Составьте программу для решения квадратного уравнения наберите ее в среде программирования pascal
Упражнение 2.
Вычислить частное двух целых чисел. В связи с тем, что делить на ноль нельзя, организуем контроль ввода данных.
1. Наберите текст программы:
Упражнение 3.
Вывести на печать название дня недели, соответствующее заданному числу D, при условии, что в месяце 31 день и 1-е число – понедельник. Для решения задачи воспользуемся операцией mod, позволяющей вычислить остаток от деления двух чисел, и условием, что 1-е число – понедельник. Если в результате остаток от деления заданного числа D на 7 будет равен 1, то это понедельник, двойке – вторник, тройке – среда и т.д.
1. Наберите текст программы:
2. Запустите программу на выполнение и проверьте её работу: Ctrl-F9
3. Для просмотра результатов выполненной программы необходимо нажать: Alt-F5
4. Сохраните программу на своем диске: A:\P3PR3
Задания уровня 2
Задания уровня 3
4. Составить программу, которая проверяет, может ли существовать треугольник с заданными сторонами. Известно, что сумма двух любых сторон должна быть больше третьей. Сохраните программу под именем P3PR9.
5. Даны целые числа a, b, c. Если a ? b ? c, то все числа заменить наименьшим из них, в противном случае сменить знак каждого числа. Сохраните программу под именем P3PR10.
6. Составьте программу решения квадратного уравнения с использованием сложных условий. Сохраните программу под именем P3PR11.
7. Составьте программу, предназначенную для вычисления значения переменной y, где при четных значениях x; y=x2 – 6 при значениях x, кратных 5; y=0 во всех остальных случаях. Сохраните программу под именем P3PR12.
8. Напишите программу, которая при вводе латинской прописной буквы выводит на экран такую же букву, но строчную. Сохраните программу под именем P3PR13. Указание: воспользуйтесь тем фактом, что все латинские прописные буквы расположены в кодовой таблице подряд, по алфавиту, начиная с символа ‘A’ с кодом 65. Строчные буквы также расположены по алфавиту, начиная с символа ‘a’ с кодом 97. Подсказка: для решения обратной задачи существует функция UpCase, которая преобразует строчные буквы латинского алфавита в прописные, но не изменяет другие, то есть:
Контрольные вопросы:
1. Как работает оператор присваивания?
2. Приведите синтаксис оператора присваивания.
3. Что такое ввод данных?
4. Что такое вывод данных?
5. Перечислите формы операторов ввода данных.
6. Перечислите формы операторов вывода данных.
7. Сформулируйте правила записи оператора IF.
8. Что такое вложенный оператор IF?
9. Что представляет собой оператор варианта?
10. В программах какого типа используется оператор варианта?
11. Константы какого типа могут быть использованы в операторе варианта?
12. Какое соответствие должно быть между выражением оператора варианта и его константами?
Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, иррациональных уравнений, неравенств и их систем.
Одна из основных целей изучения школьного курса математики заключается в овладении способами решения алгебраических уравнений второй степени и приводимых к ним уравнений. В школьном курсе изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения.
Практически все, что окружает современного человека-это все так или иначе связано с математикой. Последнее достижения в физике ,технике и информационных технологиях не оставляют никакого сомнения , что и в дальнейшем данная тенденция сохранится. Решение многих практических задач сводится к решению различных видов уравнений. При этом актуальным является использование ЭВМ и специального ПО при решении уравнений.
Цель работы: Разработка программы, нахождения корней уравнения второй степени в среде программирования Паскаль - АВС.
Гипотеза: Возможно ли создание программы, для нахождения корней уравнения второй степени в среде программирования Паскаль – АВС с полным выводом решения, а так же нахождение корней при отрицательном D.
Задачи:
ознакомиться с историей квадратных уравнений и методами их решения;
освоить приемы программирования в интегрированной среде Паскаль - АВС;
разработать алгоритм и блок-схему нахождения корней квадратных уравнений;
создать программу нахождения корней и протестировать ее.
Объект исследования: уравнения второй степени.
Предмет исследования: Паскаль - программа решения уравнений второй степени в среде программирования Паскаль - АВС.
Практическая значимость нашего проекта заключается в том, что результаты исследования могут быть использованы в курсе математики для проверки решения квадратных уравнений, а так же для запоминания алгоритма действий при решении.
Научная новизна исследования состоит в том, что:
- разработана универсальная программа, понятная каждому пользователю;
- охарактеризована структура программы по всем трём ветвям программирования;
- определены основные сложности и возможные проблемы при решение квадратных уравнений при отрицательном дискриминанте.
- ОСНОВНАЯ ЧАСТЬ
- История квадратных уравнений и методы их решений
Необходимость решать уравнения не только первой степени, но и второй еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков с развитием астрономии, военного дела и нуждами самой математики. Первые упоминания о способах решения уравнений, которые мы сейчас называем квадратными, относятся ко второму тысячелетию до н.э. это эпоха расцвета Вавилона и Древнего Египта.
Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются ,кроме неполных, и полные квадратные уравнения. Правила решения этих уравнений, изложенные в вавилонских источниках, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.[2]
Герон Александрийский - греческий математик и механик. Времени жизни предположительно отнесено ко второй половине I века н.э. «Метрика» Герона и извлеченные из нее «Геометрика» и «Стереометрика» представляют собой справочники по прикладной математике. Среди содержащихся в «Метрике» сведений: формулы для площадей правильных многоугольников, формула Герона для расчета площади треугольника по длинам его сторон, правила численного решения квадратных уравнений, алгоритмы извлечения квадратных и кубических корней. В основном изложение в математических трудах Герона не рационально - правила часто не выводятся, а только показываются на примерах. Герон вывел формулу для решения квадратного уравнения умножением всех членов на а и прибавлением к обеим половинам уравнения выражения .[2]
Древнегреческие математики могли решать некоторые виды квадратных уравнений, сводя их решения к геометрическим построениям. Приемы решения уравнений без обращения к геометрии дает Диофант Александрийский(III в.н.э.). В дошедших до нас шести из 13 книг «Арифметика» содержит задачи с решениями. Способ решения полных квадратных уравнений Диофант изложил в книгах «Арифметика», которые не сохранились. Его трактат «Арифметика» содержит ряд задач, решаемых при помощи квадратных уравнений. В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при составлении уравнений разных степеней.
Задачи, решаемые с помощью квадратных уравнений, встречаются в трактате по астрономии «Ариабхаттиам», написанным индийским астрономом и математиком Ариабхатой в 499 году н.э. Один из первых известных выводов формулы корней квадратного уравнения принадлежит индийскому ученому Брахмагупте (около 598 г.). Брахмагупта изложил универсальное правило решения квадратного уравнения, приведенного к каноническому виду: ; притом предполагалось, что в нем все коэффициенты, кроме а, могут быть отрицательными. Сформулированное ученым правило по своему существу совпадает с современным.
Абу Абдуллах (или Абу Джафар) Мухаммад ибн Муса аль-Хорезми (ок. 783 - ок.850) - один из крупнейших средневековых персидских ученых IX века, математик, астроном, географ и историк. Аль - Хорезме впервые представил алгебру как самостоятельную науку об общих методах решения линейных и квадратных уравнений, дал классификацию этих уравнений. Труды аль-Хорезми переводились с арабского на латинский язык, а затем на новые европейские языки. На их основе создавались различные учебники по математике. Аль-Хорезми известен, прежде всего, своей «Книгой о восполнении и противопоставлении» («Аль-китаб аль-мухтасар фи хисаб аль-джабр ва-ль-мукабала»), которая сыграла важнейшую роль в истории математики. От названия этой книги произошло слово «алгебра». Подлинный арабский текст утерян, однако содержание известно по латинскому переводу 1140 года английского математика Роберта Честерского. Рукопись, которую Роберт Честерский озаглавил как «Книга об алгебре и ал-мукабале» хранится в Кембредже. Другой перевод книги выполнен испанским евреем Иоанном Севильским. Задумывавшаяся как начальное руководство по практической математике «Китаб аль-джабр . » в первой (теоретической) своей части начинается с рассмотрения уравнений первой и второй степени, а в двух заключительных разделах переходит к практическому применению алгебры. Слово аль-джабр («восполнение») означало перенесение отрицательного члена из одной части уравнения в другую, а аль-мукабала («противопоставление») - сокращение равных членов в обеих частях уравнения.[2]
Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в книге «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи (он же Леонардо из Пизы или Леонардо Пизанский 1180-1240гг.). Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франция и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники 16 – 17 вв. и частично 18 веке.
В XVI веке французский юрист, тайный советник короля Франции и математик Франсуа Виет (1540-1603)впервые вводит в обращение буквенные обозначения не только для не известных величин, но и для данных, то есть коэффициентов уравнения. Франсуа Виет - замечательный французский математик, положивший начало алгебре как науке о преобразовании выражений, о решении уравнений в общем виде, создатель буквенного исчесления. Виет первым стал обозначать буквами не только неизвестные, но и данные величины. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т.е. ввести понятие математической формулы. Этим он внес решающий вклад в создание буквенной алгебры, чем завершил развитие эпохи Возрождения в математике, и подготовил почву для появления результатов Ферма, Декарта, Ньютона.
Общее правило решения квадратных уравнений, было сформулировано немецким математиком М.Штифелем (1487-1567). Выводом формулы решения квадратных уравнений общего вида занимался Виет. Формулы, выражающие зависимость корней уравнения от его коэффициентов, были выделены Виетом в 1591г. Однако свое утверждение он высказывал лишь для положительных корней (отрицательных чисел он не признавал). После трудов нидерландского математика А. Жирара (1595-1632), а также Декарта и Ньютона способ решения квадратных уравнений принял современный вид.[2]
В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных равнений, которые позволяют очень быстро и рационально решать многие уравнения. Перечислим десять способов решения квадратных уравнений:
Пользовательские процедуры и функции. При написании программ со сложными математическими вычислениями становится очевидным, что математических функций встроенных в Turbo Pascal, явно недостаточно. Нет, например такой функции, как y = x n . В процессе вычислений можно конечно задействовать такую формулу возведения в степень: y := exp(n*(ln(x)); но при частом использовании такой формулы в программе легко запутаться, особенно если нужно использовать разные аргументы.
Turbo Pascal предусматривает создание пользовательских процедур и функций. Рассмотрим создание функции возведения числа х в произвольную степень n (n >=0). Функция на паскале должна быть объявлена до начала программы, то есть до оператора begin.
Функция описывается следующим образом:
function имя функции (аргумент : тип аргумента) : возвращаемый тип данных;
var
раздел локальных переменных (если нужен);
begin
тело функции;
end;
В нашем случае с вычислением степеней, функция будет выглядеть так:
function stepen(x,n: real): real;
begin
stepen:= exp(n*ln(x));
end;
Теперь, напишем программу с использованием нашей функции.
uses crt;
function stepen(x,n: real): real;
begin
stepen:= exp(n*ln(x));
end;
var
rez,osn, pok: real;
begin
clrscr;
write('Wwedi osnowanie');
readln(osn);
write('Wwedi pokazatel');
readln(pok);
rez:= stepen(osn,pok);
writeln('rezultat= ',rez:0:2);
readln;
end.
Результат работы программы:
Используя уже написанные пользовательские функции можно создавать другие функции. Например, в нашем случае, мы можем написать функцию извлечения корня с произвольным показателем k (k <> 0) из любого числа q.
Известно, что q 1/k = q Исходя из этих соображений напишем функцию извлечения корня:
function koren(q,k: real): real;
var
kr: real;
begin
kr:= 1 / k;
koren:= stepen(q,kr);
end;
Так как, функция koren, использует функцию stepen, то в тексте программы, функция koren должна быть описана после описания функции stepen. Дополним и изменим нашу программу, с учётом вычисления не степени, а корня:Процедуры в паскале, то-же, что и функции, но процедуры не возвращают никаких значений. Описываются процедуры так же, как и функции, в начале программы:
V Международный конкурс научно-исследовательских и творческих работ учащихсяСоздание программы решения уравнений второй и выше степени в системе Pascal ABC
1 Муниципальное общеобразовательное учреждение "Гимназия № 7 Красноармейского района Волгограда" 1 Муниципальное общеобразовательное учреждение "Гимназия № 7 Красноармейского района Волгограда"Автор работы награжден дипломом победителя II степени
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDFТаким образом, актуальность исследования объясняется тем, что проблемы проверки решения уравнения порядка второго и выше остро стоят перед обучающимися, а решиться такие проблемы могут через совершенствования математических знаний и составления прикладных программ. В свою очередь эти знания могут применяться на практике для решения уравнений, что улучшит проверку знаний обучающихся и значительно сократит время на их решение.
Объектом исследования является схема Горнера, и система программирования Pascal ABC.
Предметом исследования выступают алгоритм Горнера для решения уравнений второго порядка и выше в системе программирования Pascal ABC.
Цель исследования – реализация решения уравнений второго и выше порядка, основываясь на схеме Горнера в среде программирования Pascal ABC.
Цель и предмет исследования обусловили необходимость решения следующих задач:
Исследовать важность данной проблемы у обучающихся 9 – 11 классов и выявить эффективность взаимосвязи математического алгоритма и системы программирования Pascal ABC.
Определить эффективность создания программы решения уравнений.
Оценить перспективы от создания программы.
Основу гипотезы исследования составили предположения о том, что если изучить схему Горнера, то найти решение для автоматического определения корней уравнения второго и выше порядка будет проще.
В процессе исследования использовались методы системного, математического и информационного анализа. В качестве информационной базы были использованы материалы, научные труды специалистов в области программирования, и справочные материалы, концепции, представленные в современной математике.
В ходе исследования были использованы следующие группы методов:
теоретические: теоретический анализ литературы по проблеме; систематизация полученной информации; обобщение выводов.
эмпирические: опросно – диагностические методы (интервьюирование, беседы) и др.;
статистические: анализ статистических данных.
Исследована важность проблемы и сравнены способы решения уравнений второго и выше порядка в различных источниках.
Определена эффективность создания программы решения уравнений второго и выше порядка в системе программирования Pascal ABC.
Оценены перспективы от создания программы.
Теоретическая значимость исследования состоит в разработке алгоритма решения уравнений второго и выше порядка при составлении программы на языке программирования Pascal ABC.
Практическая значимость выводов и рекомендаций, содержащихся в работе, связана с тем, что выполненное исследование направлено на решение конкретной задачи. Работа может быть использована также учителями, проверяющими решение уравнений различных порядков.
Теоретические выводы и практические рекомендации, полученные в результате исследования, могут быть использованы школьниками и учителями различных регионов при решении уравнений второго и выше порядка, а также при составлении программы решения уравнений.
Подготовительный (Подборка и изучение материала по данной теме, выделение проблем. Подборка вопросов для анкетирования)
Анкетирование (Анкетирование учащихся школы по разработанным анкетам)
Обработка анкет и анализ полученных результатов (Работа включает в себя выбор программного обеспечения для обработки анкет. Обработка данных и анализ результатов.)
Разработка алгоритма решения уравнений второго и выше порядка (На этом этапе на основе изученной литературы разрабатывается алгоритм решения уравнений второго и выше порядка.)
Составление и тестирование программы.
Презентация проекта (Представление итогового проекта для обсуждения и оценивания.)
Методы исследования. Анализ информационных источников, статистическая обработка результатов.
Глава 1. Теоретическая часть «Описание математических методов решения уравнений второго и выше порядка»
В настоящее время решение уравнений второго порядка и выше на практике в связи с масштабными затратами времени, выполнение повторных действий заставляет задуматься о составлении программы. В целях обеспечения эффективного решения проблем в области работы с цифрами, когда на любом этапе можно допустить вычислительные ошибки, необходимо создание программы, находящей корни уравнения для проверки собственного решения.
Различные уравнения решали более 25 веков назад. Множество способов решения таких уравнений были созданы в Вавилоне, Индии. Потребность в уравнениях была и будет. Нами приведены способы решения (нахождения корней) квадратных уравнений и уравнений высших степеней. Целое уравнение третьей или более высокой степени в отдельных случаях удается решить, используя точечные приемы. Один из приемов решения уравнения вида Р(х)=), где Р(х) – многочлен, степень которого больше двух, состоит в разложении многочлена на множители. Вспомним, какие способы разложения многочлена на множители мы изучали в 7 классе.
Вынесение общего множителя за скобки
С помощью формул сокращенного умножения
С помощью корней квадратного трехчлена.
В основном это способы решения для уравнений частного характера, то есть в каждой группе уравнений, объединенных какими – либо общими свойствами, приведено особое правило, которое применяется только для этой группы уравнений. Этот способ (подбора к каждому уравнению собственной формулы) гораздо легче, чем нахождение корней через дискриминант. Для деления многочленов применяется правило «деления углом», или схема Горнера.
1.1. Схема Горнера. Возможности.
В этой части нами рассмотрено решения уравнений второго и выше порядка по схеме Горнера. Большинство этих формул решения уравнений частного характера. Эти свойства очень удобны так, как гораздо легче решать уравнения по отдельной формуле для этого уравнения, а не по общему принципу. К каждому из способов мы рассмотрели несколько примеров.
Уильям Джордж Горнер (1786 – 1837), известный по схеме Горнера. Опубликована теорема была в 1815г. в Англии.
Схема Горнера позволяет:
Найти значение многочлена в точке a;
Выяснить, является ли число a – корнем многочлена;
Найти новый многочлен от деления на двучлен (понизить степень);
Используя схему Горнера, мы одновременно проверяем, является ли числоa корнем многочлена и делим этот многочлен на двучлен . Это нам потребуется для понижения степени уравнения и мы сможем воспользоваться вспомогательным алгоритмом.
Выделим существенные правила, которые нам могут пригодиться при решении уравнений второго и выше порядка. Здесь нам помогут такие факты:
Если сумма всех коэффициентов многочлена равна нулю, то число 1 является корнем многочлена.
Если сумма коэффициентов многочлена при четных степеняхравна сумме коэффициентов при нечетных степенях, то число -1 является корнем многочлена.
Для приведенного многочлена степени (из теоремы Виета следует, что) если корни многочлена целые, то они являются делителями его свободного члена, который также является целым числом.
Вывод: Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена. Рассмотрим виды уравнений и вычислим корни.
1.2. Виды уравнений. 1.2.1. Уравнения второй степени (квадратные)
Квадратное уравнение - алгебраическое уравнение 2 - й степени. Общий вид уравнения: . Корни уравнения : Формулы верны при любых коэффициентах.
1.2.2. Уравнения третьей степени (кубические)
Кубическое уравнение - алгебраическое уравнение третьей степени. Общий вид кубического уравнения: ax 3 + bx 2 + cx + d = 0, где а ≠ 0
Используя правила Горнера решим уравнение такого вида. (Приложение 2). Понизив степень многочлена мы продолжаем решение обычного квадратного уравнения, рассмотренного ранее.
1.2.3. Уравнения четвертой степени
Уравнение четвертой степени - алгебраическое уравнение четвертой степени. Общий вид кубического уравнения: аx 4 + bx 3 + cx 2 + dх+е = 0,где а ≠ 0.
Используя схему Горнера решим уравнение этого вида.(Приложение 3). Понизив степень многочлена мы продолжаем решение кубического уравнения, используя схему Горнера, поставив перед собой цель, понизить степень до квадратного уравнения.
В теоретической части нашей работы нами рассмотрены решение квадратных уравнений и уравнений третьей, четвертой степени методом Горнера, определена схема решения уравнений второго, третьего, четвертого порядка, выведены новые, ранее нам неизвестные формулы. Мы проработали много вариантов примеров перед тем, как сделать вывод: используя схему Горнера, мы решаем уравнения третьей, четвертой и выше степеней аналогично. Мы уже представляем себе, как составить программу , которая будет решать уравнения такого вида. Каждое решение пригодится нам в дальнейшей учебе. Эта работа помогла классифицировать старые знания и познать новые.
Глава 2. Экспериментальная часть «Реализация метода Горнера на практике» 2.1. Эксперимент 1. Выявление основных методов решения уравнений второй и выше степени.
Цель: проанализировать основные методы решения уравнений на практике; проанализировать время, которое тратится на решение уравнений второй и выше степени.
Для того чтобы грамотно реализовать собственную программу, необходимо не только ознакомится с мнением, решением, ошибками других, и понять причины, по которым они произошли, но и, возможно, применять особые приемы программирования и специализированные средства разработки.
По результатам анкетирования (приложение 1) учащихся 9 – 11 классов (всего 55 оппонентов) оценки правильного нахождения корней уравнений второго и выше порядка выделено:
Умеют решать квадратные уравнения через дискриминант 50 оппонентов; кубические уравнения делением «уголочком» подбором корней 10 оппонентов; 4 степени подбором корней 3 оппонента и заменой переменной; уравнения выше 4 степени не пробовал решать никто.
Время, которое затрачивается обучающимся на решение уравнений:
Из графика видно, что временные затраты на решение даже одного уравнения существенно. А если их надо решить несколько? Время увеличится в разы.
2.2. Эксперимент 2. Создание алгоритма решения уравнений второго порядка и выше.
Цель: проанализировать эффективность метода Горнера при составлении программы; выработать схему использования вспомогательного алгоритма.
Проанализировав анкеты, мы выяснили, что при решении уравнений второго и выше пличными методами: методом подбора корней, делением уголочком многочлена на многочлен, что довольно долгий процесс решения.
Рассмотренные теоретические вопросы дают возможность создания алгоритма решения поставленной цели. Этот алгоритми будем разрабатывать.
Обращаясь к вспомогательному алгоритму решения квадратного уравнения (приложение 3) и алгоритму «понижения степени» многочлена (нахождения делителей многочлена, разложение многочлена на множители), воспользуемся схемой Горнера. 2.3. Эксперимент 3 . Создание программы, реализующей схему Горнера при решении уравнений второй и выше степени.
Цель: составить программу, позволяющую решать уравнения второй и выше степени; проанализировать работу программы.
Для составления программы мы выбрали среду программирования Pascal ABC. Данная программная среда является языком высокого уровня и в последнее время пользуется не только профессиональными программистами, но и начинающим, а также на уроках информатике и ИКТ в гимназии.
В системе программирования четко реализованы принципы структурного программирования. Сначала мы написали программы отдельно для каждого вида уравнений. Затем воспользовались вспомогательным алгоритмом нахождения квадратного уравнения (приложение 3), кубического уравнения (приложение 4), решили объединить, составили программу с использованием процедуры. Рассмотренные теоретические вопросы дают возможность создания программы на Pascal ABC для решения.
Текст программы решения уравнений второй и выше степени, приведен в приложении 5.
В данной главе рассмотрен алгоритм решения уравнений с использованием схемы Горнера. Составленная программа решения уравнений второй и выше степени может быть использована в практической деятельности для помощи учащимся и учителям решать и проверять соответственно задания , где требуется нахождения корней уравнений второй, третьей, четвертой степени , значительно сократив время на проверку.
Математическая энциклопедия. — М.: Советская энциклопедия.И. М. Виноградов.1977—1985.
В.В. Фараонов «Турбо Паскаль». Издание 7-е переработанное
Приложение 1 Анкета для обучающихся
Умеете ли Вы решать уравнения вида ах 2 + вх+с=0 (уравнения второго порядка)?
а) да Если «ДА» каким способом _____________________
в) никогда не делал этого ( не встречал в своей жизни)
Сколько занимает времени решение одного уравнения второго порядка?
а) от 1 до 5 минут б) от 5до 10 минут
в) от 10 до 30 минут г) около часа
Умеете ли Вы решать уравнения вида ах 3 + вх 2 +сх+d=0 (уравнения третьего порядка)?
а) да Если «ДА» каким способом ______________________
в) никогда не делал этого ( не встречал в своей жизни)
Сколько занимает времени решение одного уравнения третьего порядка?
а) от 1 до 5 минут б) от 5до 10 минут
в) от 10 до 30 минут г) около часа
Умеете ли Вы решать уравнения вида ах 4 + вх 3 +сх 2 +dx+e=0 (уравнения четвертого порядка)?
а) да Если «ДА» каким способом ______________________
в) никогда не делал этого ( не встречал в своей жизни)
Сколько занимает времени решение одного уравнения четвертого порядка ?
а) от 1 до 5 минут б) от 5до 10 минут
в) от 10 до 30 минут г) около часа
Умеете ли Вы решать уравнения более высокого порядка ?
а) да Если «ДА» каким способом ______________________
в) никогда не делал этого ( не встречал в своей жизни)
Хотели бы Вы научиться решать уравнения второго порядка и выше?
а) да б) нет в) предпочитаю списать
Хотели бы Вы иметь у себя программу, решающую уравнения второго порядка и выше?
Приложение 2 Решение уравнения методом Горнера
Находим делители свободного члена ±1; ± 2; ± 3; ± 6.
Читайте также: