локально).
Технология Ethernet и формат кадра:
Также не стоит забывать о коллизиях. Если сигнал, который принят, отличается от переданного, это означает, что произошла коллизия.
Технология CSMA/CD разработана с учетом возникновения коллизий и предполагает их контроль. Модель CSMA/CD выглядит следующим образом:
Классический Ethernet плох тем, что становится неработоспособным при нагрузке более чем 30%.
На сегодняшний день это наиболее оптимальная альтернатива, которая полностью исключает возможность появления коллизий и связанных с ними проблем.
Суть коммутируемого Ethernet в том, что вместо хаба используется свич (коммутатор) – устройство, которое работает на канальном уровне и обладает полносвязной топологией, что обеспечивает соединение всех портов друг с другом напрямую по технологии точка-точка.
Таблицы коммутации есть в каждом таком устройстве. Они описывают, какие компьютеры к какому порту свича подключены. Чтобы узнать MAC-адреса, используется алгоритм обратного обучения, а для передачи данных – алгоритм прозрачного моста.
Простейшая таблица коммутации:
Алгоритм обратного обучения работает таким образом: коммутатор принимает кадры, анализирует заголовок и извлекает из него адрес отправителя. Таким образом, к определенному порту подключен компьютер с конкретным MAC-адресом.
Прозрачный мост не требует настройки и так назван за счет того, что он не заметен для сетевых устройств (у него нет своего MAC-адреса). Коммутатор принимает кадр, анализирует заголовок, извлекает из него адрес получателя и сопоставляет его с таблицей коммутации, определяя порт, к которому подключено устройство. Таким образом, кадр передается на конкретный порт получателя, а не на все порты, как в случае с концентратором. Если же адрес не найден в таблице, коммутатор работает так же, как и хаб.
Технология Ethernet претерпела немало изменений с момента своего появления. Сегодня она способна обеспечить высокоскоростное соединение, лишенное коллизий и не ограниченное небольшой нагрузкой сети, как это было в случае с классическим Ethernet.
В современных локальных сетях используются коммутаторы, которые по своей функциональности значительно эффективнее концентраторов. Больше нет разделяемой среды и связанных с ней коллизий, затрудняющих работу с сетью. Свичи анализируют заголовки и передают кадры только конечному получателю по принципу точка-точка. Способны "изучать" сеть благодаря таблице коммутации и алгоритму обратного обучения.
Плюсами коммутируемого Ethernet являются масштабируемость, высокая производительность и безопасность.
Читайте также: