Решение системы нелинейных уравнений методом простой итерации в excel
Рассмотрим достаточные условия сходимости итерационной последовательности n>.
Практически, для применения метода итерации систему линейных уравнений удобно "погрузить" в одну из трёх следующих метрик:
(3.4)
Для того, чтобы отображение F, заданное в метрическом пространстве соотношениями (3.2), было сжимающим, достаточно выполнение одного из следующих условий:
а) в пространстве с метрикой ρ1: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по строкам, должна быть меньше единицы.
б) в пространстве с метрикой ρ2: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по столбцам, должна быть меньше единицы.
в) в пространстве с метрикой ρ3: , т. е. сумма квадратов при неизвестных в правой части системы (3.2) должна быть меньше единицы
Пример . Вычислить два приближения методом простой итерации. Оценить погрешность второго приближения. В качестве начального приближения выбрать x 0 =(0; 0; 0).
Так как диагональные элементы системы являются преобладающими, то приведем систему к нормальному виду:
Последовательные приближения будем искать по формулам:
При большом числе неизвестных схема метода Гаусса, дающая точное решение, становится весьма сложной. В этом случае для решения СЛАУ иногда удобнее пользоваться методом простой итерации.
Метод итераций для системы уравнений в Excel
На листе Excel организуется таблица в три зоны: первая зона состоит из одного столбца (номер итерации), вторая зона определяет переменные x , третья зона под вычисления точности epsilon .Во второй зоне по итерационной схеме организуется расчет переменных x (в примере для случая трех переменных):
Итерация №1: =$F$2/$B$2-C6*$C$2/$B$2-D6*$D$2/$B$2;=$F$3/$C$3-B6*$B$3/$C$3-D6*$D$3/$C$3;=$F$4/$D$4-B6*$B$4/$D$4-C6*$C$4/$D$4
Итерация №2: =$F$2/$B$2-C7*$C$2/$B$2-D7*$D$2/$B$2;=$F$3/$C$3-B7*$B$3/$C$3-D7*$D$3/$C$3;=$F$4/$D$4-B7*$B$4/$D$4-C7*$C$4/$D$4
В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.
Рассмотрим на примерах некоторые варианты решений.
Решение уравнений методом подбора параметров Excel
Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.
Путь к команде: «Данные» - «Работа с данными» - «Анализ «что-если»» - «Подбор параметра».
Рассмотрим на примере решение квадратного уравнения х 2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:
- Введем в ячейку В2 формулу для нахождения значения функции. В качестве аргумента применим ссылку на ячейку В1.
- Открываем меню инструмента «Подбор параметра». В графе «Установить в ячейку» - ссылка на ячейку В2, где находится формула. В поле «Значение» вводим 0. Это то значение, которое нужно получить. В графе «Изменяя значение ячейки» - В1. Здесь должен отобразиться отобранный параметр.
- После нажатия ОК отобразится результат подбора. Если нужно его сохранить, вновь нажимаем ОК. В противном случае – «Отмена».
Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».
Как решить систему уравнений матричным методом в Excel
Дана система уравнений:
- Значения элементов введем в ячейки Excel в виде таблицы.
- Найдем обратную матрицу. Выделим диапазон, куда впоследствии будут помещены элементы матрицы (ориентируемся на количество строк и столбцов в исходной матрице). Открываем список функций (fx). В категории «Математические» находим МОБР. Аргумент – массив ячеек с элементами исходной матрицы.
- Нажимаем ОК – в левом верхнем углу диапазона появляется значение. Последовательно жмем кнопку F2 и сочетание клавиш Ctrl + Shift + Enter.
- Умножим обратную матрицу Ах -1х на матрицу В (именно в таком порядке следования множителей!). Выделяем диапазон, где впоследствии появятся элементы результирующей матрицы (ориентируемся на число строк и столбцов матрицы В). Открываем диалоговое окно математической функции МУМНОЖ. Первый диапазон – обратная матрица. Второй – матрица В.
- Закрываем окно с аргументами функции нажатием кнопки ОК. Последовательно нажимаем кнопку F2 и комбинацию Ctrl + Shift + Enter.
Получены корни уравнений.
Решение системы уравнений методом Крамера в Excel
Возьмем систему уравнений из предыдущего примера:
Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.
Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.
Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).
Определитель системы больше 0 – решение можно найти по формуле Крамера (Dx / |A|).
Для расчета Х1: =U2/$U$1, где U2 – D1. Для расчета Х2: =U3/$U$1. И т.д. Получим корни уравнений:
Решение систем уравнений методом Гаусса в Excel
Для примера возьмем простейшую систему уравнений:
3а + 2в – 5с = -1
2а – в – 3с = 13
а + 2в – с = 9
Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.
Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.
- Приведем все коэффициенты при а к 0. Кроме первого уравнения. Скопируем значения в первой строке двух матриц в ячейки В6:Е6. В ячейку В7 введем формулу: =B3:Е3-$B$2:$Е$2*(B3/$B$2). Выделим диапазон В7:Е7. Нажмем F2 и сочетание клавиш Ctrl + Shift + Enter. Мы отняли от второй строки первую, умноженную на отношение первых элементов второго и первого уравнения.
- Копируем введенную формулу на 8 и 9 строки. Так мы избавились от коэффициентов перед а. Сохранили только первое уравнение.
- Приведем к 0 коэффициенты перед в в третьем и четвертом уравнении. Копируем строки 6 и 7 (только значения). Переносим их ниже, в строки 10 и 11. Эти данные должны остаться неизменными. В ячейку В12 вводим формулу массива.
- Прямую прогонку по методу Гаусса сделали. В обратном порядке начнем прогонять с последней строки полученной матрицы. Все элементы данной строки нужно разделить на коэффициент при с. Введем в строку формулу массива: .
- В строке 15: отнимем от второй строки третью, умноженную на коэффициент при с второй строки (). В строке 14: от первой строки отнимаем вторую и третью, умноженные на соответствующие коэффициенты (). В последнем столбце новой матрицы получаем корни уравнения.
Примеры решения уравнений методом итераций в Excel
Вычисления в книге должны быть настроены следующим образом:
Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х 3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:
M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:
f’ (1) = -2 * f’ (2) = -11.
Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х 3 – 1. М = 11.
В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).
В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.
Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:
В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.
Рассмотрим на примерах некоторые варианты решений.
Решение уравнений методом подбора параметров Excel
Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.
Путь к команде: «Данные» - «Работа с данными» - «Анализ «что-если»» - «Подбор параметра».
Рассмотрим на примере решение квадратного уравнения х 2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:
Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».
Как решить систему уравнений матричным методом в Excel
Дана система уравнений:
Получены корни уравнений.
Решение системы уравнений методом Крамера в Excel
Возьмем систему уравнений из предыдущего примера:
Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.
Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.
Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).
Определитель системы больше 0 – решение можно найти по формуле Крамера (D x / |A|).
Для расчета Х 1: =U2/$U$1, где U2 – D1. Для расчета Х 2: =U3/$U$1. И т.д. Получим корни уравнений:
Решение систем уравнений методом Гаусса в Excel
Для примера возьмем простейшую систему уравнений:
3а + 2в – 5с = -1
2а – в – 3с = 13
а + 2в – с = 9
Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.
Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.
Примеры решения уравнений методом итераций в Excel
Вычисления в книге должны быть настроены следующим образом:
Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х 3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:
Х n+1 = X n – F (X n) / M, n = 0, 1, 2, … .
M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:
f’ (1) = -2 * f’ (2) = -11.
Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х 3 – 1. М = 11.
В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).
В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.
Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:
Корень на заданном промежутке один.
РЕШЕНИЕ НЕЛИНЕЙНОГО УРАВНЕНИЯ с одним неизвестным.
Уравнение с одним неизвестным можно записать в каноническом виде
Решение уравнения заключается в нахождении корней, т.е. таких значений х, которые обращают уравнение в тождество. В зависимости от того, какие функции входят в уравнение, разделяют два больших класса уравнений - алгебраические и трансцендентные. Функция называется алгебраической, если для получения значения функции по данному значению х нужно выполнить арифметические операции и возведение в степень. К трансцендентным функциям относятся показательная, логарифмическая, тригонометрические прямые и обратные и т.п.
Найти точные значения корней можно лишь в исключительных случаях. Как правило, используются методы приближенного вычисления корней с заданной степенью точности Е. Это означает, что если установлено, что искомый корень лежит внутри интервала , где a - левая граница, а b - правая граница интервала, и длина интервала (b-a) 0 сходимость будет монотонной , т.е. с увеличением итераций D будет приближаться к Е монотонно (не меняя знака), в то время как при g’(X) 1 на интервале и характер сходимости будет монотонный.
Запрограммируем метод итераций для этого примера на том же рабочем листе, где мы проводили отделение корней. В ячейку А22 внесем число, равное 0. В ячейку В22 запишем формулу =0,1*EXP(A22), а в ячейку С22 формулу =А22- В22. Таким образом 22 строка содержит данные по первой итерации. Чтобы получить в строке 23 данные по второй итерации, скопируем содержимое ячейки В22 в ячейку А23, записав в А23 формулу =В22. Далее надо скопировать формулы ячеек В22 и С22 в ячейки В23 и С23. Для получения данных всех остальных итераций надо выделить ячейки А23,В23,С23 и скопировать их содержимое в блок А24:C32. После этого следует проанализировать изменение D = Х - g(X) в столбце С, найти D 0. Достаточные условия сходимости метода заключаются в том, что первая и вторая производные исследуемой функции должны сохранять знак на интервале . В качестве начального приближения выбирают обычно или a, или b, в зависимости от того, кто из них соответствует формуле выбора Х 0 .
Метод Ньютона допускает простую геометрическую интерпретацию. Если через точку с координатами (X i ;f(X i)) провести касательную к кривой f(X), то абсцисса точки пересечения этой касательной с осью 0Х и есть очередное приближение корня Х i+1 .
Метод Ньютона можно рассматривать как некоторую модификацию метода итераций, дающую наилучшую итерирующую функцию g(X) на каждом шаге итерации. Проведем следующие преобразования с исходным каноническим уравнением f(X)=0. Умножим левую и правую его части на некоторое число l, отличное от нуля. Затем прибавим слева и справа по Х. Тогда будем иметь
Дифференцируя g(X), получим g’(X) = 1 + l*f’(X). Из достаточного условия сходимости метода итераций çg’(X)ç 0.
Чтобы получить в строке 43 данные по второй итерации, скопируем содержимое ячейки D42 в ячейку А43, записав в А43 формулу =D42. Далее надо скопировать формулы ячеек В42, С42, D42, E42 в ячейки В43, С43, D43, E43. Для получения данных всех остальных итераций надо выделить ячейки в 43 строке и скопировать их содержимое в блок А44:Е47. После этого следует проанализировать изменение D в столбце E, найти D 0, то значение А53 равно С52. В противном случае оно должно быть равно А52. В ячейке В53 наоборот: если F52 0” (разумеется без кавычек!), в поле Значение_если_истина внесем С52, а в поле Значение_если_ложь - А52. Щелкнем по кнопке Закончить . Вот и все.
То же самое надо проделать с ячейкой В53. Только Логическое выражение будет “F52 . Здесь в поле Массив надо набить с клавиатуры А3:D6, что соответствует блоку ячеек, занятому матрицей А . Щелкнув на кнопке Закончить , можно увидеть, что в блоке А8:D11 заполнена лишь ячейка А8. Для завершения операции обращения EXCEL требует выполнения еще двух действий. Сначала надо сделать активной строку формул, щелкнув по ней (в любом месте строки!) - курсор мыши примет при этом форму I. Проверкой правильности Ваших действий будет появление слева от строки формул четырех кнопок, в том числе с зеленой галочкой. После этого следует нажать на клавиатуре клавишу “Ctrl”, затем не отпуская ее - клавишу “Shift”, и не отпуская и ее - клавишу “Enter”, т.е. в результате должны быть нажаты все три клавиши одновременно! Вот теперь весь блок А8:D11 будет заполнен числами и можно выделить блок H8:H11, чтобы начать операцию умножения А -1 *В .
Выделив этот блок, снова вызовите Мастер функций и в поле Имя функции - выбирайте функцию МУМНОЖ. Щелкнув по кнопке Шаг> , перейдем ко второму шагу диалога, где в поле Массив1 внесем адрес А8:D11, а в поле Массив2 - адрес F8:F11. Щелкнем по кнопке Закончить и обнаружим, что в блоке Н8:H11 заполнена лишь ячейка Н8. Активизируем строку формул (должна появиться зеленая галочка!) и по методике, описанной выше, нажмем одновременно три клавиши “Ctrl”-”Shift”-”Enter”. Результат умножения появится в блоке Н8:H11.
Для проверки точности полученного решения системы, проведем операцию вычисленияВс=А*Хс . С этой целью скопируем только числовые значения (а не формулы!) ячеек из блока H8:H11 в ячейки F3:F6. Сделать это надо следующим образом. Выделим блок H8:H11. Дадим команду меню Правка - Копировать . Выделим блок F3:F6. Дадим команду меню Правка - Специальная вставка . Откроется диалог, в котором в поле Вставить следует выбрать режим Значения . Подтвердим свое решение, щелкнув по кнопке ОК.
После этой операции заполнены числами блоки А3:D6 и F3:F6. Можно приступить к умножению матрицы А на вектор Хс . Для этого надо выделить блок Н3:H6, вызвать Мастер Функций и, действуя так же, как и при вычислении Хс=А -1 *В , получить Вс . Как видно из таблицы, числовые значения векторов В и Вс совпадают, что говорит о хорошей точности вычислений, т.е. невязка в нашем примере равна нулю.
Подтвердим хорошую обусловленность матрицы А вычислением ее определителя. Для этого сделаем активной ячейку D13. С помощью Мастера Функций вызовем функцию МОПРЕД. В поле массив занесем адрес блока А3:D6. Щелкнув по кнопке Закончить , получим в ячейке D13 числовое значение определителя матрицы А . Как видно, оно значительно больше нуля, что говорит о хорошей обусловленности матрицы.
2.2. Метод приближенных вычислений.
Одним из наиболее распространенных итерационных методов решения систем линейных алгебраических уравнений, отличающийся простотой и легкостью программирования, является метод приближенных вычислений или метод Якоби.
Пусть надо решить систему
a 11 x 1 +a 12 x 2 +a 13 x 3 = b 1
a 21 x 1 +a 22 x 2 +a 23 x 3 = b 2
a 31 x 1 +a 32 x 2 +a 33 x 3 = b 3
Предположим, что диагональные элементы a 11, a 22, a 33 отличны от нуля. В противном случае можно переставить уравнения. Выразим переменные из первого, второго и третьего уравнений соответственно. Тогда
Зададим начальные приближения неизвестных
Подставляя их в правую часть преобразованной системы, получим новое первое приближение
Пример 3.1. Найти решение системы линейных алгебраических уравнений (3.1) методом Якоби.
Итерационные методы можно использовать для заданной системы, т.к. выполняется условие «преобладания диагональных коэффициентов», что обеспечивает сходимость этих методов.
Расчетная схема метода Якоби приведена на рис (3.1).
Приведите систему(3.1). к нормальному виду:
или в матричной форме
Рис.3.1.
Для определения количества итераций, необходимое для достижения заданной точности e, и приближенного решения системы полезно в столбце Н установить Условный формат . Результат такого форматирования виден на рис.3.1. Ячейки столбца Н, значения которых удовлетворяют условию (3.4) тонированы.
Анализируя результаты, принимаем за приближенное решение исходной системы с заданной точностью e=0,1 четвертую итерацию,
т.е. х 1 =10216; х 2 = 2,0225, х 3 = 0,9912
Изменяя значение e в ячейке Н5 можно получить новое приближенное решение исходной системы с новой точностью.
Проанализируйте сходимость итерационного процесса, построив графики изменения каждой компоненты решения СЛАУ в зависимости от номера итерации.
Для этого выделите блок ячеек А10:D20 и, используя Мастер диаграмм , постройте графики, отражающие сходимость итерационного процесса, рис.3.2.
Аналогично решается система линейных алгебраических уравнений методом Зейделя.
Лабораторная работа №4
Тема. Численные методы решения линейных обыкновенных дифференциальных уравнений с краевыми условиями. Метод конечных разностей
Задание. Решить краевую задачу методом конечных разностей, построив два приближения (две итерации) с шагом h и с шагом h/2.
Проанализировать полученные результаты. Варианты заданий приведены в приложении 4.
Порядок выполнения работы
1. Постройте вручную конечноразностную аппроксимацию краевой задачи (конечноразностную СЛАУ) с шагом h , заданным вариантом.
2. Используя метод конечных разностей, сформируйте в Excel систему линейных алгебраических конечно-разностных уравнений для шага h разбивки отрезка . Запишите эту СЛАУ на рабочем листе книги Excel . Расчетная схема приведена на рис.4.1.
3. Полученную СЛАУ решите методом прогонки.
4. Проверьте правильность решения СЛАУ с помощью надстройки Excel Поиск решения .
5. Уменьшите шаг сетки в 2 раза и еще раз решите задачу. Результаты представьте в графическом виде.
6. Сравните полученные результаты. Сделайте вывод о необходимости продолжения или о прекращении счета.
Решение краевой задачи с использованием электронных таблиц Microsoft Excel.
Пример 4.1. Методом конечных разностей найти решение краевой задачи , y(1)=1, y ’ (2)=0,5 на отрезке xÎ с шагом h=0,2 и с шагом h=0,1. Сравнить полученные результаты и сделать вывод о необходимости продолжения или о прекращении счета.
Расчетная схема для шага h=0,2 приведена на рис.4.1.
Полученное решение (сеточную функцию) Y , Х в столбце L и B можно принять за первую итерацию (первое приближение) исходной задачи.
Для нахождения второй итерации сделайте сетку вдвое гуще (n=10, шаг h=0,1) и повторите приведенный выше алгоритм.
Это можно проделать на том же или на другом листе книги Excel . Решение (второе приближение) приведено на рис.4.2.
Сравните полученные приближенные решения. Для наглядности можно построить графики этих двух приближений (двух сеточных функций), рис.4.3.
Порядок построения графиков приближенных решений краевой задачи
1. Постройте график решения задачи для разностной сетки с шагом h=0,2 (n=5).
2. Активизируйте уже построенный график и выберите команду меню Диаграмма\Добавить данные
3. В окне Новые данные укажите данные x i , y i для разностной сетки с шагом h/2 (n=10).
4. В окне Специальная вставка установите флажки в полях:
Как видно из приведенных данных, два приближенных решения краевой задачи (две сеточные функции) отличаются друг от друга не более, чем на 5%. Поэтому за приближенное решение исходной задачи принимаем вторую итерацию, т.е.
Лабораторная работа №5
Министерство общего образования
Уральский государственный технический университет-УПИ
филиал в г.Краснотурьинске
Кафедра вычислительной техники
По численным методам
Решение линейных уравнений методом простой итерации
c помощью программы Microsoft Excel
Руководитель Кузьмина Н.В.
Студент Нигматзянов Т.Р.
Тема: «Нахождение с заданной точностью корня уравнения F(x)=0 на промежутке методом простой итерации».
Контрольный пример: 0,25-х+sinx=0
Условия задачи: для заданной функции F(x) на интервале найти корень уравнения F(x)=0 методом простой итерации.
Корень вычислить дважды(с помощью автоматического и ручного расчета).
Предусмотреть построение графика функции на заданном интервале.
1.Теоретическая часть 5
2.Описание хода работы 7
Библиографический список 12
В ходе данной работы мне необходимо ознакомиться с различными методами решения уравнения и найти корень нелинейного уравнения 0,25-х+sin(x)=0 численным методом – методом простой итерации. Для проверки правильности нахождения корня необходимо решить уравнение графически,найти приближенное значение и сравнить его с полученным результатом.
Метод простой итерации.
Итерационный процесс состоит в последовательном уточнении начального приближения х0 (корня уравнения). Каждый такой шаг называется итерацией.
Для использования этого метода исходное нелинейное уравнение записывается в виде: х=j(х), т.е. выделяется х; j(х) – непрерывна и дифференцируема на интервале (а; в). Обычно это можно сделать несколькими способами:
Тема: «Нахождение с заданной точностью корня уравнения F(x)=0 на промежутке [a;b] методом простой итерации».
Контрольный пример: 0,25-х+sinx=0
Условия задачи: для заданной функции F(x) на интервале [0,5;2] найти корень уравнения F(x)=0 методом простой итерации.
Корень вычислить дважды(с помощью автоматического и ручного расчета).
Предусмотреть построение графика функции на заданном интервале.
1.Теоретическая часть 5
2.Описание хода работы 7
Библиографический список 12
В ходе данной работы мне необходимо ознакомиться с различными методами решения уравнения и найти корень нелинейного уравнения 0,25-х+sin(x)=0 численным методом – методом простой итерации. Для проверки правильности нахождения корня необходимо решить уравнение графически ,найти приближенное значение и сравнить его с полученным результатом.
Метод простой итерации.
Итерационный процесс состоит в последовательном уточнении начального приближения х0 (корня уравнения). Каждый такой шаг называется итерацией.
Для использования этого метода исходное нелинейное уравнение записывается в виде: х=j(х), т.е. выделяется х; j(х) – непрерывна и дифференцируема на интервале (а; в). Обычно это можно сделать несколькими способами:
arcsin(2x+1)-x 2 =0 (f(x)=0)
x=0.5(sinx 2 -1) (x=j(x))
x=x+arcsin(2x+1)-x 2 (x=j(x))
x= (x=j(x)),знак берется в зависимости от интервала [а;b].
Преобразование должно быть таким, чтобы ½j(x)<1½ для всех принадлежащих интервалу [a;b].В таком случае процесс итерации сходится.
Пусть известно начальное приближение корня x=c0.Подставляя это значение в правую часть уравнения x=j(x),получаем новое приближение корня:c=j(c0).Далее, подставляя каждый раз новое значение корня в x=j(x),получаем последовательность значений
Процесс итераций следует продолжать до тех пор,пока для двух последовательных приближений не будет выполнено условие: ½cn-cn-1½<e
Программа Excel реализует метод простой итерации двумя способами с помощью ручного расчета и с автоматическим контролем точности.
у у=х
1.
j(с0)
Рис. График итерационного процесса
2.Описание хода работы.
2. Построил график функции y=x и y=0,25+sin(x) на отрезке [0,5;2] с шагом 0,1 назвал лист «График».
3. Выбрал команду Сервис®Параметры.
Открыл вкладку Вычисления.
Включил режим Вручную.
Отключил флажок Пересчет перед сохранением. Сделал значение поля Пре-дельное число итераций равным 1,относительную погрешность 0,001.
4. Ввел в ячейку А1 строку «Решение уравнения x=0,25+sin(x) методом простой итерации».
5. Ввел в ячейку А3 текст «Начальное значение»,в ячейку А4 текст «Начальный флаг»,в ячейку В3 значение 0,5 ,в ячейку В4 слово ИСТИНА.
6. Присвоил ячейкам В3 и В4 имя «нач_зн» и «нач».
В ячейке В6 будет выполняться проверка,равна ли истина значению ячейки «нач».Если это так,х будет установлено равным начальному значению, в противоположном случае равным ячейке В7,т.е. 0,25+синуса х.В ячейке В7 выч-исляется 0,25-синуса ячейки В6,и тем организуется циклическая ссылка.
7. В ячейку А6 ввел y=x,и в ячейку А7 y=0,25+sin(x).В ячейку В6 формулу:
=ЕСЛИ(нач;нач_зн;В7).
В ячейку В7 формулу: y=0,25+sin(B6).
8. В ячейку А9 ввел слово Погрешность.
9. В ячейку В9 ввел формулу: =В7-В6.
10. С помощью команды Формат-Ячейки(вкладка Число) преобразовал ячейку В9 в экспоненциальный формат с двумя цифрами после запятой.
11. Затем организовал вторую циклическую ссылку-для подсчета количества ите-раций.В ячейку А11 ввел текст «Количество итераций».
12. В ячейку В11 ввел формулу: =ЕСЛИ(нач;0;В12+1).
13. В ячейку В12 ввел =В11.
14. Для выполнения расчета установил табличный курсор в ячейку В4 и нажал клавишу F9(Вычислить) для запуска решения задачи.
15. Изменил значение начального флага на ЛОЖЬ,и снова нажал F9.При каждом нажатии F9 выполняется одна итерация и вычисляется следующее приближен-ное значение х.
16. Нажимал клавишу F9 до тех пор, пока значение х не достигло необходимой точности.
При автоматическом расчете:
17. Перешел на другой лист.
18. Повторил пункты с 4 по 7,только в ячейку В4 ввел значение ЛОЖЬ.
19. Выбрал команду Сервис®Параметры(вкладка Вычисления).Установил зна-чение поля Предельное число итераций равным 100,относительную погреш-ность равной 0,0000001.Включил ркжим Автоматически.
Начальный флаг ЛОЖЬ.
Начальное значение 0,5
Границы интервала [0,5;2]
Точность вычисления при ручном расчете 0,001
при автоматическом
1. Ручной расчет:
число итераций 37
корень уравнения 1,17123
2. Автоматический расчет:
число итераций 100
корень уравнения 1,17123
3. Решение уравнения графическим способом:
корень уравнения 1,17
В ходе данной курсовой работы я ознакомился с различными методами решения уравнений:
· Аналитическим методом
Но так как большинство численных методов решения уравнений являются итерационными, то я на практике использовал этот метод.
Нашел с заданной точностью корень уравнения 0,25-x+sin(x)=0 на промежутке [0,5;2] методом простой итерации.
Тема: «Нахождение с заданной точностью корня уравнения F(x)=0 на промежутке [a;b] методом простой итерации».
Контрольный пример: 0,25-х+sinx=0
Условия задачи: для заданной функции F(x) на интервале [0,5;2] найти корень уравнения F(x)=0 методом простой итерации.
Корень вычислить дважды(с помощью автоматического и ручного расчета).
Предусмотреть построение графика функции на заданном интервале.
1.Теоретическая часть 5
2.Описание хода работы 7
Библиографический список 12
В ходе данной работы мне необходимо ознакомиться с различными методами решения уравнения и найти корень нелинейного уравнения 0,25-х+sin(x)=0 численным методом – методом простой итерации. Для проверки правильности нахождения корня необходимо решить уравнение графически ,найти приближенное значение и сравнить его с полученным результатом.
Метод простой итерации.
Итерационный процесс состоит в последовательном уточнении начального приближения х0 (корня уравнения). Каждый такой шаг называется итерацией.
Для использования этого метода исходное нелинейное уравнение записывается в виде: х=j(х), т.е. выделяется х; j(х) – непрерывна и дифференцируема на интервале (а; в). Обычно это можно сделать несколькими способами:
arcsin(2x+1)-x 2 =0 (f(x)=0)
x=0.5(sinx 2 -1) (x=j(x))
x=x+arcsin(2x+1)-x 2 (x=j(x))
x= (x=j(x)),знак берется в зависимости от интервала [а;b].
Преобразование должно быть таким, чтобы ½j(x)<1½ для всех принадлежащих интервалу [a;b].В таком случае процесс итерации сходится.
Пусть известно начальное приближение корня x=c0.Подставляя это значение в правую часть уравнения x=j(x),получаем новое приближение корня:c=j(c0).Далее, подставляя каждый раз новое значение корня в x=j(x),получаем последовательность значений
Процесс итераций следует продолжать до тех пор,пока для двух последовательных приближений не будет выполнено условие: ½cn-cn-1½<e
Программа Excel реализует метод простой итерации двумя способами с помощью ручного расчета и с автоматическим контролем точности.
у у=х
1.
j(с0)
Рис. График итерационного процесса
2.Описание хода работы.
2. Построил график функции y=x и y=0,25+sin(x) на отрезке [0,5;2] с шагом 0,1 назвал лист «График».
3. Выбрал команду Сервис®Параметры.
Открыл вкладку Вычисления.
Включил режим Вручную.
Отключил флажок Пересчет перед сохранением. Сделал значение поля Пре-дельное число итераций равным 1,относительную погрешность 0,001.
4. Ввел в ячейку А1 строку «Решение уравнения x=0,25+sin(x) методом простой итерации».
5. Ввел в ячейку А3 текст «Начальное значение»,в ячейку А4 текст «Начальный флаг»,в ячейку В3 значение 0,5 ,в ячейку В4 слово ИСТИНА.
6. Присвоил ячейкам В3 и В4 имя «нач_зн» и «нач».
В ячейке В6 будет выполняться проверка,равна ли истина значению ячейки «нач».Если это так,х будет установлено равным начальному значению, в противоположном случае равным ячейке В7,т.е. 0,25+синуса х.В ячейке В7 выч-исляется 0,25-синуса ячейки В6,и тем организуется циклическая ссылка.
7. В ячейку А6 ввел y=x,и в ячейку А7 y=0,25+sin(x).В ячейку В6 формулу:
=ЕСЛИ(нач;нач_зн;В7).
В ячейку В7 формулу: y=0,25+sin(B6).
8. В ячейку А9 ввел слово Погрешность.
9. В ячейку В9 ввел формулу: =В7-В6.
10. С помощью команды Формат-Ячейки(вкладка Число) преобразовал ячейку В9 в экспоненциальный формат с двумя цифрами после запятой.
11. Затем организовал вторую циклическую ссылку-для подсчета количества ите-раций.В ячейку А11 ввел текст «Количество итераций».
12. В ячейку В11 ввел формулу: =ЕСЛИ(нач;0;В12+1).
13. В ячейку В12 ввел =В11.
14. Для выполнения расчета установил табличный курсор в ячейку В4 и нажал клавишу F9(Вычислить) для запуска решения задачи.
15. Изменил значение начального флага на ЛОЖЬ,и снова нажал F9.При каждом нажатии F9 выполняется одна итерация и вычисляется следующее приближен-ное значение х.
16. Нажимал клавишу F9 до тех пор, пока значение х не достигло необходимой точности.
При автоматическом расчете:
17. Перешел на другой лист.
18. Повторил пункты с 4 по 7,только в ячейку В4 ввел значение ЛОЖЬ.
19. Выбрал команду Сервис®Параметры(вкладка Вычисления).Установил зна-чение поля Предельное число итераций равным 100,относительную погреш-ность равной 0,0000001.Включил ркжим Автоматически.
Начальный флаг ЛОЖЬ.
Начальное значение 0,5
Границы интервала [0,5;2]
Точность вычисления при ручном расчете 0,001
при автоматическом
1. Ручной расчет:
число итераций 37
корень уравнения 1,17123
2. Автоматический расчет:
число итераций 100
корень уравнения 1,17123
3. Решение уравнения графическим способом:
корень уравнения 1,17
В ходе данной курсовой работы я ознакомился с различными методами решения уравнений:
· Аналитическим методом
Но так как большинство численных методов решения уравнений являются итерационными, то я на практике использовал этот метод.
Нашел с заданной точностью корень уравнения 0,25-x+sin(x)=0 на промежутке [0,5;2] методом простой итерации.
Читайте также: