Bcsp bluetooth что это
Bluetooth — это технология беспроводной связи, позволяющая среди прочего подключить наушники или портативную акустику, стереосистему или саундбар к вашему смартфону или ноутбуку. Сегодня на рынке представлено множество устройств с различными версиями Bluetooth протокола и с поддержкой разных кодеков. Что все это значит, какая версия последняя, нужно ли во всем этом разбираться и главное для нас — влияет ли это как-то на качество звучания? Давайте посмотрим.
С самого начала следует отметить одну важную вещь: звуковая технология Bluetooth, которую вы слышите, оказывает гораздо меньшее влияние на качество звука, чем дизайн самого устройства. Если вы попробуете протестировать несколько беспроводных наушников или колонок, вы услышите очевидные различия между устройствами. Если вы попробуете одно и то же устройство, но подключенное с различными кодеками или версиями Bluetooth, разница может быть не такой очевидной, возможно, даже незаметной.
Проще говоря, не стоит основывать свой выбор исключительно на поддерживаемых устройством технологиях Bluetooth и кодеках, это не первый и даже не второй по важности критерии.
Версии Bluetooth
За прошедшие с начала века годы Bluetooth кардинально улучшился, и сжатие звука сегодня не такое грубое, как это было во времена Bluetooth 1.1 или 2.0 (когда беспроводные гарнитуры и наушники только появлялись на рынке). Выделим основные технические различия версий Bluetooth, устройства с которыми можно найти в продаже сегодня.
Bluetooth 3.0: значительно увеличена скорость передачи данных (до 24 Мбит/с против 2,1 Мбит/с в Bluetooth 2.0), но возросло энергопотребление.
Bluetooth 4.0: уменьшено энергопотребление с сохранением скорости 24 Мбит/с.
Bluetooth 4.1: появилась защита от перекрестных помех при совместной работе с LTE-модулями, установленными во всех 4G смартфонах.
Bluetooth 4.2: увеличена скорость и улучшена защита передачи данных.
Bluetooth 5.0: радиус действия увеличен в 4 раза, скорость увеличена в 2 раза.
Bluetooth 5.1: появилась возможность определять местоположение и направление с максимальной точностью.
Как видите, новые версии решают в основном проблемы скорости передачи данных и эффективности энергопотребления, редко влияя на качество звука напрямую. Тем не менее, более новые версии могут повысить надежность передачи данных, что может позволить более “тяжелому” кодеку, например, aptX HD или LDAC, работать с более высокой скоростью передачи данных.
Напомним, что для работы определенной версии Bluetooth ее должны поддерживать оба устройства. То есть, если в вашем смартфоне Bluetooth 5.1, а в наушниках 4.2, то для подключения будет использоваться Bluetooth 4.2.
Bluetooth и аудиокодеки
Итак, непосредственно на финальное звучание сейчас больше влияет не версия Bluetooth, а то, какой аудиокодек используются при передаче звука. По сути под кодеком здесь понимается сложный алгоритм обработки (кодирования/декодирования) аудиоданных для их отправки по беспроводной связи между вашими устройствами. Использование кодека необходимо, потому что чем меньше данных передается по Bluetooth, тем надежнее соединение и тем меньше вероятность того, что ваши наушники потеряют сигнал в середине любимого трека.
Все текущие Bluetooth кодеки работают «с потерями» (lossy), они отбрасывают часть аудиоданных, снижая скорость передачи данных аудио (битрейт), например, с CD-качества со скоростью 1411 килобит в секунду примерно до 300
900 кбит/с (о том, что такое Lossy и Lossless мы поговорим отдельно в следующий раз).
Другой характеристикой, которая отличает кодеки, является задержка. Время, необходимое процессору цифрового сигнала для декодирования закодированного звука, При большой задержке звука создаются проблемы с его синхронизацией при просмотре видео.
Как и в случае с версией BT — для работы кодека важно, чтобы его поддерживали не только наушники или акустика, но и источник звука — телефон, плеер или компьютер.
Стандартным для Bluetooth является SBC. Этот кодек может работать со скоростью передачи данных до 345 килобит в секунду. Если устройства источника и приемника могут обрабатывать звук с высокой скоростью передачи данных, качество звука трудно отличить от качества AAC или стандартного aptX. А вот с задержка может превышать 100 и более миллисекунд, что создает проблемы с синхронизацией звука при просмотре видео.
Однако к концу 2020 года на смену SBC должен прийти новый кодек Bluetooth LC3. Bluetooth SIG объявила о преемнике SBC на выставке CES 2020. LC3 используется в протоколе LE Audio на основе спецификации ядра Bluetooth 5.2 (наш материал про LC3 с CES 2020).
Ok, LC3 — это наше будущее, а что происходит в настоящем? Кратко рассмотрим представленные на сегодня альтернативы SBC.
aptX: это базовый кодек из семейства, принадлежащего компании Qualcomm. Он кодирует разницу в уровне между одним аудиосэмплом и следующим. Такой подход позволяет ему работать быстрее и достигать задержек, которые обычно составляют менее 120 мс, что снижает вероятность ошибки синхронизации по сравнению с SBC. В отличие от SBC, который может работать с различной скоростью передачи данных, скорость передачи данных для aptX всегда составляет 352 кбит/с.
aptX HD — это улучшенная версия кодека Qualcomm, теперь поддерживается битрейт до 576 кб/сек (при 48 кГц / 24 бита).
aptX Low Latency (aptX LL) — еще одна разновидность кодека aptX, где основной акцент делается на контент, такой как видео и игры, поскольку основное внимание в этой технологии уделяется уменьшенной задержке при передаче сигнала. С помощью этой технологии задержка аудио на Bluetooth уменьшается примерно до 40 мс, что значительно ниже порога, который мы понимаем как асинхронность между тем, что видно и тем, что слышно. Не получил широкого распространения.
aptX Adaptive — новая версия кодека aptX с адаптивным механизмом сжатия аудио с переменным битрейтом. То есть он автоматически настраивает свою работу для получения наилучшего сочетания качества звука, низкой задержки и высокой надежности передачи данных. Битрейт варьируется от 280 до 420 кбит/с, а его задержка составляет от 50 до 80 мс.
AAC — это пока главный и единственный (кроме SBC) беспроводной союзник пользователей техники от Apple. По сути кодек считается чем-то вроде более продвинутой версии MP3, с немного лучшим звуком при одинаковом (особенно низком) битрейте, чем у MP3 и SBC. При использовании Bluetooth AAC работает со скоростью до 256 кбит/с. Если у вас есть iPhone или iPad, наличие AAC в наушниках или беспроводной колонке может быть преимуществом. Однако, в отличие от кодеков aptX, реализация AAC не контролируется какой-либо одной компанией, и в результате реализация на Android устройствах может сильно различаться и проигрывать стандартному SBC по всем параметрам.
LDAC — соперник для aptX HD от Sony. Из преимуществ — пропускная способность до 990 кбит/с (при 96 кГц / 24 бита). Из недостатков — LDAC чаще всего встречается только в наушниках от Sony и в устройствах с Android 8+.
LHDC (HWA) — китайский ответ Sony, поддерживает битрейты 400/560/900 кбит/с. Только начинает появляться в ограниченном количестве устройств.
Итак, подведем итоги:
Версия Bluetooth чаще всего не влияет на качество звука напрямую.
Версию Bluetooth и определенный кодек должны поддерживать оба устройства.
Разница между разными кодеками на одном устройстве может быть малозаметной.
AAC имеет смысл только для Apple, не представляет интереса для Android.
aptX и другие кодеки, наоборот, не поддерживаются устройствами Apple.
Беспроводные технологии не должны быть главным фактором при выборе аудиоустройства. Не стоит автоматически списывать со счетов наушники с не самой последней версией Bluetooth или только с SBC, они могут звучать лучше или быть удобнее своих конкурентов.
В классической беспроводной технологии Bluetooth профиль последовательного порта (SPP) обеспечивает возможность замены проводного интерфейса RS-232 беспроводным соединением между двумя устройствами. В устройствах, работающих на новом Bluetooth-стандарте BLE, структура стека для соединения через последовательный порт – иная. Как же организовать на них замену проводного интерфейса беспроводным соединением?
Изначально созданная для высокоскоростной передачи данных в сетях малого радиуса действия беспроводная технология Bluetooth с течением времени развивалась и совершенствовалась. Последнее существенное изменение произошло с появлением версии 4.0, известной также как Bluetooth Low Energy (BLE). Новейшая принятая спецификация имеет версию 4.2. Для BLE используется также и другое название – Bluetooth Smart.
В Bluetooth при создании соединения между двумя устройствами одно из них, инициирующее соединение, выступает в роли ведущего (Master), а другое будет находиться в роли ведомого (Slave). При этом оба устройства могут действовать как индивидуально (топология Point to Point), так и находясь в составе сети со структурой типа «звезда» (топология Star) (рисунок 1). В этом случае один узел функционирует как центральный и действует в роли ведущего, в то время как все остальные узлы функционируют в роли ведомых.
Рис. 1. Две топологии соединений в Bluetooth
В классическом варианте Bluetooth соединение между двумя точками поддерживается, даже если нет подлежащих передаче данных, что приводит к повышенному расходу энергии от автономного источника питания. Лишь при переходе в спящий режим удается несколько сократить потребляемый от батареи ток. В результате на основе классического Bluetooth практически невозможно реализовать компактные устройства длительного пользования с батарейным питанием. Значительно более экономичный в отношении потребляемого тока стандарт Bluetooth Low Energy позволяет создавать конечные устройства с питанием от батареек пуговичного типа, которые способны работать в течение нескольких месяцев и даже лет.
BLE можно рассматривать как расширение базовой технологии Bluetooth Classic, ориентированное в основном на передачу небольших объемов данных, которое оптимально подходит для Интернета вещей. Сравнение основных характеристик BLE и обычного Bluetooth приведено в таблице 1.
Таблица 1. Сравнение Bluetooth с Bluetooth Low Energy
BLE, как и обычный Bluetooth, работает в нелицензируемом частотном диапазоне 2,4 ГГц, используя 40 каналов вместо 79 в классическом варианте и довольствуясь сокращенным по длительности до 3 мс сеансом связи. При этом максимальный размер передаваемого пакета составляет 27 байт.
BLE использует меньше каналов, но с расширенной полосой пропускания. Как показано на рисунке 2, ширина каждого из 40 каналов Bluetooth Smart составляет 2 МГц. Для передачи служебных сигналов (Advertising) выделены три канала, разнесенные в пределах частотного спектра, чтобы минимизировать влияние помех. В течение сеанса связи используется скачкообразный алгоритм выбора частоты канала.
Рис. 2. Частотные каналы Bluetooth Smart (BLE)
Стек ПО Bluetooth Smart (BLE) для последовательного порта
Спецификация Bluetooth определяет структурные элементы, на базе которых разработчик создает совместимые друг с другом устройства. Архитектура программного обеспечения для устройств BLE имеет послойно упорядоченную структуру, обычно называемую стеком. Наборы протоколов и профили позволяют отдельным устройствам соединяться друг с другом и обмениваться данными определенного типа.
В новых версиях Bluetooth, начиная с 4.0, вводятся два типа устройств: однорежимные и двурежимные. Однорежимные устройства работают лишь с поддержкой спецификации BLE, тогда как двурежимные способны также работать и в режиме классического Bluetooth BR/EDR (с базовой/повышенной скоростью).
На рисунке 3 изображены варианты реализации коммуникационного стека Bluetooth. Имеющийся в обычном Bluetooth профиль последовательного порта (SPP) обеспечивает возможность замены проводного интерфейса RS-232 беспроводным соединением между двумя устройствами.
Рис. 3. Структура коммуникационного стека Bluetooth
Профиль SPP включает протоколы RFCOMM, L2CAP, Link Manager и базовый протокол радиосвязи. RFCOMM (Radio Frequency Communications), создает виртуальный последовательный поток данных и эмулирует управляющие сигналы RS-232.
Далее в дело вступает пакетный протокол L2CAP (Logical Link Control and Adaptation Protocol). Он передает пакеты данных между хостом и подсистемой контроллера Bluetooth через интерфейс HCI (Host to Controller Interface) или напрямую в Link Layer, например, как в BlueNRG (рисунок 4).
Рис. 4. Структура стека BlueNRG
В устройствах BLE используется несколько измененная структура стека для соединения через последовательный порт. Вместо SPP имеется профиль атрибутов, а вместо протоколов RFCOMM – протокол атрибутов, оптимизированный для используемых в BLE пакетов данных небольшого размера. Протокол L2CAP остается неизмененным, Link Manager заменен на Link Layer, который определяет для пакетов структуру/каналы, процедуры подключения и отправляемые/получаемые данные.
Последовательный канал связи для устройств BLE
Надо сразу отметить, что отдельные операции в процессе соединения выполняются на уровне микропрограммного обеспечения и не требуют пристального внимания со стороны разработчика конечного устройства. Ему остается лишь выбрать заложенные производителем чипов микрокоманды на уровне конфигурации стека и профилей программного обеспечения.
В комплекте c оценочными платами производства компании STMicroelectronics имеется пакет ПО для разработки новых устройств, включающий в себя встроенное программное обеспечение, примеры реализации различных сценариев и документацию.
Рассмотрим пример создания канала связи между двумя компьютерами с использованием микросхем BlueNRG-MS или BlueNRG-1, которые являются однорежимными чипами с поддержкой требований BLE из спецификации Bluetooth v4.0. BlueNRG взаимодействуют с микроконтроллером внешнего хоста, используя линии SPI и набор API, состоящий из команд стандартного Application Command Interface (ACI) и определенных производителем команд Host Controller Interface (HCI) (рисунок 4).
Для решения поставленной задачи можно использовать, например, модуль SPBTLE-RF с сетевым процессором BlueNRG-MS (рисунок 5) или другие устройства на основе приемопередатчиков BlueNRG-1. В случае использования BlueNRG-1 расширенные возможности аппаратной платформы позволяют ему в отдельных случаях выполнять также функции приложения и полностью реализовать стек протоколов в одном чипе.
Рис. 5. Модуль ST SPBTLE-RF
Образец программной реализации, которая демонстрирует простое двухполосное соединение между двумя устройствами BlueNRG-MS, доступен в комплекте для разработки ПО (SDK) BlueNRG-MS. Проект называется “BLE Chat”, он размещен в папке “Projects\Projects_STD_Library\BLE_Chat\EWARM_BlueNRG-MS” внутри ПО для оценочного комплекта STEVAL- IDB005V1 или STEVAL-IDB006V1 (рисунок 6).
Рис. 6. Модуль STEVAL-IDB006V1
Те, кто работает с оценочными платами NucleoL152RE и X-NUCLEO-IDB05A1, могут найти этот проект в папке “Projects\Projects_Cube\BLE_Chat\EWARM_BlueNRG-MS”.
Примечание: если работать с BlueNRG-1 в составе оценочной платы STEVAL-IDB007V1, проект можно найти в SDK BlueNRG-1, в папке “\BLE_Examples\BLE_Chat”. Имеется поддержка IAR Embedded Workbench, Keil Microcontroller Development Kit и Atollic TrueSTUDIO.
При работе с этим проектом доступны четыре конфигурации:
- “Client” – роль клиента;
- “Server” – роль сервера;
- “Client throughput” – тестирование пропускной способности для режима клиент;
- “Server throughput” – тестирование пропускной способности для режима сервер.
В процессе реализации чата BLE выполняются следующие действия:
Сервис Chat содержит две определенные производителем характеристики:
Максимальная длина значения характеристики – 20 байт.
Чтобы установить соединение между двумя устройствами BlueNRG-MS (двумя оценочными платами BlueNRG), необходимо на одном из них реализовать режим «ведущий», а на втором должен быть установлен режим «ведомый». Как только соединение установлено – две точки могут начать передачу данных по каналу связи, используя эти две характеристики.
При использовании оценочных плат участвующие в обмене данные посылаются и принимаются с использованием подключенного к плате через эмулятор терминала на ПК, например, TeraTerm. Каждая оценочная плата будет отображаться на ПК как виртуальный порт COM. Эмулятор терминала конфигурируется следующим образом:
- скорость передачи: 115200;
- стоповые биты: 1;
- проверка на четность: нет;
- количество бит данных на символ: 8;
- контроль потока: нет.
Проектные конфигурации “Client throughput” и “Server throughput” позволяют пользователю тестировать пропускную способность (определенный идентификатор препроцессора “THROUGHPUT_TEST” будет представлен в обеих проектных конфигурациях).
Тест на пропускную способность включает следующие этапы:
- Задать режим Client на одной из платформ BlueNRG-MS и сбросить ее. Платформа появится как виртуальный COM-порт на ПК. Открыть порт COM в терминальном эмуляторе. Клиент запустится через 4 секунды после сброса.
- Задать режим Server на второй платформе BlueNRG-MS и сбросить ее. После этого две платформы попытаются установить соединение. Как только им удастся это сделать, ведомый будет постоянно отправлять клиенту уведомления, состоящие из 20 байт.
- После каждых 500 пакетов, полученных от клиента, текущая пропускная способность приложения будет отображаться на эмуляторе клиентского терминала.
Примечание: при работе с BlueNRG-1 в составе оценочной платы STEVAL-IDB007V1 контроллер STM32L1 выполняет роль моста между USB и последовательным портом BlueNRG-1, что позволяет непосредственно проверить пропускную способность от ПК к BlueNRG-1. Прошивка представлена в двоичной форме в SDK BlueNRG-1. Приложение BLE Chat запускается на устройстве BlueNRG-1 и сохраняется во Flash-памяти.
Заключение
Производимые STMicroelectronics приемопередатчики BlueNRG стандарта Bluetooth Low Energy подходят для использования в самом широком спектре устройств персонального назначения, в системах сбора и учета данных, находят широкое применение в промышленной и домашней автоматике.
Встроенное ПО BlueNRG обеспечивает эффективное решение стоящих перед разработчиком задач и не требует от него углубленных познаний в радиочастотной технике и спецификации Bluetooth. Имеющийся в комплекте с SDK набор демонстрационных приложений позволяет использовать некоторые типичные рабочие сценарии BLE.
Постоянно расширяемый набор библиотек ПО, предоставляемые производителем оценочные платы и SDK обеспечивают быстрое начало работ и позволяют в кратчайшие сроки создать законченное устройство с поддержкой Bluetooth Low Energy.
Разъём под наушники оканчательно изчез из смартфонов. Беспроводных наушников становится всё больше, а значит самое время поговорить про Bluetooth-кодеки. Тем более тема полна спорных вопросов.
Правда ли, что кодек SBC так плох? В чем популярность AAC? LDAC — это маркетинговое фуфло? И что готовит нам новый король кодеков от самой Bluetooth?
А также сегодня расскажем, как на качество звучания влияют другие железки внутри наушников? И послушаем немного на примере новых наушников.
Кодеки и сжатие
Люди часто сравнивают кодеки только по одному параметру — максимальному битрейту. По идее - чем выше битрейт, тем больше передается данных и тем лучше качество.
Вот, к примеру, посмотрите на картинку, у LDAC максимальный битрейт 990 кбит/с, ведь это гораздо лучше, чем 250 кбит/с у AAC?
Но это не всегда так, ведь на качество звука и стабильность соединения влияет гораздо больше факторов, чем просто битрейт. Поэтому сегодня будем копать глубоко.
Сперва взглянем на линейку. Что у нас есть?
AAC, SBC - самые популярные и массовые. Еще есть LDAC с высоким битрейтом. А еще aptX и с недавних пор новый LHDC, который продвигает HUAWEI. И у него есть несколько навороченных фишек.
Вообще, важно сказать, что за звучание отвечает не только кодек. Сами инженерные решения и компоненты в наушниках тоже очень важны. Кстати? новые наушники HUAWEI мы сегодня протестируем - FreeBuds 4i . Например, здесь за звук отвечает: динамический излучатель на 10 мм, это немало. Да еще и с полимерной диафрагмой.
SBC — low-complexity sub-band codec
А начнем мы с кодека SBC. Это стандартный кодек для всех Bluetooth-аудиоустройств. Он поддерживиется всеми наушниками и плеерами кроме устройств Apple, потому как Apple работает только с кодеком AAC. О чем мы еще поговорим.
У SBC есть масса преимуществ. Во-первых, это очень простой для вычислений кодек. Для того чтобы сжать аудио, всё что он делает — это разбивает аудио на несколько частотных полос: низкие, средние высокие частоты, а дальше начинает квантовать, то есть округлять значения, тем самым экономя биты информации.
Делает он это от нижних частот к верхним. И если весь битрейт использовался на нижние и средние частоты, верхние частоты «обрежутся» (вместо них будет тишина).
Если по-простому он оставляет басы, а верха обрезает. И чем меньше мы выделили кодеку битрейта, тем больше частот обрежется.
К примеру, вот на этой спектрограмме чередуются сжатые и несжатые фрагменты. На участках закодированных в SBC видно как кодек режет тихие звуки выше 17,5 кГц и совсем не выделяет битов информации для полосы выше 20 кГц.
SBC может работать в очень широком диапазоне битрейтов - от 10 до 1500 кбит/с и от этого, естественно, сильно зависит качество. При битрейте 328 кбит/с - звук отличный, практически неотличимый от оригинала, но уже при 240 кбит/с - звук посредственный.
При этом SBC на максимальном битрейте 1500 кбит/с вы нигде не встретите, потому как все производители наушников режут битрейт до 328 кбит/с. Почему так? Скорее всего дальше уже начинаются проблемы с соединением.
Более того, у кодека SBC нет фиксированных профилей, есть только рекомендуемые. Поэтому производители наушников могут выставлять любые ограничения на битрейт, какие-только захотят. Отсюда и плохая репутация у кодека.
Но если захотеть, можно так настроить кодек, что у него и низкие задержки будут и высокое качество звучания. Гибкость кодека SBC - это и его преимущество, и недостаток одновременно.
В наших наушниках он тоже есть. Послушаем! На самом деле, одна из важных вещей в кодеках - их алгоритмы обработки. А если в наушниках есть еще и шумоподавление, как в наших, то на процессор ложится высокая нагрузка. Для этого тут специальный чип от BES Technic, но к этому еще перейдем.
FreeBuds 4i поддерживают и второй популярный кодек - AAC. Давайте разберемся с ним.
AAC — Advanced Audio Coding
Второй по популярности кодек - AAC. Это и не удивительно, ведь это кодек по умолчанию для устройств на iOS и MacOS.
AAC, в отличие от SBC, сложный для вычисления кодек. А всё потому, что для сжатия аудиосигнала он использует серьёзную психоакустическую модель. Эм… Серьёзную что?
Да, есть такая наука - психоакустика. Она изучает то, как человек воспринимает звуки с точки зрения физиологии и психологии.
Простой пример. Если одновременно хлопнуть в ладоши и проткнуть иголкой воздушный шар, то хлопок в ладоши вы наверняка не услышите. Потому что более громкий звук, да еще и на схожей частоте просто замаскируют более тихий звук. Такое свойство человеческого восприятия пришлось очень на руку создателям аудиокодеков. Ведь всё, что человек и так не услышит, можно спокойно удалять.
Первый удачный аудиокодек, в котором была использована психоакустическая модель - это MP3. А в кодеке AAC эту модель еще сильнее прокачали, поэтому AAC при битрейте 256 кбит/с, для человека звучит также хорошо как MP3 320 кбит/с. А если учесть, битрейт в принципе, не может быть низким. Он варьируется от 256 кбит/с до 320 кбит/с, выходит что AAC в принципе не может плохо звучать и при любых условиях он будет уделывать SBC. Так ведь?
К сожалению, нет. Так как AAC сложный для вычисления кодек, чтобы он хорошо звучал, нужен очень хороший декодер. Например, их собственный, который так и называется Apple AAC. Кстати, все компании платят лицензионные отчисления за использование кодека. Ну точнее, мы платим.
Требует лицензирования и лицензионных отчислений: $15000 единовременно (или $1000 для компаний с менее 15 работниками) + $0.98 за первые 500000 устройств.
В Android-устройствах в лучшем случае используется второй по качеству кодировщик — Fraunhofer FDK AAC, а по факту вообще не пойми что. Потому как качество AAC очень сильно варьируется. Взгляните на тест от SoundGuys.
Фиолетовая линия — это тестовый файл. И видно, что iPhone (голубая линия) обрубил гораздо меньше информации, чем Android устройства.
С другой стороны посмотрите как уделывают, Android-смартфоны с SBC всех остальных с кодеком AAC, включая iPhone.
Поэтому на Android никогда не знаешь, как хорошо будет звучать AAC.
Более того, есть и другая проблема. Так как кодек тяжелый, то увеличиваются и задержки.
Как правило, у AAC задержки чуть выше, чем у других кодеков. Хотя справедливости ради задержки больше зависят не от кодеков, а от девайса, на котором происходит декодирование.
Одна из фишек FreeBuds 4i - низкая задержка. Она реализована за счет собственных аглоритмов. Но лучше работает ожидаемо только со смартфонами Huawei. Кстати еще тут есть мгновенное подключение.
И даже если вы и так слушаете файл формата AAC на iOS=устройстве, всё равно его для начала нужно декодировать из AAC, а потом снова закодировать в ACC, чтобы передать по воздуху. При этом качество чуть-чуть просядет. Это необходимо, чтобы во время воспроизведения музыки могли также микшироваться и другие системные звуки, например, уведомления.
FREEBUDS 4i
Так какой всё таки лучше использовать кодек для Android? SBC или AAC?
Ответ простой, зависит от девайса и наушников.
Возьмём, к примеру, новые TWS наушники от HUAWEI — FreeBuds 4i. Они поддерживают и SBC, и AAC. Но HUAWEI явно хочет, чтобы вы юзали AAC. А всё потому, что SBC тут порезан до 220 кбит/с, а на таком битрейте SBC выдаёт очень посредственное звучание, в добрых традициях первых Bluetooth-гарнитур.
А вот AAC, наоборот, звучит и работает идеально. Но достигается это за счет жесткой хардверной силы — отдельного чипа со встроенным кодером и ЦАПом BES2500Z от BES Technic. Есть даже его фоточки, зацените.
Эта штука тут прокачивает AAC на максимум: обрабатывает аудио, кодирует, декодирует, уменьшает задержки, снижает энергопотребление и прочее. К примеру, тут работает технология синхронизации аудио и видео при просмотре YouTube и задержка вообще отсутствует.
Также эти наушники живут дольше всех наушников HUAWEI — 10 часов непрерывного воспроизведения без кейса и 22 часа с подзарядкой от чехла. Но это правда с выключенным шумоподавлением. С включенным на пару часов поменьше, что всё равно очень хорошо. Особенно с учетом того, что тут есть быстрая зарядка: 10 минут зарядки хватит на 4 часа музыки.
Что еще радует - качество микрофонов: ты хорошо слышишь собеседника, собеседник хорошо слышит тебя.
Управляются наушники при помощи касаний: двойное нажатие - Play/Pause или принять/завершить вызов. Долгое касание, переключение режимов шумоподавления и прозрачности.
Но самое главное, как они звучат? Тут интересно. Звук нетипичный для TWS-наушников, в которых обычно задирают басы, как на Sony. Тут наоборот бас не выпячивается. Из-за чего отлично слышен вокал и вообще вся середина и верха очень детализированные. В целом, звучание очень объёмное и оно на голову выше любых наушников Apple и уж тем более каких либо недорогих TWS. Добавим сюда удобный компактный кейс и в общем, наушники огонь.
Отличный звук, время автономной работы, есть режим шумоподавления, звукопроницаемости, компактный кейс и приятный дизайн самих наушников. А также еще одна интригующая технология, но о ней мы поговорим в конце ролика. А пока продолжаем про кодеки.
Кстати, важный момент, когда вы слушаете музыку по Bluetooth - задержки неизбежны. Потому как прежде чем что-то закодировать в Bluetooth кодек, нужно предварительно декодировать файл, который вы сейчас слушаете.
Про SBC и AAC понятно — оба кодека могут звучать отлично, если будут в связке с правильным оборудованием или наоборот будут звучать плохо с неправильным. Но есть ли кодек который будет звучать хорошо всегда? Да, такой кодек есть и это aptX.
aptX — это простой для вычислений кодек без всякой психоакустики. Он использует адаптивную дифференциальную импульсно-кодовую модуляцию (ADPCM).
Не будем вдаваться в подробности, что это такое. Но если по-простому, он тоже использует квантование — округление значений сигнала.
Кодек aptX принадлежит Qualcomm, но вопреки всеобщему заблуждению, Qualcomm его не изобретали. А появился он еще в 1988 году, за 14 лет до появления Bluetooth.
В общем, технология старая, а сам кодек нельзя назвать самым умным, качественным и эффективным. Тогда почему же aptX считается хорошим кодеком? На то есть несколько причин.
Во-первых, у aptX есть несколько разновидностей, которые хорошо справляются со своими задачами.
Обычный aptX отлично подходит для нетребовательного слушателя. На сходном битрейте он будет звучать примерно как SBC. Но aptX поддерживает битрейт выше SBC, а значит при хорошем сигнале и звучать он будет лучше.
SBC 10 — 328 кбит/с
aptX 128 / 256 / 352 / 384 кбит/с
aptX HD с улучшенным профилем кодирования и еще более задранным битрейтом.
aptX 128 / 256 / 352 / 384 кбит/с
aptX HD 192 / 384 / 529 / 576 кбит/с
Он уже подойдёт более придирчивому слушателю. По тестам SoundGuys, это кодек способен выдавать близкое к CD качеству, а значит кодек подойдет любителям lossless музыки.
Есть aptX Low Latency, с уменьшенными задержками для любителей игр, и aptX Adaptive с динамически меняющимся битрейтом для более стабильного соединения.
aptX 128 / 256 / 352 / 384 кбит/с
aptX HD 192 / 384 / 529 / 576 кбит/с
aptX Low Latency 352 кбит/с
aptX Adaptive 276-420 кбит/с
Но самое главное aptX используют жестко заданные профили, которые не может изменить ни производитель смартфона или плеера, ни производитель наушников. А значит, вы всегда будете знать наперед, какое качество звука вы получите без сюрпризов.
Но, чтобы получить все эти классные разновидности, aptX придется немало заплатить. Ведь каждую разновидность aptX нужно отдельно лицензировать у Qualcomm. Плюс нужно будет докупать еще всякие чипы для поддержки самых классных функций.
Типа TrueWireless Stereo, которая позволяет направлять два независимых сигнала в оба наушника.
А вот наушники HUAWEI умеют это делать за счет своих технологий, поэтому они часто и стоят дешевле, и батарейку держат лучше. Сила вертикальной интеграции.
Ну а без всех дополнительных плюшек aptX - кодек не плохой, но опять же, по всем параметрам, не выдающийся. Впрочем, вы сами можете послушать разницу в звучании SBC, aptX и aptx HD прямо у себя в браузере. Благодаря вот этому чудесному человеку с Хабра.
Особо обратите внимание на эквалайзере, как SBC внаглую отрезает все частоты после 20 кГц. Картинка кликабельна и ведёт на плеер из статьи .
И тут мы потихоньку приближаемся к выдающимся кодекам для ценителей самого качественного звука. Конечно же речь про LDAC.
Это так называемый Hi-Res кодек от Sony и его главная отличительная черта — поддержка высоких битрейтов - вплоть до 990 кбит/с и частоты дискретизации до 96 кГц
303/606/909 кбит/с (для 44.1 и 88.2 кГц)
330/660/990 кбит/с (для 48 и 96 кГц)
Кодек способен выдавать CD-качество без потерь, в отличие от aptX HD, который всё-таки близок к CD-качеству, но не совсем. Все это подтверждают тесты SoundGuys.
И недостатка у кодека буквально два:
- Маркетинг. Его продвигают как кодек для Hi-Res аудио, отсюда и поддержка частоты дискретизации 96 кГц. Но конечно же, ни один беспроводной кодек даже близко не справится с настоящим Hi-Res.
- Качество соединения. Оно уж очень слабое. Если слушать на максимальном качестве 990 кбит/с, то стоит подальше отойти от телефона, прикрыть его рукой или просто положить в задний карман, почти гарантированно начинаются небольшие заикания, что сразу же портит кайф от прослушивания качественного звука.
Короче, кодек явно не для пробежек.
Плюс есть третий недостаток. На низком битрейте, который для этого кодека целых 330 кбит/с, LDAC проигрывает по качеству и SBC и AAC и aptX и ситуацию усугубляет то, что многие смартфоны по умолчанию врубают именно такое качество.
Какое качество выставляет ваш смартфон можно посмотреть в настройках для разработчика.
HWA LHDC — Low Latency High-Definition Audio Codec
Но не спешите расстраиваться, если главный аудиофильский кодек вас разочаровал. Ведь есть еще более аудиофильский кодек, который лишен недостатков LDAC.
Имя этому кодеку LHDC или HWA, его по разному называют.
Так вот LHDC, что буквально значит кодек высокого разрешения с низкими задержками. Он разработан союзом Hi-Res Wireless Audio и компанией Savitech. А продвигает кодек в массы HUAWEI. Впервые он появился в смартфоне HUAWEI Mate 10. А сейчас он поддерживается во все новых смартфонах HUAWEI и еще в куче смартфонах Xiaomi:
- Huawei P30
- Huawei P20 Pro
- Huawei P20
- Huawei P20 Lite
- Huawei Mate 10 pro
- Huawei Mate 10
- Huawei Mate RS
- Xiaomi Mi 9 Pro 5G
- Xiaomi Mi Note 10 Pro
- Xiaomi Mi Note 10
- Xiaomi Mi 8 Transparent Edition
- Xiaomi Mi 8 Pro
- Pocophone F1
- Xiaomi Mi 8 SE
- Xiaomi Mi 8 Lite
- Xiaomi Mi Max 3
- Xiaomi Mi Mix 3
- Redmi K20
- Xiaomi Mi 9T
- Redmi K20 Pro
- Xiaomi Mi 9T Pro
- Xiaomi Mi 9 SE
- Xiaomi CC9
- Xiaomi Mi 9 Lite
- Redmi K30
- Redmi K30 5G
Н в будущем его поддержка может появиться вообще во всех смартфонах, потому как он поддерживается Android 10 и является частью AOSP.
Так вот, LHDC можно сказать прокаченная версия LDAC. Потому что он забирает все плюсы LDAC, а именно, высокий битрейт, вплоть до 900 кбит/с и частоту дискретизации до 96 кГц.
LHDC — 400/560/900 кбит/с
Но при этом добавляет две версии кодека с низкой задержкой, вот с такими названиями:
LHDC с низкой зарежкой = LDHC-LL или LARC
И решает главную проблему LDAC — слабую надёжность соединения.
В общем, LHDC - пока претендент номер один на звание идеального кодека для аудиофилов. Но чтобы в этом наверняка убедиться нужно дополнительное подробное тестирование. Пока информации в сети о кодеке мало.
Отсюда резонный вопрос, у меня тут наушники от HUAWEI и я рассказываю про кодек от HUAWEI. А есть ли он в этих наушниках?
Эм… нет. Это базовая модель, в которой особое внимание уделили оптимизации.
Но самый интересный и интригующий нюанс, эти наушники поддерживают новую версию Bluetooth 5.2, в которую добавили поддержку нового кодека пришедшего на смену SBC. Кодек называется LC3 и он должен произвести революцию в мире беспроводного аудио такую же, как в свое время произвел формат MP3.
Чтобы вы понимали, при битрейте в два раза ниже чем SBC, новый кодек звучит на слух практически неотличимо от несжатого аудио.
Это действительно большой прорыв. Но, несмотря на то, что LC3 - это неотъемлемая часть Bluetooth 5.2 и всё устройства с новым Bluetooth должны поддерживать новый кодек, пока нет ни одного смартфона с Bluetooth 5.2. И эти наушники тоже пока что не поддерживают ни новый кодек, ни новые фишки Bluetooth 5.2, которые сами по себе - отдельный большой разговор. В будущем, возможно поддержку добавят, но мы точно не знаем.
Поэтому об LC3 и Bluetooth 5.2 мы поговорим в отдельном большом материале.
Итоги
Мы рассказали не обо всех кодеках, а только о самых популярных. Например, мы не упомянули о Samsung Scalable Codec, у которого основная фишка стабильность соединения, и это по сути конкурент aptX Adaptive. Не упомянули про UAT-кодек с бешеным битрейтом 1,2 МБит/с, который работает только через приложение Hiby Music.
Мы поговорили только про самые популярные кодеки иначе разговор был бы бесконечный. Поскольку информации много, для вашего удобства мы составили сравнительную табличку, чтобы вам было проще ориентироваться.
А если вам приглянулись наушники HUAWEI FreeBuds 4i - ныряйте по ссылке . Как обычно там вас ждут подарки и специальные предложения от HUAWEI.
Bluetooth — это беспроводная технология обмена данными на небольшом расстоянии. Пользователи привыкли к этой возможности, но что мы о ней знаем, какие отличия современных версий Bluetooth, какие профили и кодеки существуют и чем они отличаются?
Bluetooth 1.2 (2003)
Мы пропустили версии 1.0 и 1.1, т.к. они предлагали довольно примитивные возможности и имели проблемы с развертыванием и совместимостью. А вот версия 1.2 стала первой, широко используемой технологией Bluetooth. Адаптивная перестройка частоты (AFH) помогла избежать помех с Wi-Fi и другими технологиями на схожей частоте. Скорость сопряжения была улучшена.
Bluetooth 2.0 и 2.1 (2004)
Фирменное обозначение Bluetooth 2.0 + EDR. Технология EDR является профилем, который позволил повысить скорость передачи данных. В тандеме с трехбитовым кодированием (против однобитового) скорость увеличилась с 1 до 3 Мбит/с (на практике до 2,1 Мбит/с). Была улучшена обработка помех, и устройства начали потреблять меньше энергии. В версии 2.1 было добавлено спаривание устройств (SSP), чтобы сделать соединение быстрее и безопаснее.
Bluetooth 3 + HS (2009)
Фирменное наименование Bluetooth 3.0 + HS (High Speed). Новая версия позволяла устанавливать соединение по Bluetooth с использованием частот Wi-Fi, что дало возможность повысить скорость передачи до 24 Мбит/с. Но если в устройстве отсутствовал Wi-Fi-модуль, то скорость ограничивалась все теми же 3 Мбит/с, что и в предыдущей версии Bluetooth 2.
Bluetooth 4.0, 4.1, и 4.2 (2011–2014)
Появление технологии Low Energy в Bluetooth 4 позволило уменьшить энергопотребление для некоторых периферийных устройств, но не для беспроводных наушников. В этой же версии каждое из устройств получило возможность одновременно быть и концентратором, и клиентом. Это значительно расширило функциональность портативной техники, позволив пользователю, к примеру, управлять некоторыми функциями своего смартфона с помощью наушников или умных часов.
В Bluetooth 4.1 не было революционных изменений по сравнению с версией 4.0. Разработчики усилили защиту от помех благодаря встроенному фильтру диапазона LTE-сетей. В результате Bluetooth-устройство с версией 4.1 будет искать другой канал с меньшим количеством помех и немного другой частотой. Также в новой версии оба сопряженных устройства могут быть как ведущими, так и ведомыми. Максимальное время прерывания соединения без потери сопряжения увеличилось с 30 секунд до 3 минут.
В версии 4.2 появились новые возможности для Интернета вещей. Каждому устройству с поддержкой Bluetooth 4.2 теперь был присвоен уникальный IP-адрес.
В версии Bluetooth 5.1 внедрена возможность определения физического местоположения устройств в помещении вплоть до сантиметра, чтобы обеспечить более надежное соединение. Также, в новой версии, устройства сопрягаются быстрее за счет улучшенного кэширования. В 5.1 устройствам стало доступно больше каналов для подключения, что уменьшило количество помех. Это полезно, когда в одном помещении находится много Bluetooth-устройств.
Отличия версий Bluetooth 4.0 и 5.0 (2016)
Давайте рассмотрим отличия этих версий более подробно, т.к. здесь есть несколько революционных изменений. В новой версии Bluetooth появилось больше улучшений. Они включают в себя:
- увеличенный в 4 раза реальный диапазон расстояний от 50 до 200 метров (официально со 100 до 400 метров);
- двукратный прирост скорости с 24 до 48 Мбит/с;
- и восьмикратное увеличение пропускной способности.
Одним из ключевых улучшений версии 5.0 является усовершенствованная технология Low Energy, которая ранее имела серьезные ограничения по использованию беспроводных наушников. Теперь любые аудиоустройства, оснащенные модулем Bluetooth, могут обмениваться данными с источником по технологии Low Energy, что существенно снижает энергопотребление периферии.
В чем отличие версий, профилей и кодеков Bluetooth
Итак, мы разобрались с версиями популярной технологии, которые отличаются скоростью, зоной действия и дополнительными возможностями. Но что такое профили Bluetooth и как они влияют на работу наушников и других совместимых устройств?
Профили определяют набор возможностей, которые пользователь получает при подключении устройств по Bluetooth. К примеру, выбирая новые наушники, нужно обращать внимание не только на версию BT, но и на набор профилей, т.к. он напрямую влияет на функциональность аудиоустройства. Для передачи аудиопотока с максимальным качеством по Bluetooth используется профиль A2DP, речь о котором пойдет ниже.
Мультимедиа в современных устройствах передается через профиль, но самое главное — это кодек, с помощью которого происходит сжатие аудиопотока и передача его на гарнитуру с последующим декодированием. При равных условиях от типа используемого кодека зависит качество звучания.
Какие бывают профили Bluetooth
Теперь более подробно остановимся на разновидностях профилей. Профили Bluetooth представляют собой наборы инструкций, которые определяют порядок работы и реализации функций между устройствами Bluetooth. Существует около двух десятков профилей для любых устройств и целей — от передачи файлов до беспроводной печати, но нас интересуют те, которые используются в беспроводных гарнитурах.
HSP — обеспечивает базовую производительность гарнитуры с микрофонным входом, монофоническим звуком до 64 кбит/с и ограниченным дистанционным управлением — передачей сигнала вызова, ответом на звонок, завершением вызова и регулировкой громкости.
HFP — более продвинутая версия HSP, разработанная для монофонических гарнитур с функцией Hands Free с целью отвечать на звонки без обращения к телефону. Поддерживает некоторые голосовые команды. С версии HFP 1.7 добавилась поддержка кодека mSBC, поддержка статуса индикатора заряда батареи наушников.
AVRCP — обеспечивает дистанционное управление воспроизведением мультимедиа: переключение и перемотка трека, пауза, запуск воспроизведения, регулировка громкости. Профиль AVRCP предназначен только для дистанционного управления и не используется для передачи аудиопотока.
Версии AVRCP:
1.0 — дистанционное управление, включая старт воспроизведения, паузу и стоп.
1.3 — доступ к метаданным и чтение состояния медиа-плеера:
- состояние источника аудиопотока (воспроизведение, остановка и т.д.)
- метаданные с информацией об исполнителе, названии дорожки и т.д.
1.4 — возможность подключения к нескольким медиаплеерам:
- просмотр состояния и управление несколькими плеерами;
- просмотр метаданных для каждого медиапроигрывателя, включая список список проигрывания
- абсолютное управление громкостью;
- базовые возможности поиска.
1.5 — исправления багов по абсолютному контролю громкости, просмотру и другим функциям;
1.6 — просмотр данных и информации о треках:
- поддержка передачи обложек через профиль BIP и протокол OBEX;
- количество элементов в папке плеера без загрузки списка проигрывания.
AVRCP 1.6 поддерживается всеми Android-устройствами, начиная с версии 8.0.
A2DP — предназначен для передачи мультимедиа и стереозвука по Bluetooth, обеспечивая намного лучшее качество передачи звука по сравнению с HSP/HFP. Сам по себе не позволяет осуществлять дистанционное управление функциями воспроизведения, поэтому чаще всего используется в связке с AVRCP.
Версии A2DP:
1.2 — расширение списка поддерживаемых кодеков.
1.3 — все из 1.2 плюс уменьшение задержек при передаче потока для улучшения синхронизации аудио/видео, а также:
- добавлена функциональная совместимость с новыми профилями Bluetooth, улучшена безопасность и режим ожидания;
- расширен список поддерживаемых кодеков.
Таком образом, чтобы слушать аудиопоток с качественным стереозвуком и управлять функциями воспроизведения, необходима гарнитура и передающее устройств (хост) с поддержкой профилей AVRCP и A2DP одновременно.
Давайте также рассмотрим второстепенные профили, которые предлагают дополнительные функции.
PBAP — используется для доступа к телефонной книге телефона при помощи беспроводной гарнитуры. На практике это позволяет гарнитуре озвучивать имя абонента, который звонит, а также осуществлять голосовые команды доступа к телефонной книге для набора номера.
SPP — профиль, который определяет — каким образом два устройства будут обмениваться данными, эмулируя проводное соединение подобное USB или RS-232.
DID — идентифицирует класс устройства, производителя и модель. Например, это дает возможность видеть на экране телефона полное название модели подключенной гарнитуры.
ICP — поддержка голосовых звонков между совместимыми Bluetooth-устройствами.
SDAP — профиль используется приложениями для обнаружения услуг, которые могут быть доступными для конкретных подключенных устройств, подключенных по Bluetooth. К примеру, приложение для потокового вещания аудио с помощью SDAP может проверить, поддерживает ли данная модель наушников кодек aptX HD. Еще одним примером будет доступ к премиальному контенту при использовании определенных моделей наушников, или, наоборот, блокирование доступа для некоторых моделей гарнитур в связи с соблюдением авторских прав на цифровой контент.
Какие бывают кодеки Bluetooth
Качество звучания при равных условиях зависит от максимального битрейта и алгоритмов кодирования. Для этих целей используются разные кодеки. На гистограмме ниже можно увидеть, насколько разнится битрейт самых популярных кодеков Bluetooth. Стоит отметить, что кодек должен обязательно поддерживаться и передающим и принимающим устройством
Битрейт популярных кодеков Bluetooth
SBC находится внизу списка среди самых популярных кодеков Bluetooth. Однако он является неотъемлемым для всех устройств с поддержкой A2DP, что делает его практически универсальным.
SBC обеспечивает низкую нагрузку на мобильный процессор, но достигается это за счет агрессивной обработки и снижения частотного диапазона. В результате происходит значительная потеря данных исходного аудиофайла, что особенно заметно на высоких частотах с появлением фонового шума.
AptX, aptX LL, aptX HD, и aptX Adaptive от Qualcomm
Крупный производитель мобильных процессоров, компания Qualcomm продвигает свои собственные кодеки, встраивая их поддержку в фирменные процессоры. Кодеки отличаются пропускной способностью, и как следствие, качеством звука, которое они обеспечивают. Но в целом вся линейка AptX показывает достойное звучание, а AptX HD многие пользователи называют «золотым стандартом».
AptX предлагает битрейт лишь немногим больше стандартного SBC, но обеспечивает звучание на голову выше за счет иных алгоритмов работы, не так агрессивно «срезая» высокие частоты. Хоть такой алгоритм требует больше вычислительных мощностей, что усиливает нагрузку на процессор, современные устройства имеют достаточный запас производительности для работы со всей линейкой AptX.
AptX HD дает возможность слышать существенно меньше фонового шума и расслышать практически каждый элемент музыкальной композиции. Это достигается за счет кодирования звука либо без потерь, либо с минимальными потерями, которые связаны с ограничениями стандарта Bluetooth.
AptX LL обеспечивает минимальную задержку при передаче звука. Чтобы человеческий мозг не заметил отставания аудио от видео, необходимо, чтобы задержка при передаче аудиопотока была не более 40 мс. AptX LL с минимальной задержкой дает возможность смотреть контент и играть в игры без отставания звука.
AptX Adaptive находится между AptX HD и AptX по качеству передачи звука. При этом он приближается к AptX LL по показателю задержки — 40–80 мс. Кодек имеет переменный битрейт 279–420 кБ\с, который адаптируется под качество воспроизводимых файлов.
LDAC от Sony
LDAC. Компания Sony предложила свой кодек, чтобы не проиграть битву за меломанов. LDAC имеет три режима работы, которые позволяют передавать поток с битрейтом вплоть до 990 кбит/с. Но режим с приоритетом на качество поддерживается достаточно скромным количеством устройств. Существуют некоторые проблемы в стабильности работы в режиме с самым высоким битрейтом. А два первых режима в 660 кбит\с и 330 кбит\с по качеству не превосходят кодеки AptX.
AAC
Популярный кодек, который используется многими стриминговыми музыкальными сервисами, включая iTunes. Максимальный битрейт — 256 кбит/с. Главной задачей этого кодека было превзойти качество SBC и возможности формата MP3. За счет более сложных алгоритмов обработки, AAC действительно сохраняет больше музыкальной информации по сравнению со стандартным кодеком.
Кодек несколько отличается при работе на Android и iOS устройствах. В Андроид он получил название Fraunhofer FDK AAC, а для устройств iOS и Mac — Apple AAC.
Читайте также: