Программирование на ассемблере для начинающих с примерами программ
В наше время редко возникает необходимость писать на чистом ассемблере, но я определённо рекомендую это всем, кто интересуется программированием. Вы увидите вещи под иным углом, а навыки пригодятся при отладке кода на других языках.
В этой статье мы напишем с нуля калькулятор обратной польской записи (RPN) на чистом ассемблере x86. Когда закончим, то сможем использовать его так:
Весь код для статьи здесь. Он обильно закомментирован и может служить учебным материалом для тех, кто уже знает ассемблер.
Начнём с написания базовой программы Hello world! для проверки настроек среды. Затем перейдём к системным вызовам, стеку вызовов, стековым кадрам и соглашению о вызовах x86. Потом для практики напишем некоторые базовые функции на ассемблере x86 — и начнём писать калькулятор RPN.
Предполагается, что у читателя есть некоторый опыт программирования на C и базовые знания компьютерной архитектуры (например, что такое регистр процессора). Поскольку мы будем использовать Linux, вы также должны уметь использовать командную строку Linux.
Как уже сказано, мы используем Linux (64- или 32-битный). Приведённый код не работает в Windows или Mac OS X.
Для установки нужен только компоновщик GNU ld из binutils , который предварительно установлен в большинстве дистрибутивов, и ассемблер NASM. На Ubuntu и Debian можете установить и то, и другое одной командой:
Я бы также рекомендовал держать под рукой таблицу ASCII.
Для проверки среды сохраните следующий код в файле calc.asm :
Комментарии объясняют общую структуру. Список регистров и общих инструкций можете изучить в «Руководстве по ассемблеру x86 университета Вирджинии». При дальнейшем обсуждении системных вызовов это тем более понадобится.
Следующие команды собирают файл ассемблера в объектный файл, а затем компонует исполняемый файл:
После запуска вы должны увидеть:
Makefile
Это необязательная часть, но для упрощения сборки и компоновки в будущем можно сделать Makefile . Сохраните его в том же каталоге, что и calc.asm :
Затем вместо вышеприведённых инструкций просто запускаем make.
Системные вызовы Linux указывают ОС выполнить для нас какие-то действия. В этой статье мы используем только два системных вызова: write() для записи строки в файл или поток (в нашем случае это стандартное устройство вывода и стандартная ошибка) и exit() для выхода из программы:
Системные вызовы настраиваются путём сохранения номера системного вызова в регистре eax , а затем его аргументов в ebx , ecx , edx в таком порядке. Можете заметить, что у exit() только один аргумент — в этом случае ecx и edx не имеют значения.
eax | ebx | ecx | edx |
---|---|---|---|
Номер системного вызова | arg1 | arg2 | arg3 |
Стек вызовов — структура данных, в которой хранится информация о каждом обращении к функции. У каждого вызова собственный раздел в стеке — «фрейм». Он хранит некоторую информацию о текущем вызове: локальные переменные этой функции и адрес возврата (куда программа должна перейти после выполнения функции).
Сразу отмечу одну неочевидную вещь: стек увеличивается вниз по памяти. Когда вы добавляете что-то на верх стека, оно вставляется по адресу памяти ниже, чем предыдущий элемент. Другими словами, по мере роста стека адрес памяти в верхней части стека уменьшается. Чтобы избежать путаницы, я буду всё время напоминать об этом факте.
Инструкция push заносит что-нибудь на верх стека, а pop уносит данные оттуда. Например, push еах выделяет место наверху стека и помещает туда значение из регистра eax , а pop еах переносит любые данные из верхней части стека в eax и освобождает эту область памяти.
Цель регистра esp — указать на вершину стека. Любые данные выше esp считаются не попавшими в стек, это мусорные данные. Выполнение инструкции push (или pop ) перемещает esp . Вы можете манипулировать esp и напрямую, если отдаёте отчёт своим действиям.
Регистр ebp похож на esp , только он всегда указывает примерно на середину текущего кадра стека, непосредственно перед локальными переменными текущей функции (поговорим об этом позже). Однако вызов другой функции не перемещает ebp автоматически, это нужно каждый раз делать вручную.
В х86 нет встроенного понятия функции как в высокоуровневых языках. Инструкция call — это по сути просто jmp ( goto ) в другой адрес памяти. Чтобы использовать подпрограммы как функции в других языках (которые могут принимать аргументы и возвращать данные обратно), нужно следовать соглашению о вызовах (существует много конвенций, но мы используем CDECL, самое популярное соглашение для x86 среди компиляторов С и программистов на ассемблере). Это также гарантирует, что регистры подпрограммы не перепутаются при вызове другой функции.
Правила вызывающей стороны
Перед вызовом функции вызывающая сторона должна:
- Сохранить в стек регистры, которые обязан сохранять вызывающий. Вызываемая функция может изменить некоторые регистры: чтобы не потерять данные, вызывающая сторона должна сохранить их в памяти до помещения в стек. Речь идёт о регистрах eax , ecx и edx . Если вы не используете какие-то из них, то их можно не сохранять.
- Записать аргументы функции на стек в обратном порядке (сначала последний аргумент, в конце первый аргумент). Такой порядок гарантирует, что вызываемая функция получит из стека свои аргументы в правильном порядке.
- Вызвать подпрограмму.
- Удалить из стека аргументы функции. Обычно это делается путём простого добавления числа байтов в esp . Не забывайте, что стек растёт вниз, поэтому для удаления из стека необходимо добавить байты.
- Восстановить сохранённые регистры, забрав их из стека в обратном порядке инструкцией pop . Вызываемая функция не изменит никакие другие регистры.
Правила вызываемой подпрограммы
Перед вызовом подпрограмма должна:
- Сохранить указатель базового регистра ebp предыдущего фрейма, записав его на стек.
- Отрегулировать ebp с предыдущего фрейма на текущий (текущее значение esp ).
- Выделить больше места в стеке для локальных переменных, при необходимости переместить указатель esp . Поскольку стек растёт вниз, нужно вычесть недостающую память из esp .
- Сохранить в стек регистры вызываемой подпрограммы. Это ebx , edi и esi . Необязательно сохранять регистры, которые не планируется изменять.
Стек вызовов после шага 2:
Стек вызовов после шага 4:
На этих диаграммах в каждом стековом фрейме указан адрес возврата. Его автоматически вставляет в стек инструкция call . Инструкция ret извлекает адрес с верхней части стека и переходит на него. Эта инструкция нам не нужна, я просто показал, почему локальные переменные функции находятся на 4 байта выше ebp , но аргументы функции — на 8 байт ниже ebp .
На последней диаграмме также можно заметить, что локальные переменные функции всегда начинается на 4 байта выше ebp с адреса ebp-4 (здесь вычитание, потому что мы двигаемся вверх по стеку), а аргументы функции всегда начинается на 8 байт ниже ebp с адреса ebp+8 (сложение, потому что мы двигаемся вниз по стеку). Если следовать правилам из этой конвенции, так будет c переменными и аргументами любой функции.
Когда функция выполнена и вы хотите вернуться, нужно сначала установить eax на возвращаемое значение функции, если это необходимо. Кроме того, нужно:
- Восстановить сохранённые регистры, вынеся их из стека в обратном порядке.
- Освободить место в стеке, выделенное локальным переменным на шаге 3, если необходимо: делается простой установкой esp в ebp
- Восстановить указатель базы ebp предыдущего фрейма, вынеся его из стека.
- Вернуться с помощью ret
В приведённом примере вы можете заметить, что функция всегда запускается одинаково: push ebp , mov ebp , esp и выделение памяти для локальных переменных. В наборе x86 есть удобная инструкция, которая всё это выполняет: enter a b , где a — количество байт, которые вы хотите выделить для локальных переменных, b — «уровень вложенности», который мы всегда будем выставлять на 0 . Кроме того, функция всегда заканчивается инструкциями pop ebp и mov esp , ebp (хотя они необходимы только при выделении памяти для локальных переменных, но в любом случае не причиняют вреда). Это тоже можно заменить одной инструкцией: leave . Вносим изменения:
Усвоив соглашение о вызовах, можно приступить к написанию некоторых подпрограмм. Почему бы не обобщить код, который выводит "Hello world!", для вывода любых строк: функция _print_msg .
Здесь понадобится ещё одна функция _strlen для подсчёта длины строки. На C она может выглядеть так:
Другими словами, с самого начала строки мы добавляем 1 к возвращаемым значением для каждого символа, кроме нуля. Как только замечен нулевой символ, возвращаем накопленное в цикле значение. В ассемблере это тоже довольно просто: можно использовать как базу ранее написанную функцию _subtract :
Уже неплохо, верно? Сначала написать код на C может помочь, потому что большая его часть непосредственно преобразуется в ассемблер. Теперь можно использовать эту функцию в _print_msg , где мы применим все полученные знания:
И посмотрим плоды нашей тяжёлой работы, используя эту функцию в полной программе “Hello, world!”.
Хотите верьте, хотите нет, но мы рассмотрели все основные темы, которые нужны для написания базовых программ на ассемблере x86! Теперь у нас есть весь вводный материал и теория, так что полностью сосредоточимся на коде и применим полученные знания для написания нашего калькулятора RPN. Функции будут намного длиннее и даже станут использовать некоторые локальные переменные. Если хотите сразу увидеть готовую программу, вот она.
Для тех из вас, кто не знаком с обратной польской записью (иногда называемой обратной польской нотацией или постфиксной нотацией), то здесь выражения вычисляются с помощью стека. Поэтому нужно создать стек, а также функции _pop и _push для манипуляций с этим стеком. Понадобится ещё функция _print_answer , которая выведет в конце вычислений строковое представление числового результата.
Сначала определим для нашего стека пространство в памяти, а также глобальную переменную stack_size . Желательно изменить эти переменные так, чтобы они попали не в раздел .rodata , а в .data .
Теперь можно реализовать функции _push и _pop :
_print_answer намного сложнее: придётся конвертировать числа в строки и использовать несколько других функций. Понадобится функция _putc , которая выводит один символ, функция mod для вычисления остатка от деления (модуля) двух аргументов и _pow_10 для возведения в степень 10. Позже вы поймёте, зачем они нужны. Это довольно просто, вот код:
Итак, как мы выводим отдельные цифры в числе? Во-первых, обратите внимание, что последняя цифра числа равна остатку от деления на 10 (например, 123 % 10 = 3 ), а следующая цифра — это остаток от деления на 100, поделенный на 10 (например, (123 % 100)/10 = 2 ). В общем, можно найти конкретную цифру числа (справа налево), найдя (число % 10**n) / 10**(n-1) , где число единиц будет равно n = 1 , число десятков n = 2 и так далее.
Используя это знание, можно найти все цифры числа с n = 1 до n = 10 (это максимальное количество разрядов в знаковом 4-байтовом целом). Но намного проще идти слева направо — так мы сможем печатать каждый символ, как только находим его, и избавиться от нулей в левой части. Поэтому перебираем числа от n = 10 до n = 1 .
На C программа будет выглядеть примерно так:
Теперь вы понимаете, зачем нам эти три функции. Давайте реализуем это на ассемблере:
Это было тяжкое испытание! Надеюсь, комментарии помогают разобраться. Если вы сейчас думаете: «Почему нельзя просто написать printf("%d") ?», то вам понравится окончание статьи, где мы заменим функцию именно этим!
Теперь у нас есть все необходимые функции, осталось реализовать основную логику в _start — и на этом всё!
Как мы уже говорили, обратная польская запись вычисляется с помощью стека. При чтении число заносится на стек, а при чтении оператор применяется к двум объектам наверху стека.
Например, если мы хотим вычислить 84/3+6* (это выражение также можно записать в виде 6384/+* ), процесс выглядит следующим образом:
Шаг | Символ | Стек перед | Стек после |
---|---|---|---|
1 | 8 | [] | [8] |
2 | 4 | [8] | [8, 4] |
3 | / | [8, 4] | [2] |
4 | 3 | [2] | [2, 3] |
5 | + | [2, 3] | [5] |
6 | 6 | [5] | [5, 6] |
7 | * | [5, 6] | [30] |
Если на входе допустимое постфиксное выражение, то в конце вычислений на стеке остаётся лишь один элемент — это и есть ответ, результат вычислений. В нашем случае число равно 30.
В ассемблере нужно реализовать нечто вроде такого кода на C:
Теперь у нас имеются все функции, необходимые для реализации этого, давайте начнём.
Понадобится ещё добавить строку error_msg в раздел .rodata :
И мы закончили! Удивите всех своих друзей, если они у вас есть. Надеюсь, теперь вы с большей теплотой отнесётесь к языкам высокого уровня, особенно если вспомнить, что многие старые программы писали полностью или почти полностью на ассемблере, например, оригинальный RollerCoaster Tycoon!
Читайте также: