Что такое коммутатор электротехника
В различных технических текстах можно встретить термин «коммутатор». Что это такое? В самом общем смысле - это устройство для переключения электрических цепей (сигналов), которое может быть электронным, электронно-лучевым или электромеханическим.
В узком смысле так обычно называют коммутатор зажигания, которым оснащаются любые транспортные средства с бензиновыми двигателями. Этой разновидности коммутаторов, в основном автомобильных, и посвящена данная статья.
Предыстория систем зажигания
Как известно, в каждом цикле работы бензинового двигателя внутреннего сгорания существует этап приготовления топливно-воздушной горючей смеси и этап ее сгорания. Но чтобы смесь сгорела, ее нужно чем-то поджечь.
Первым решением, применявшимся в самых ранних автомобильных ДВС, было зажигание смеси от калильной трубки, вставленной в цилиндр и разогреваемой предварительно перед запуском двигателя. При его работе температура этой трубки постоянно поддерживалась за счет сгорающей в каждом цикле работы смеси.
Интересно, что система искрового зажигания от магнето применялась параллельно с калильным зажиганием автодвигателей, но поначалу только для промышленных газовых ДВС. Этот принцип был быстро перенят и автопроизводителями, а после изобретения Р. Бошем в 1902 году привычной свечи зажигания искровая система стала общепринятой.
Принцип искрового зажигания
В настоящее время наиболее распространена батарейная система зажигания, содержащая источник тока в виде автомобильного аккумулятора при пуске и автомобильного генератора при работающем двигателе, катушку зажигания, представляющую собой трансформатор с высоковольтной вторичной обмоткой, к которой присоединена искрообразующая свеча зажигания, а также распределитель (коммутатор) зажигания. Работа коммутатора заключается в периодическом прерывании цепи тока первичной обмотки катушки зажигания. При каждом таком прерывании тока его магнитное поле, существующее в точках пространства, занятых проводами вторичной обмотки катушки зажигания, очень быстро уменьшается. При этом в соответствии с законом электромагнитной индукции в тех же точках пространства возникает весьма большое вихревое электрическое поле, напряженность которого создает высокую (до 25 кВ) ЭДС во вторичной обмотке катушки зажигания, разорванной электродами свечи. Напряжение между ними быстро достигает величины, достаточной для пробоя воздушного промежутка, и тогда проскакивает электрическая искра, поджигающая топливно-воздушную смесь.
Что коммутируется в системе зажигания?
Итак, автомобильный коммутатор. Что это такое и зачем он нужен? Коротко говоря, это устройство, задачей которого является разрыв цепи тока в первичной обмотке катушки зажигания в наиболее выгодный для этого момент.
В четырехтактном ДВС этот момент наступает в конце такта сжатия (2-го такта работы ДВС), незадолго до достижения поршнем так называемой верхней мертвой точки (ВМТ), в которой расстояние от любой точки поршня до оси вращения коленвала ДВС является максимальным. Поскольку коленвал совершает круговое вращательное движение, то момент прерывания тока привязывают к некоторому его положению перед достижением им и поршнем положения ВМТ. Угол между этим положением коленвала и вертикальной плоскостью называют углом опережения зажигания. Он варьируется в диапазоне от 1 до 30 градусов.
Учитывая историю, на вопрос: «Автомобильный коммутатор: что это такое?» - следует отвечать, что это сначала механический, а позже, по мере развития техники, электронный прерыватель тока в катушке зажигания.
Механический предшественник коммутатора зажигания
Собственно, коммутатором это устройство стали называть лишь в последние годы, после того как оно стало полностью электронным. А прежде, начиная с 1910 года, когда на автомобилях «кадиллак» впервые появилась автоматическая система зажигания, его функцию наряду с другими задачами выполнял прерыватель-распределитель (трамблер). Такая двойственность наименования возникла из-за двоякой функции его в системе зажигания. С одной стороны, ток в первичной обмотке катушки зажигания нужно прерывать – отсюда возникает «прерыватель». С другой стороны, напряжение высоковольтной обмотки катушки зажигания нужно поочередно распределять по свечам всех цилиндров, причем с нужным углом опережения. Отсюда вторая половина названия – «распределитель».
Как работали трамблеры?
Прерыватель-распределитель имеет приводимый во вращение от коленвала внутренний вал, на котором закреплен диэлектрический ротор-бегунок с вращающейся токоразносной пластиной на его торце. По пластине скользит подпружиненная угольная щетка, соединенная с высоковольтным центральным контактом в крышке распределителя, который, в свою очередь, соединен с вторичной обмоткой катушки зажигания. Токоразносная пластина периодически приближается к расположенным в крышке трамблера контактам высоковольтных проводов, идущих к свечам цилиндров. В этот момент во вторичной обмотке катушки возникает высокое напряжение, которое пробивает два воздушных промежутка: между токоразностной пластиной и контактом провода к данной свече и между электродами свечи.
На том же валу установлены кулачки, число которых равно числу цилиндров, а выступы каждого кулачка размыкают одновременно с подключением конкретной свечи контакты прерывателя тока, включенные в цепь первичной обмотки катушки зажигания.
Чтобы между контактами прерывателя не возникало искры при размыкании, параллельно им подключен конденсатор большой емкости. При размыкании контактов прерывателя ЭДС индукции в первичной обмотке вызывает ток заряда конденсатора, но вследствие его большой емкости напряжение на нем, а следовательно и между разомкнутыми контактами, не достигает величины пробоя воздуха.
А как же с углом опережения?
Как известно, при уменьшении частоты вращения коленвала смесь в цилиндрах нужно поджигать в такте ее сжатия попозже, прямо перед самой ВМТ, т.е. угол опережения зажигания следует уменьшать. Наоборот, при увеличении частоты вращения смесь в такте сжатия нужно поджигать пораньше, т.е. угол опережения увеличивать. В трамблерах эту функцию выполнял центробежный регулятор, механически связанный с кулачками прерывателя тока. Он поворачивал их на валу распределителя таким образом, чтобы они пораньше или попозже в такте сжатия смеси размыкали контакты прерывателя.
Изменять угол опережения необходимо и при неизменной частоте, когда меняется нагрузка на двигатель. Эту работу выполняло специальное устройство – вакуумный регулятор зажигания.
Появление первых коммутаторов
К концу 70-х годов прошлого века стало ясно, что самым слабым узлом трамблера являются контакты прерывателя, через которые протекал полный ток первичной обмотки. Они постоянно подгорали и выходили из строя. Поэтому первым решением стала специальная электронная схема коммутатора для прерывания тока в катушке. В ее входную слаботочную цепь включались провода от выводов традиционного контактного прерывателя трамблера. Однако теперь его контакты прерывали не полный ток катушки зажигания, а небольшой ток во входной цепи коммутатора.
Собственно же электронный коммутатор был конструктивно выполнен в отдельном блоке и подключался (по желанию водителя) к классическому трамблеру. Такая система зажигания получила название контактной электронной. Она была весьма популярной в 80-е годы прошлого века. И в наше время еще можно встретить оснащенные ею автомобили.
Схема коммутатора контактной электронной системы собиралась на транзисторах.
Следующий шаг – отказ от контактного прерывателя
Контактный прерыватель тока даже в слаботочном варианте, применяемом в контактной электронной системе зажигания, оставался весьма ненадежным узлом. Поэтому автомобилестроители предпринимали немалые усилия для его исключения. Эти усилия увенчались успехом после создания бесконтактного датчика-распределителя на основе датчика Холла.
Теперь вместо нескольких кулачков на валу распределителя стали устанавливать цилиндрический полый экран с прорезями и шторками между ними, причем число шторок и прорезей равно числу цилиндров двигателя. Шторки и прорези экрана движутся в магнитном поле, создаваемом постоянным магнитом, мимо миниатюрного датчика Холла. Пока мимо него движется шторка экрана, выходное напряжение датчика Холла отсутствует. Когда же шторка сменяется прорезью, с датчика Холла электронной схемой снимается фронт импульса напряжения, свидетельствующий о необходимости прервать ток в первичной обмотке катушки зажигания. Этот импульс напряжения передается по проводам в блок коммутатора тока в катушке зажигания, где он предварительно усиливается и далее используется для управления основным силовым коммутирующим каскадом.
Другим вариантом бесконтактного датчика-распределителя является узел с оптическим датчиком, у которого вместо датчика Холла используется фототранзистор, а вместо постоянного магнита – светодиод. Оптический датчик имеет такой же вращающийся экран с прорезями и шторками.
Появление коммутатора как такового
Итак, в бесконтактной системе зажигания вместо одного контактного трамблера появились два отдельных узла: бесконтактный (но только по низкому напряжению) датчик-распределитель и электронный коммутатор. Функцию же распределения высоковольтного напряжения по свечам зажигания в датчике-распределителе по-прежнему выполняет механический ротор-бегунок с токоразносной пластиной.
А как же с регулированием угла зажигания? Эти задачи по-прежнему выполняют центробежный и вакуумный регуляторы в составе датчика-распределителя. Первый из них теперь поворачивает на валу не кулачки, а сдвигает шторки экрана, изменяя тем самым угол зажигания. Вакуумный же регулятор имеет возможность сдвигать датчик Холла с его опорной пластиной, также регулируя данный угол.
Учитывая вышеизложенное, на вопрос: «Современный автомобильный коммутатор: что это такое?» – следует давать ответ, что это конструктивно обособленный электронный блок бесконтактной системы зажигания.
Отказ от распределения высокого напряжения
Дольше всего в коммутаторе сохранялся механический распределитель высоковольтного напряжения по свечам цилиндров. Самое интересное, что этот узел был достаточно надежен и не вызывал больших нареканий. Однако время не стоит на месте, и в начале нашего столетия схема подключения коммутатора претерпела очередные крупные изменения.
В современных автомобилях вообще отсутствует распределение высоковольтного напряжения от одной катушки по разным свечам. Наоборот, в них «размножились» сами катушки и стали принадлежностью свечи каждого цилиндра. Теперь вместо контактной коммутации свечей по высокому напряжению выполняется бесконтактная коммутация их катушек по низкому напряжению. Конечно, это усложняет схему коммутатора, но и возможности современной схемотехники гораздо шире.
В современных автомобилях с инжекторными двигателями управление коммутатором осуществляет либо автономный блок управления двигателем, либо бортовой компьютер автомобиля. Эти устройства управления анализируют не только скорость вращения коленвала, но множество других параметров, характеризующих топливо и охлаждающую жидкость, температуру различных узлов и окружающей среды. На основании их анализа в режиме реального времени меняются и настройки угла опережения зажигания.
Неисправности коммутатора
Наиболее часто встречающейся неисправностью механического трамблера является подгорание его контактов: как подвижных, так и высоковольтных контактов свечей. Чтобы этого не случилось (по крайней мере, не слишком быстро), нужно регулярно осматривать их, и если на них образовался нагар, то его следует снять надфилем или мелкой шкуркой.
Если вышел из строя конденсатор, включенный параллельно контактам прерывателя, или резистор в цепи центрального высоковольтного электрода, то их можно заменить.
Неисправности коммутатора электронного, вызванные выходом из строя усилителя импульсов датчика Холла или коммутатора тока катушки, обычно не подлежат устранению, так как такой коммутатор является неразборным. В этом случае, как правило, неисправный блок просто заменяется новым.
Как проверить коммутатор?
Если обороты двигателя на холостом ходу «плавают», или он глохнет на ходу, или вообще не запускается, то следует проверить наличие искры на подключенных к распределителю зажигания с датчиком Холла свечах. Для этого нужно выкрутить их, надеть наконечники бронепроводов, положить свечи на «массу» и «крутануть» коленвал стартером. Если искры нет или она слабая, нужно переходить к коммутатору.
Но как проверить коммутатор? Следует включить зажигание и оценить, как отклоняется стрелка вольтметра. Если коммутатор исправен, то она должна отклоняться в два этапа. Сначала стрелка занимает некоторое промежуточное положение, в котором остается 2-3 секунды, а затем переходит в конечное (штатное) положение. Если стрелка сразу занимает конечное положение, то можно пробовать заменять коммутатор.
Подключение коммутатора
Как подключить коммутатор к бесконтактной системе зажигания? Следует помнить, что его клеммная колодка подключается двумя проводами к клеммам «Б» и «К» катушки зажигания, трехпроводным жгутом с разъемом - к датчику Холла на датчике-распределителе и одним проводом - к «массе». С выводом «+» аккумулятора схема коммутатора соединяется на клемме «Б» катушки.
Коммутатор – это устройство для изменения соединений в электрической цепи.
Коммутатор применяют в энергетике, электротехнике, радиотехнике и проводной связи, деля их на сильноточные и слаботочные. К сильноточным коммутаторам относятся энергетические, в свою очередь, подразделяющиеся на перекидные, вращающиеся и продольно перемещающиеся. Перекидные коммутаторы применяют в электрической цепи постоянного и переменного тока до 1000 А при напряжении 500 В, приводимые в действие каким-либо переключателем. Вращающиеся и продольно перемещающиеся коммутаторы скользят по ряду неподвижных контактов с помощью нескольких ползунов. К таким коммутаторам относятся реостаты, контроллеры и командоаппараты. Элементные коммутаторы могут играть роль измерителей последовательно соединенных аккумуляторов и называются зарядным или разрядным устройством. К сильноточным коммутаторам можно отнести коллекторы электрических машин, в которых для коммутирования тока с большим количеством переключений в единицу времени применяются действующие без разрыва цепи и механического износа контактов ионные и магнитные коммутаторы. К слаботочным цепям относят коммутаторы, которые применяются в телеграфной и телефонной связи, а также в радиотехнических устройствах и телемеханике. Телеграфные коммутаторы иногда бывают ломельные, т. е. состоящие из перпендикулярных латунных реек, изолированных друг от друга, и штепсельные. Телефонный коммутатор – это устройство, которое применяется в телефонной связи при ручном соединении абонентов. Он состоит из вызывного телефонного клапана и реле, которое замыкает телефонную цепь. Шнуровая пара телефонного коммутатора состоит из соединительного шнура, телефонного ключа, приборов сигнализации отбоя. Ключи и штепсели расположены на горизонтальной панели, а клапаны и отбойные лампы – на вертикальной панели.
В радиотехнике коммутатор применяют для изменения соединений приемника с антенной. Сюда включается: переключатель диапазонов, многополюсные галетные переключатели. К данным коммутаторам можно отнести передающие радиостанции, радиолокаторы, ионные разрядники и искровые технические разрядники.
Коммутация электрических цепей является одним из главных элементов электротехники. Под данным понятием подразумевают переключения, которые производятся в электрических соединениях, машинах, кабелях, трансформаторах, аппаратах и приборах, генерирующих, потребляющих и распределяющих электроэнергию.
Существует два типа таких устройств:
-
1. Контактные, в которых коммутация происходит путем перемещения контактов по отношению между собой;
-
2. Бесконтактные – никаких перемещений деталей не происходит.
К коммуникационным аппаратам относятся:
- автоматический механический выключатель, включающий, проводящий и выключающий токи, если цепь находится в нормальном состоянии. В случае аварии (замыкания), он ток выключит сам ;
- контактор служит для повторной коммуникации цепей, по которым проходит высокоиндуктивный ток;
- так называемое УЗО, то есть устройство защитного выключения размыкает контакты в случае превышения током определенного значения. В его функции входит защита живых существ от поражения их током и имущества от пожаров;
- кнопка-выключатель производит оперативную операцию откл/вкл.;
- разъединитель тоже включает или отключает определенные участки электрических установок, находящиеся под напряжением в отсутствии нагрузки. Благодаря ему обслуживающий персонал точно знает, что части установки обесточены и с ними можно работать;
- реле тепловые, механические и электрические предназначены для коммутации участков электрической цепи или ее всей в целом при изменении определенных показателей на входе;
- выключатели нагрузки – это разъединители с тремя полюсами гасящие дугу при отключении перегрузки.
Параметры коммутационных аппаратов
У этих изделий существуют свои показатели, по которым их подбирают для эксплуатации. Это собственное и полное время отключения и включения и т.п.
Также обращается внимание на ток вкл/откл, а также устойчивость при прохождении сквозных токов. Много значат и показатели износостойкости – коммутационной и механической и т.д.
Коммутационные аппараты позволяют повысить технический уровень производства, развивать уровень автоматизации ускоренными темпами.
Коммутатор представляет собой вращающийся электрический выключатель в определенных типах электродвигателей и электрических генераторы , которые периодически переворачивают текущее направление между ротором и внешней цепью. Он состоит из цилиндра, состоящего из множества металлических контактных сегментов на вращающемся якоре машины. Два или более электрических контакта, называемых « щетками », сделанные из мягкого проводящего материала, такого как уголь, прижимаются к коммутатору, создавая скользящий контакт с последовательными сегментами коммутатора при его вращении. Обмотки (катушки проволоки) на якоре подключены к сегментам коммутатора.
Коммутаторы используются в машинах постоянного тока (DC): динамо- машинах (генераторах постоянного тока) и многих двигателях постоянного тока, а также в универсальных двигателях . В двигателе коммутатор подает электрический ток на обмотки. Путем изменения направления тока во вращающихся обмотках каждые пол-оборота создается постоянная вращающая сила ( крутящий момент ). В генераторе коммутатор снимает ток, генерируемый в обмотках, меняя направление тока на противоположное с каждой половиной оборота, служа механическим выпрямителем для преобразования переменного тока с обмоток в однонаправленный постоянный ток во внешней цепи нагрузки. Первая машина коммутаторного типа постоянного тока, динамо , была построена Ипполитом Пикси в 1832 году по предложению Андре-Мари Ампера .
Коммутаторы относительно неэффективны и также требуют периодического обслуживания, например замены щеток. Поэтому использование коммутируемых машин сокращается, их заменяют машины переменного тока (AC), а в последние годы - бесщеточные двигатели постоянного тока, в которых используются полупроводниковые переключатели.
СОДЕРЖАНИЕ
Принцип действия
Коммутатор состоит из набора контактных планок, прикрепленных к вращающемуся валу машины и соединенных с обмотками якоря. Когда вал вращается, коммутатор меняет направление тока в обмотке. Для одиночной обмотки якоря, когда вал совершил половину полного оборота, обмотка теперь подключается так, что ток течет через нее в противоположном начальном направлении. В двигателе ток якоря заставляет фиксированное магнитное поле оказывать вращающую силу или крутящий момент на обмотку, заставляя ее вращаться. В генераторе механический крутящий момент, приложенный к валу, поддерживает движение обмотки якоря через стационарное магнитное поле, индуцируя ток в обмотке. И в случае двигателя, и в случае генератора коммутатор периодически меняет направление тока через обмотку на обратное, так что ток в цепи, внешней по отношению к машине, продолжается только в одном направлении.
Простейший практичный коммутатор
Практические коммутаторы имеют как минимум три контактных сегмента, чтобы предотвратить «мертвую» зону, где две щетки одновременно соединяют только два сегмента коммутатора. Щетки делаются шире изолированного зазора, чтобы щетки всегда контактировали с катушкой якоря. Для коммутаторов, по крайней мере, с тремя сегментами, хотя ротор потенциально может остановиться в положении, когда два сегмента коммутатора касаются одной щетки, это только обесточивает одну из лопастей ротора, в то время как другие по-прежнему будут работать правильно. С оставшимися лопастями ротора двигатель может производить достаточный крутящий момент, чтобы начать вращение ротора, а генератор может обеспечивать полезную мощность для внешней цепи.
Конструкция кольца / сегмента
Коммутатор состоит из набора медных сегментов, закрепленных на части окружности вращающейся машины или ротора, и набора подпружиненных щеток, прикрепленных к неподвижной раме машины. Две или более неподвижных щеток подключаются к внешней цепи, либо к источнику тока для двигателя, либо к нагрузке для генератора.
Сегменты коммутатора подключены к катушкам якоря, причем количество катушек (и сегментов коммутатора) зависит от скорости и напряжения машины. У больших двигателей могут быть сотни сегментов. Каждый проводящий сегмент коммутатора изолирован от соседних сегментов. Слюда использовалась на ранних машинах и до сих пор используется на больших машинах. Многие другие изоляционные материалы используются для изоляции небольших машин; пластмассы позволяют, например, быстро изготавливать изолятор. Сегменты удерживаются на валу с помощью формы ласточкина хвоста на краях или на нижней стороне каждого сегмента. Изолирующие клинья по периметру каждого сегмента прижимаются, так что коммутатор сохраняет механическую стабильность во всем нормальном рабочем диапазоне.
В небольших электроприборах и двигателях инструментов сегменты обычно постоянно обжаты и не могут быть удалены. Когда двигатель выходит из строя, его выбрасывают и заменяют. На больших промышленных машинах (например, мощностью от нескольких киловатт до тысяч киловатт) экономически выгодно заменять отдельные поврежденные сегменты, поэтому концевой клин можно откручивать, а отдельные сегменты снимать и заменять. Замена медных и слюдяных сегментов обычно называется «заправкой». Перезаправляемые коммутаторы с ласточкиным хвостом являются наиболее распространенной конструкцией более крупных коммутаторов промышленного типа, но многоразовые коммутаторы также могут быть сконструированы с использованием внешних лент из стекловолокна (конструкция со стеклянными полосами) или кованых стальных колец (конструкция с внешним стальным термоусадочным кольцом и конструкция с внутренним стальным термоусадочным кольцом. ). Одноразовые коллекторы литого типа, которые обычно используются в небольших двигателях постоянного тока, становятся все более распространенными в более крупных электродвигателях. Коммутаторы литого типа не подлежат ремонту и в случае повреждения подлежат замене. В дополнение к обычно используемым методам нагрева, крутящего момента и тоннажа для коммутаторов приправы, для некоторых высокопроизводительных коммутаторов требуется более дорогой, особый процесс «приправы отжимом» или испытание при отжиме с превышением скорости, чтобы гарантировать стабильность отдельных сегментов и предотвратить преждевременное износ угольных щеток. Такие требования характерны для тяговых, военных, аэрокосмических, ядерных, горнодобывающих и высокоскоростных приложений, где преждевременный отказ может привести к серьезным негативным последствиям.
Трение между сегментами и щетками в конечном итоге приводит к износу обеих поверхностей. Угольные щетки, изготовленные из более мягкого материала, изнашиваются быстрее и могут быть легко заменены без демонтажа машины. Старые медные щетки вызывали больший износ коллектора, вызывая со временем глубокие канавки и зазубрины на поверхности. Коммутатор на небольших двигателях (скажем, мощностью менее киловатта) не предназначен для ремонта в течение всего срока службы устройства. На крупном промышленном оборудовании коллектор можно повторно покрыть абразивом, или ротор может быть снят с рамы, установлен в большом токарном станке по металлу , а поверхность коллектора может быть восстановлена путем обрезки его до меньшего диаметра. Самое крупное оборудование может включать в себя токарно-токарную приставку непосредственно над коммутатором.
Конструкция кисти
В ранних машинах для контакта с поверхностью коммутатора использовались щетки из жилы медной проволоки. Однако эти твердосплавные щетки имели тенденцию царапать и протирать гладкие сегменты коммутатора, что в конечном итоге требовало восстановления поверхности коммутатора. По мере того, как медные щетки изнашиваются, пыль и кусочки щетки могут вклиниваться между сегментами коммутатора, закорачивая их и снижая эффективность устройства. Тонкая медная проволочная сетка или сетка обеспечивала лучший контакт с поверхностью при меньшем износе сегментов, но сетчатые щетки были дороже, чем ленточные или проволочные медные щетки.
В современных вращающихся машинах с коллекторами почти исключительно используются угольные щетки, в которые может быть добавлен медный порошок для улучшения проводимости. Металлические медные щетки можно найти в игрушечных или очень маленьких двигателях, таких как показанный выше, и в некоторых двигателях, которые работают только с перебоями, например, в автомобильных стартерах.
Двигатели и генераторы страдают от явления, известного как «реакция якоря», одним из эффектов которого является изменение положения, в котором в идеале должно происходить реверсирование тока через обмотки при изменении нагрузки. В ранних машинах щетки устанавливались на кольце с ручкой. Во время работы необходимо было отрегулировать положение щеточного кольца, чтобы отрегулировать коммутацию, чтобы свести к минимуму искрение на щетках. Этот процесс был известен как «раскачивание кистей».
Были разработаны различные разработки для автоматизации процесса регулировки коммутации и минимизации искрения на щетках. Одним из них была разработка «щеток с высоким сопротивлением», или щеток, сделанных из смеси медного порошка и углерода. Несмотря на то, что такая щетка описывается как щетки с высоким сопротивлением, сопротивление этой щетки составляет порядка миллиомов, точное значение зависит от размера и функции машины. Кроме того, щетка с высоким сопротивлением была сконструирована не как щетка, а в форме угольного блока с изогнутой поверхностью, соответствующей форме коллектора.
Угольная щетка с высоким сопротивлением сделана достаточно большой, чтобы она была значительно шире, чем изолирующий сегмент, который она охватывает (а на больших машинах часто может охватывать два изолирующих сегмента). Результатом этого является то, что по мере того, как сегмент коммутатора выходит из-под щетки, ток, проходящий к нему, спадает более плавно, чем в случае со щетками из чистой меди, где контакт внезапно разрывается. Точно так же сегмент, контактирующий с щеткой, имеет аналогичное нарастание тока. Таким образом, хотя ток, проходящий через щетку, был более или менее постоянным, мгновенный ток, проходящий через два сегмента коммутатора, был пропорционален относительной площади контакта с щеткой.
Введение угольной щетки имело удобные побочные эффекты. Угольные щетки изнашиваются более равномерно, чем медные, а мягкий уголь вызывает гораздо меньшее повреждение сегментов коллектора. У углерода меньше искр по сравнению с медью, и по мере того, как углерод изнашивается, более высокое сопротивление углерода приводит к меньшему количеству проблем, связанных с скоплением пыли на сегментах коллектора.
Соотношение меди и углерода можно изменить для определенной цели. Щетки с более высоким содержанием меди лучше работают с очень низким напряжением и большим током, тогда как щетки с более высоким содержанием углерода лучше подходят для высокого напряжения и низкого тока. Щетки с высоким содержанием меди обычно выдерживают от 150 до 200 ампер на квадратный дюйм контактной поверхности, в то время как щетки с более высоким содержанием углерода выдерживают только от 40 до 70 ампер на квадратный дюйм. Более высокое сопротивление углерода также приводит к большему падению напряжения от 0,8 до 1,0 вольт на контакт или от 1,6 до 2,0 вольт на коммутаторе.
Щеткодержатели
Пружина обычно используется со щеткой, чтобы поддерживать постоянный контакт с коммутатором. По мере того как щетка и коммутатор изнашиваются, пружина постепенно толкает щетку вниз к коммутатору. В конце концов щетка изнашивается и становится достаточно тонкой, поэтому устойчивый контакт становится невозможным, или она перестает надежно удерживаться в держателе щетки, и поэтому щетку необходимо заменить.
Обычно гибкий силовой кабель прикрепляют непосредственно к щетке, потому что ток, протекающий через опорную пружину, может вызвать нагрев, что может привести к потере прочности металла и потере натяжения пружины.
Когда коммутируемый двигатель или генератор потребляет больше энергии, чем способна проводить одна щетка, узел из нескольких щеткодержателей устанавливается параллельно на поверхности очень большого коммутатора. Этот параллельный держатель распределяет ток равномерно по всем щеткам и позволяет осторожному оператору удалить неисправную щетку и заменить ее новой, даже если машина продолжает вращаться с полным питанием и под нагрузкой.
Высокомощное, сильноточное коммутируемое оборудование сейчас редко встречается из-за менее сложной конструкции генераторов переменного тока, которые позволяют слаботочной высоковольтной катушке вращающегося поля возбуждать сильноточные катушки статора с фиксированным положением. Это позволяет использовать в конструкции генератора очень маленькие одиночные щетки . В этом случае вращающиеся контакты представляют собой сплошные кольца, называемые контактными кольцами , и переключения не происходит.
Современные устройства, использующие угольные щетки, обычно имеют конструкцию, не требующую обслуживания, которая не требует регулировки в течение всего срока службы устройства, с использованием фиксированного гнезда держателя щеток и комбинированного узла щетка-пружина-кабель, который вставляется в гнездо. Изношенную щетку вынимают и вставляют новую.
Читайте также: