Сколько суммарно байт памяти занимают переменные в следующей программе
Integer vs int
Все мы знаем, что в java — everything is an object. Кроме, пожалуй, примитивов и ссылок на сами объекты. Давайте рассмотрим две типичных ситуации:
В этих простых строках разница просто огромна, как для JVM так и для ООП. В первом случае, все что у нас есть — это 4-х байтная переменная, которая содержит значение из стека. Во втором случае у нас есть ссылочная переменная и сам объект, на который эта переменная ссылается. Следовательно, если в первом случае мы определено знаем, что занимаемый размер равен:
Забегая вперед скажу — во втором случае количество потребляемой памяти приблизительно в 5 раз больше и зависит от JVM. А теперь давайте разберемся, почему разница настолько огромна.
Из чего же состоит объект?
- Заголовок объекта;
- Память для примитивных типов;
- Память для ссылочных типов;
- Смещение/выравнивание — по сути, это несколько неиспользуемых байт, что размещаются после данных самого объекта. Это сделано для того, чтобы адрес в памяти всегда был кратным машинному слову, для ускорения чтения из памяти + уменьшения количества бит для указателя на объект + предположительно для уменьшения фрагментации памяти. Стоит также отметить, что в java размер любого объекта кратен 8 байтам!
Структура заголовка объекта
- Маркировочное слово (mark word) — к сожалению мне так и не удалось найти назначение этой информации, подозреваю что это просто зарезервированная на будущее часть заголовка.
- Hash Code — каждый объект имеет хеш код. По умолчанию результат вызова метода Object.hashCode() вернет адрес объекта в памяти, тем не менее некоторые сборщики мусора могут перемещать объекты в памяти, но хеш код всегда остается одним и тем же, так как место в заголовке объекта как раз может быть использовано для хранения оригинального значения хеш кода.
- Garbage Collection Information — каждый java объект содержит информацию нужную для системы управления памятью. Зачастую это один или два бита-флага, но также это может быть, например, некая комбинация битов для хранения количества ссылок на объект.
- Type Information Block Pointer — содержит информацию о типе объекта. Этот блок включает информацию о таблице виртуальных методов, указатель на объект, который представляет тип и указатели на некоторые дополнительные структуры, для более эффективных вызовов интерфейсов и динамической проверки типов.
- Lock — каждый объект содержит информацию о состоянии блокировки. Это может быть указатель на объект блокировки или прямое представление блокировки.
- Array Length — если объект — массив, то заголовок расширяется 4 байтами для хранения длины массива.
Спецификация Java
Известно, что примитивные типы в Java имеют предопределенный размер, этого требует спецификация для переносимости кода. Поэтому не будем останавливаться на примитивах, так как все прекрасно описано по ссылке выше. А что же говорит спецификация для объектов? Ничего, кроме того, что у каждого объекта есть заголовок. Иными словами, размеры экземпляров Ваших классов могут отличатся от одной JVM к другой. Собственно, для простоты изложения я буду приводить примеры на 32-х разрядной Oracle HotSpot JVM. А теперь давайте разберем самые используемые классы Integer и String.
Integer и String
Итак, давайте попробуем подсчитать сколько же будет занимать объект класса Integer в нашей 32-х разрядной HotSpot JVM. Для этого нужно будет заглянуть в сам класс, нам интересны все поля, которые не объявлены как static. Из таких видим только одно — int value. Теперь исходя из информации выше получаем:
Теперь заглянем в класс строки:
И подсчитаем размер:
Ну и это еще не все… Так как строка содержит ссылку на массив символов, то, по сути, мы имеем дело с двумя разными объектами — объектом класса String и самим массивом, который хранит строку. Это, как бы, верно с точки зрения ООП, но если посмотреть на это со стороны памяти, то к полученному размеру нужно добавить и размер выделенного для символов массива. А это еще 12 байт на сам объект массива + 2 байта на каждый символ строки. Ну и, конечно же, не забываем добавлять выравнивание для кратности 8 байтам. Итого в конечном итоге простая, казалось бы, строка new String(«a») выливается в:
Важно отметить, что new String(«a») и new String(«aa») будут занимать одинаковое количество памяти. Это важно понимать. Типичный пример использования этого факта в свою пользу — поле hash в классе String. Если бы его не было, то объект строки так или иначе занимал бы 24 байта, за счет выравнивания. А так получается что для этих 4-х байтов нашлось очень достойное применение. Гениальное решение, не правда ли?
Размер ссылки
Немножко хотел бы оговорится о ссылочных переменных. В принципе, размер ссылки в JVM зависит от ее разрядности, подозреваю, что для оптимизации. Поэтому в 32-х разрядных JVM размер ссылки обычно 4 байта, а в 64-х разрядных — 8 байт. Хотя это условие и не обязательно.
Группировка полей
Зачем все это?
Иногда возникает ситуация в которой Вам необходимо прикинуть приблизительный объем памяти для хранения тех или иных объектов, например словаря, эта маленькая справка поможет быстро сориентироваться. Также, это потенциально возможный способ оптимизации, особенно в том окружении, где доступ к его настройкам не доступен.
Тем не менее, эта аналогия не совсем подходит к программированию, так как переменные могут занимать больше 1 байта памяти. Следовательно, одна переменная может использовать 2, 4 или даже 8 последовательных адресов. Объем памяти, который использует переменная, зависит от типа данных этой переменной. Так как мы, как правило, получаем доступ к памяти через имена переменных, а не через адреса памяти, то компилятор может скрывать от нас все детали работы с переменными разных размеров.
Есть несколько причин по которым полезно знать, сколько памяти занимает определенная переменная/тип данных.
Во-первых, чем больше она занимает, тем больше информации сможет хранить. Так как каждый бит содержит либо 0 , либо 1 , то 1 бит может иметь 2 возможных значения.
2 бита могут иметь 4 возможных значения:
бит 0 | бит 1 |
0 | 0 |
0 | 1 |
1 | 0 |
1 | 1 |
3 бита могут иметь 8 возможных значений:
бит 0 | бит 1 | бит 2 |
0 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
1 | 1 | 1 |
По сути, переменная с n-ным количеством бит может иметь 2 n возможных значений. Поскольку байт состоит из 8 бит, то он может иметь 2 8 (256) возможных значений.
Размер переменной накладывает ограничения на количество информации, которую она может хранить. Следовательно, переменные, которые используют больше байт, могут хранить более широкий диапазон значений.
Размер основных типов данных в C++
Язык C++ гарантирует только их минимальный размер:
Тип | Минимальный размер | |
Логический тип данных | bool | 1 байт |
Символьный тип данных | char | 1 байт |
wchar_t | 1 байт | |
char16_t | 2 байта | |
char32_t | 4 байта | |
Целочисленный тип данных | short | 2 байта |
int | 2 байта | |
long | 4 байта | |
long long | 8 байт | |
Тип данных с плавающей запятой | float | 4 байта |
double | 8 байт | |
long double | 8 байт |
Фактический размер переменных может отличаться на разных компьютерах, поэтому для его определения используют оператор sizeof.
Оператор sizeof — это унарный оператор, который вычисляет и возвращает размер определенной переменной или определенного типа данных в байтах. Вы можете скомпилировать и запустить следующую программу, чтобы выяснить, сколько занимают разные типы данных на вашем компьютере:
Я не очень знаком с указателями, так как я в основном использую Java, а у Java нет указателей, и сейчас я изучаю C ++. В учебнике по C ++, чтобы узнать размер памяти, занимаемой переменной, он использовал размер указателя на переменную, т.е.
Когда я запускаю приведенный выше код, я получаю выходные данные 4 и 8. Но мой друг скомпилировал и выполнил тот же код на своей машине, и у него были выходные данные 4 и 4. Я не знаю, почему это происходит и почему репетитор использовал sizeof для указателя на переменную вместо самой переменной, так как он хотел знать объем памяти, занимаемый этой переменной. Я знаю, что переменные в C / C ++ имеют различную емкость памяти из-за разной архитектуры, по крайней мере, так меня учили в C. То, что int в 64-битной машине имеет другой размер по сравнению с 32-битной. Но я думаю, что мои результаты должны быть как минимум согласованными, т.е. 8 и 8, или 4 и 4. Я использую 64-битную архитектуру и 64-битную ОС, мой друг использует 64-битную архитектуру с 32-битной ОС.
Решение
дает вам размер переменной p , который имеет тип int * ,
Это не такой же как
который даст вам размер, занимаемый int переменная.
Сказав, что, просто чтобы уточнить, чтобы узнать размер, занимаемый переменной, вам нужно использовать sizeof оператор этой переменной, а не указатель на эту переменную. ( Что вы узнали в первый год является правильный ).
Обратите внимание, что размер указателя зависит от архитектуры, поэтому он может варьироваться. В некоторых архитектурах размер указателя может быть 32 бита ( sizeof вернет 4), в некоторых других это может быть 64 бит ( sizeof вернется 8).
Другие решения
Вы должны использовать sizeof к самому значению, чтобы узнать, сколько памяти занято переменной. Я думаю, что репетитор сделал неправильно.
sizeof(ptr) дает размер указателя ptr и его размер определяется реализацией. То же самое верно для sizeof(int) , Вот почему вы и ваш друг получаете разные результаты.
Другие возможности, которые вы можете получить в виде 4 4 а также 8 8 ,
sizeof даст вам количество байтов, необходимое для представления объекта определенного типа. В вашей строке
std::cout << sizeof(n) << std::endl;
n является int так что это даст вам размер int valiable.
Линия std::cout << sizeof(ptr) << std::endl; ptr имеет указатель типа на целое число, так что это даст вам размер int* , Не гарантируется, что их значения будут одинаковыми, и они будут различаться в зависимости от архитектуры. Стандарт с ++ не говорит, какими должны быть размеры этих типов.
Из стандартной тяги N 3690:
Для компилятора все указатели имеют фиксированный размер независимо от типа данных.
Размер указателя в 32-битном компьютере составляет 4 байта, а в 64-битном размер указателя составляет 8 байтов. Вот почему ваш друг получает 4 в качестве размера указателя, а вы получаете 8.
Си - регистрозависимый язык. Переменные с именами a и A, или end и END, или perfectDark и PerfectDarK – это различные переменные.
Типы переменных
- 1) Размер переменной в байтах (сколько байт памяти выделит компьютер для хранения значения)
- 2) Представление переменной в памяти (как в двоичном виде будут расположены биты в выделенной области памяти).
Целые
- char - размер 1 байт. Всегда! Это нужно запомнить.
- short - размер 2 байта
- int - размер 4 байта
- long - размер 4 байта
- long long - размер 8 байт.
char <= short <= int <= long <= long long
Указанные выше значения характерны для компилятора VC2012 на 32-разрядной машине. Так что, если ваша программа зависит от размера переменной, не поленитесь узнать её размер.
Теперь давайте определим максимальное и минимальное число, которое может хранить переменная каждого из типов. Числа могут быть как положительными, так и отрицательными. Отрицательные числа используют один бит для хранения знака. Иногда знак необходим (например, храним счёт в банке, температуру, координату и т.д.), а иногда в нём нет необходимости (вес, размер массива, возраст человека и т.д.). Для этого в си используется модификатор типа signed и unsigned. unsigned char - все 8 бит под число, итого имеем набор чисел от 00000000 до 11111111 в двоичном виде, то есть от 0 до 255 signed char от -128 до 128. В си переменные по умолчанию со знаком. Поэтому запись char и signed char эквивалентны.
Тип | Размер, байт | Минимальное значение | Максимальное значение |
---|---|---|---|
unsigned char | 1 | 0 | 255 |
signed char ( char ) | 1 | -128 | 127 |
unsigned short | 2 | 0 | 65535 |
signed short ( short ) | 2 | -32768 | 32767 |
unsigned int ( unsigned ) | 4 | 0 | 4294967296 |
signed int ( int ) | 4 | -2147483648 | 2147483647 |
unsigned long | 4 | 0 | 4294967296 |
signed long ( long ) | 4 | -2147483648 | 2147483647 |
unsigned long long | 8 | 0 | 18446744073709551615 |
signed long long ( long long ) | 8 | -9223372036854775808 | 9223372036854775807 |
sizeof
В си есть оператор, который позволяет получить размер переменной в байтах. sizeof переменная, или sizeof(переменная) или sizeof(тип). Это именно оператор, потому что функция не имеет возможности получить информацию о размере типов во время выполнения приложения. Напишем небольшую программу чтобы удостовериться в размерах переменных.
(Я думаю ясно, что переменные могут иметь любое валидное имя). Эту программу можно было написать и проще
В си один и тот же тип может иметь несколько названий
short === short int
long === long int
long long === long long int
unsigned int === unsigned
Типы с плавающей точкой
- float - 4 байта,
- long float - 8 байт
- double - 8 байт
- long double - 8 байт.
Переполнение переменных
Си не следит за переполнением переменных. Это значит, что постоянно увеличивая значение, скажем, переменной типа int в конце концов мы "сбросим значение"
Вообще, поведение при переполнении переменной определено только для типа unsigned: Беззнаковое целое сбросит значение. Для остальных типов может произойти что угодно, и если вам необходимо следить за переполнением, делайте это вручную, проверяя аргументы, либо используйте иные способы, зависящие от компилятора и архитектуры процессора.
Постфиксное обозначение типа
- 11 - число типа int
- 10u - unsigned
- 22l или 22L - long
- 3890ll или 3890LL - long long (а также lL или Ll)
- 80.0f или 80.f или 80.0F - float (обязательно наличие десятичной точки в записи)
- 3.0 - число типа double
Следующий код, однако, не будет приводить к ошибкам, потому что происходит неявное преобразование типа
Шестнадцатеричный и восьмеричный формат
В о время работы с числами можно использовать шестнадцатеричный и восьмеричный формат представления. Числа в шестнадцатиричной системе счисления начинаются с 0x, в восьмеричной системе с нуля. Соответственно, если число начинается с нуля, то в нём не должно быть цифр выше 7:
Экспоненциальная форма представления чисел
Объявление переменных
В си переменные объявляются всегда в начале блока (блок - участок кода ,ограниченный фигурными скобками)
При объявлении переменной пишется её тип и имя.
Можно объявить несколько переменных одного типа, разделив имена запятой
Здесь объявлены переменные a и b внутри функции main, и переменная z внутри тела цикла. Следующий код вызовет ошибку компиляции
Это связано с тем, что объявление переменной стоит после оператора присваивания. При объявлении переменных можно их сразу инициализировать.
int i = 0;
При этом инициализация при объявлении переменной не считается за отдельный оператор, поэтому следующий код будет работать
Начальное значение переменной
О чень важно запомнить, что переменные в си не инициализируются по умолчанию нулями, как во многих других языках программирования. После объявления переменной в ней хранится "мусор" - случайное значение, которое осталось в той области памяти, которая была выделена под переменную. Это связано, в первую очередь, с оптимизацией работы программы: если нет необходимости в инициализации, то незачем тратить ресурсы для записи нулей (замечание: глобальные переменные инициализируются нулями, почему так, читайте в этой статье).
Область видимости переменной
П еременные бывают локальными (объявленными внутри какой-нибудь функции) и глобальными. Глобальная переменная видна всем функциям, объявленным в данном файле. Локальная переменная ограничена своей областью видимости. Когда я говорю, что переменная "видна в каком-то месте", это означает, что в этом месте она определена и её можно использовать. Например, рассмотрим программу, в которой есть глобальная переменная
Будет выведено
foo: 100
bar: 333
Здесь глобальная переменная global видна всем функциям. Но аргумент функции затирает глобальную переменную, поэтому при передаче аргумента 333 выводится локальное значение 333.
Вот другой пример
Программа выведет 555. Также, как и в прошлом случае, локальная переменная "важнее". Переменная, объявленная в некоторой области видимости не видна вне её, например
Этот пример не скомпилируется, потому что переменная y существует только внутри своего блока.
Вот ещё пример, когда переменные, объявленные внутри блока перекрывают друг друга
Программа выведет
30
20
10
Глобальных переменных необходимо избегать. Очень часто можно услышать такое. Давайте попытаемся разобраться, почему. В ваших простых проектах глобальные переменные выглядят вполне нормально. Но представьте, что у вас приложение, которое
- 1) Разрабатывается несколькими людьми и состоит из сотен тысяч строк кода
- 2) Работает в несколько потоков
Во-первых, глобальная переменная, если она видна всем, может быть изменена любой частью программы. Вы изменили глобальную переменную, хотите её записать, а другая часть программы уже перезаписала в неё другое значение (на самом деле это целый класс проблем, которые возникают в многопоточной среде). Во-вторых, при больших размерах проекта не уследить, кто и когда насоздавал глобальных переменных. В приведённых выше примерах видно, как переменные могут перекрывать друг друга, то же произойдёт и в крупном проекте.
Безусловно, есть ситуации, когда глобальные переменные упрощают программу, но такие ситуации случаются не часто и не в ваших домашних заданиях, так что НЕ СОЗДАВАЙТЕ ГЛОБАЛЬНЫХ ПЕРЕМЕННЫХ!
Переменные могут быть не только целочисленными и с плавающей точкой. Существует множество других типов, которые мы будем изучать в дальнейшем.
Читайте также: