Приближенные методы решения уравнений в приложении microsoft excel
Одна из наиболее актуальных проблем компьютерного обучения – проблема отбора и использования педагогически целесообразных обучающих программ.
При изучении отдельных тем и решении некоторых задач на уроках математики в старших классах громоздкие вычисления как, например, при решении уравнений методом деления отрезка пополам или методом последовательных приближений, затмевают существо математической задачи, не дают увидеть красоту, рациональность применяемого метода решения.
В данной статье я представила те задачи, решение которых с помощью MS EXCEL позволяет получить наглядное, доступное для понимания учащимися решение, показать его логику, рациональность. Попутно учащиеся получают устойчивые навыки работы с программой.
Нахождение корней уравнения с помощью подбора параметра Пример 1.
Пусть известно, что в штате больницы состоит 6 санитарок, 8 медсестер, 10 врачей, 3 заведующих отделениями, главный врач, заведующий аптекой, заведующая хозяйством и заведующий больницей. Общий месячный фонд зарплаты составляет 1000 000 условных единиц. Необходимо определить, какими должны быть оклады сотрудников больницы.
Решение такой задачи можно искать методом перебора. Однако в лучшем случае на это уходит много времени. Можно предложить другой способ решения. В EXCEL он реализован как поиск значения параметра формулы, удовлетворяющего ее конкретному значению.
Построим модель решения этой задачи. За основу возьмем оклад санитарки, а остальные оклады будем вычислять, исходя из него: во столько-то раз или на столько-то больше. Говоря математическим языком, каждый оклад является линейной функцией от оклада санитарки: Ai*С+Вi, где С – оклад санитарки; Аi и Вi – коэффициенты, которые для каждой должности определяют следующим образом:
– медсестра получает в 1,5 раза больше санитарки (А2=1,5; В2=0);
– врач – в 3 раза больше санитарки (А3=3; В3=0);
– заведующий отделением – на 30 y. e. больше, чем врач (А4=3; B4=30);
– заведующий аптекой – в 2 раза больше санитарки (А5=2; В5=0);
– заведующий хозяйством – на 40 y. e. больше медсестры (А6=1,5; В6=40);
– заведующий больницей – на 20 y. e. больше главного врача (А8=4; В8=20);
– главный врач – в 4 раза больше санитарки (А7=4; В7=0);
Зная количество человек на каждой должности, нашу модель можно
где N1 – число санитарок, N2 – число медсестер и т. д.
В этом уравнении нам известны A1. . . A8, B1. . . B8 и N1. . . N8, а С неизвестно. Анализ уравнения показывает, что задача вычисления заработной платы свелась к решению линейного уравнения относительно С. Предположим, что зарплата у санитарки 150,00 y. e.
Введите исходные данные в рабочий лист электронной таблицы, как показано ниже.
В столбце D вычислите заработную плату для каждой должности. Например, для ячейки D4 формула расчета имеет вид =B4*$D$3+C4.
В столбце F вычислите заработную плату всех работников данной должности. Например, для ячейки F3 формула расчета имеет вид =D3*E3.
В ячейке F11вычислите суммарный фонд заработной платы больницы. Рабочий лист электронной таблицы будет выглядеть, как показано ниже.
Чтобы определите оклад санитарки так, чтобы расчетный фонд был равен заданному надо:
1. Активизировать команду Подбор параметра во вкладке Данные / Работа с данными /Анализ «Что, если»;
2. В поле "Установить в ячейке" появившегося окна ввести ссылку на ячейку F11, содержащую формулу;
3. В поле "Значение" набрать искомый результат 1000000;
4. В поле "Изменяя значение ячейки" ввести ссылку на изменяемую ячейку D3 и щелкните на кнопке ОК.
Анализ задачи показывает, что с помощью Excel можно решать линейные уравнения. Конечно, такое уравнение может решить любой школьник. Однако, благодаря этому простому примеру стало, очевидным, что поиск значения параметра формулы, удовлетворяющего ее конкретному значению, – это не что иное, как численное решение уравнений. Другими словами, используя Excel, можно решать любые уравнения с одной переменной.
Приложение 1
Задание для учащихся:
Составить несколько вариантов штатного расписания с использованием функции Подбор параметра и оформить их в виде таблицы:
– Изменить количество сотрудников на различных должностях;
– Подобрать зарплату санитарки в новых условиях;
– Составить таблицу нескольких вариантов штатного расписания.
Рассмотрим еще один пример нахождения корней уравнения с помощью подбора параметра. При решении этого уравнения используется также метод последовательных приближений. Учащиеся в классах с углубленным изучением математики знакомы с этим методом. Поэтому, чтобы этот пример был доступен для других учащихся, предлагаю краткую теорию этого метода.
Пусть дано уравнение, записанное в виде x=F(x). Выбирают некоторое начальное приближение x1 и подставляют его вместо x в F(x). Полученное значение x2=F(x1) этой функции считают вторым приближением. Далее находят третье приближение по формуле x3=F(x2) и так далее. Таким образом, получаем последовательность x1, x2, x3,…, xn,… чисел, имеющая предел α. Тогда если функция F(x) непрерывна, из равенства xn+1=F(xn) получаем α=F(α). Это означает, что α является решением уравнения x=F(x).
Пример 2.
Пусть нам дан многочлен третьей степени:
Так как мы ищем корни полинома третьей степени, то имеются не более трех вещественных корней. Для нахождения корней их первоначально надо локализовать, то есть найти интервалы, на которых они существуют. Такими интервалами локализации корней могут служить промежутки, на концах которых функция имеет противоположный знак. С целью нахождения интервалов, на концах которых функция изменяет знак, необходимо построить ее график или протабулировать ее. Составим таблицу значений функции на интервале [-1;1] с шагом 0,2. Для этого необходимо:
Microsoft Office Excel может здорово помогать студентам и магистрантам в решении различных задач из высшей математики. Не многие пользователи знают, что базовые математические методы поиска неизвестных значений в системе уравнений реализованы в редакторе. Сегодня рассмотрим, как происходит решение уравнений в excel.
Первый метод
Суть этого способа заключается в использовании специального инструмента программы – подбор параметра. Найти его можно во вкладке Данные на Панели управления в выпадающем списке кнопки Анализ «что-если».
1. Зададимся простым квадратичным уравнением и найдем решение при х=0.
2. Переходите к инструменту и заполняете все необходимые поля
3. После проведения вычислений программа выдаст результат в ячейке с иксом.
4. Подставив полученное значение в исходное уравнение можно проверить правильность решения.
Второй метод
Используем графическое решение этого же уравнения. Суть заключается в том, что создается массив переменных и массив значений, полученных при решении выражения. Основываясь на этих данных, строится график. Место пересечения кривой с горизонтальной осью и будет неизвестной переменной.
1. Создаете два диапазона.
На заметку! Смена знака результата говорит о том, что решение находится в промежутке между этими двумя переменными.
2. Переходите во вкладку Вставка и выбираете обычный график.
3. Выбираете данные из столбца f (x), а в качестве подписи горизонтальной оси – значения иксов.
Важно! В настройках оси поставьте положение по делениям.
4. Теперь на графике четко видно, что решение находится между семеркой и восьмеркой ближе к семи. Чтобы узнать более точное значение, необходимо изменять масштаб оси и уточнять цифры в исходных массивах.
Такая исследовательская методика в первом приближении является достаточно грубой, однако позволяет увидеть поведение кривой при изменении неизвестных.
Третий метод
Решение систем уравнений можно проводить матричным методом. Для этого в редакторе есть отдельная функция МОБР. Суть заключается в том, что создаются два диапазона: в один выписываются аргументы при неизвестных, а во второй – значения в правой стороне выражения. Массив аргументов трансформируется в обратную матрицу, которая потом умножается на цифры после знака равно. Рассмотрим подробнее.
1. Записываете произвольную систему уравнений.
2. Отдельно выписываете аргументы при неизвестных в каждую ячейку. Если нет какого-то из иксов – ставите ноль. Аналогично поступаете с цифрами после знака равно.
3. Выделяете в свободной зоне диапазон ячеек равный размеру матрицы. В строке формул пишете МОБР и выбираете массив аргументов. Чтобы функция сработала корректно нажимаете одновременно Ctrl+Shift+Enter.
4. Теперь находите решение при помощи функции МУМНОЖ. Также предварительно выделяете диапазон размером с матрицу результатов и нажимаете уже известное сочетание клавиш.
Четвертый метод
Методом Гаусса можно решить практически любую систему уравнений. Суть в том, чтобы пошагово отнять одно уравнение из другого умножив их на отношение первых коэффициентов. Это прямая последовательность. Для полного решения необходимо еще провести обратное вычисление до тех пор, пока диагональ матрицы не станет единичной, а остальные элементы – нулевыми. Полученные значения в последнем столбце и являются искомыми неизвестными. Рассмотрим на примере.
Важно! Если первый аргумент является нулевым, то необходимо поменять строки местами.
1. Зададимся произвольной системой уравнений и выпишем все коэффициенты в отдельный массив.
2. Копируете первую строку в другое место, а ниже записываете формулу следующего вида: =C67:F67-$C$66:$F$66*(C67/$C$66).
Поскольку работа идет с массивами, нажимайте Ctrl+Shift+Enter, вместо Enter.
3. Маркером автозаполнения копируете формулу в нижнюю строку.
4. Выделяете две первые строчки нового массива и копируете их в другое место, вставив только значения.
5. Повторяете операцию для третьей строки, используя формулу
=C73:F73-$C$72:$F$72*(D73/$D$72). На этом прямая последовательность решения закончена.
6. Теперь необходимо пройти систему в обратном порядке. Используйте формулу для третьей строчки следующего вида =(C78:F78)/E78
7. Для следующей строки используйте формулу =(C77:F77-C84:F84*E77)/D77
8. В конце записываете вот такое выражение =(C76:F76-C83:F83*D76-C84:F84*E76)/C76
9. При получении матрицы с единичной диагональю, правая часть дает искомые неизвестные. После подстановки полученных цифр в любое из уравнений значения по обе стороны от знака равно являются идентичными, что говорит о правильном решении.
Метод Гаусса является одним из самых трудоемких среди прочих вариантов, однако позволяет пошагово просмотреть процесс поиска неизвестных.
Как видите, существует несколько методов решения уравнений в редакторе. Однако каждый из них требует определенных знаний в математике и четкого понимания последовательности действий. Однако для упрощения можно воспользоваться онлайн калькулятором, в который заложен определенный метод решения системы уравнений. Более продвинутые сайты предоставляют несколько способов поиска неизвестных.
Матрица как прямоугольная таблица, составленная из чисел. Знакомство с методами решения систем линейных уравнений в приложении Microsoft Excel. Особенности решения систем уравнений методом Крамера и методом Гаусса. Характеристика программы Excel.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 07.09.2015 |
Размер файла | 181,7 K |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Методы решения систем линейных уравнений
в приложении Microsoft Excel
Введение
Миллионы людей занимаются математическими расчетами, иногда в силу влечения к таинствам математики и ее внутренней красоте, а чаще в силу профессиональной или иной необходимости, не говоря уже об учебе.
Многие задачи практики приводят к необходимости решать системы линейных уравнений. При конструировании инженерных сооружений, обработке результатов измерений, решении задач планирования производственного процесса и ряда других задач техники, экономики, научного эксперимента приходится решать системы линейных уравнений.
Решение уравнений -- одна из древнейших математических проблем. Не счесть приложений математики, в которых решение систем уравнений является необходимым элементом решения задачи.
Проблема численного решения линейных уравнений интересует математиков уже несколько столетий. Первые математические результаты появились в XVIII веке. В 1750 году Г. Крамер (1704-1752) опубликовал свои труды по детерминантам квадратных матриц и предложил алгоритм нахождения обратной матрицы, известный, как правило, Крамера. Гаусс в 1809 году опубликовал работу, посвященную движению небесных тел, в которой был изложен метод для решения линейных систем, известный как метод исключения.
В 40-х годах XX века с появлением компьютеров сильно возрос интерес к численным методам. Тогда же началось активное исследование существующих методов для их реализации на ЭВМ и предпринимались активные попытки увеличить их точность.
Вплоть до 80-х годов решение вычислительных задач было ограничено ресурсами ЭВМ, поэтому особое значение придавалось экономичности алгоритмов. В настоящее время ограничения по оперативной памяти и быстродействию ЭВМ потеряли актуальность в связи с появлением относительно дешевых мини- и суперкомпьютеров.
Существует множество классов уравнений и систем уравнений, которые решаются аналитически - выводом соответствующих формул. Тем не менее, подавляющее большинство уравнений, встречающихся в приложениях, не могут быть решены аналитически.
Численные методы решения уравнений являются гораздо более мощными, нежели аналитические. Они тоже не всемогущи, но в умелых руках численные методы позволяют получать решения множества уравнений, совершенно недоступных для аналитических методов. При этом надо заметить, что указанная недоступность может быть обусловлена двумя обстоятельствами: недостаточным уровнем математического образования того, кто решает уравнение, и принципиальной невозможностью; в данном случае речь идет и о первом, и, что гораздо важнее, о втором обстоятельствах.
Объект исследования - процесс решения систем уравнений с помощью различных численных методов (Метода Крамера, Метода Гаусса), посредством приложения MS Excel.
Предмет исследования - численные методы решения систем уравнений.
Целью работы является изучение численных методов решения систем линейных уравнений и построение компьютерной модели этих решений систем линейных уравнений с помощью приложения MS Excel.
Для достижения цели поставлены следующие задачи:
1. изучить литературу по данной теме;
2. ознакомиться с численными методами решения систем уравнений - Методом Крамера, методом Гаусса;
3. создать компьютерные модели решения системы линейных уравнений разными способами в MS Excel;
4. сравнить имеющиеся численные методы решения систем линейных уравнений, выявить их достоинства и недостатки.
При изучении литературы по данной теме выявлено, что подавляющее большинство уравнений не могут быть решены аналитически, численные методы решения уравнений являются гораздо более мощными, нежели аналитические. На основе этого была выдвинута гипотеза.
Гипотеза: все системы уравнений можно решить с помощью численных методов с той или иной степенью точности.
В данной работе будут рассмотрены численные способы в электронных таблицах Excel.
Планы и перспективы: продолжить изучение численных методов решения систем уравнений в других программных приложениях.
1. Численные методы решение систем линейных уравнений
1.1 Система линейных уравнений
Системой уравнений называется некоторое количество уравнений, объединенных фигурной скобкой. Фигурная скобка означает, что все уравнения должны выполняться одновременно.Линейные системы двух уравнений с двумя неизвестными
Линейной системой двух уравнений с двумя неизвестными называется система вида
Решением системы уравнения с двумя неизвестными x и y называется такая пара (х0;у0), которая является решением каждого уравнения системы.
Решить систему уравнений - это значит найти все её решения или установить, что их нет. Из школьного курса алгебры нам известно три способа решения уравнений:
На уроках алгебры отрабатываются навыки решения систем линейных уравнений этими методами. Но часто в повседневной практике можно встретиться с задачами, в которых нужно найти три или более неизвестных. В этом случае нам на помощь приходят численные методы решения систем уравнений. А для быстроты решения системы уравнений с несколькими неизвестными удобнее воспользоваться компьютерной программой.
1.2 Матричное представление системы линейных уравнений. Определитель матрицы
Матрица - прямоугольная таблица, составленная из чисел.
Пусть дана квадратная матрица 2 порядка:
Определителем (или детерминантом) 2 порядка, соответствующим данной матрице, называется число
Определитель (или детерминант) 3 порядка, соответствующим матрице называется число
Пример1: Найти определители матриц и
Система линейных алгебраических уравнений
Пусть дана система 3х линейных уравнений с 3мя неизвестными
Систему (1) можно записать в матрично-векторной форме
где А - матрица коэффициентов
В - расширенная матрица
Х - искомый компонентный вектор;
1.3 Решение систем уравнений методом Крамера
Пусть дана система линейных уравнений с двумя неизвестными:
Рассмотрим решение систем линейных уравнений с двумя и тремя неизвестными по формулам Крамера. Теорема 1. Если главный определитель системы отличен от нуля, то система имеет решение, притом единственное. Решение системы определяется формулами:
где x1, x2 - корни системы уравнений,
- главный определитель системы, x1, х2 - вспомогательные определители.
Главный определитель системы определяется:
Решение систем линейных уравнений с тремя неизвестными по методу Крамера.
Пусть дана система линейных уравнений с тремя неизвестными:
Теорема 2. Если главный определитель системы отличен от нуля, то система имеет решение, притом единственное. Решение системы определяется формулами:
где x1, x2, x3 - корни системы уравнений,
- главный определитель системы,
x1, x2, x3 - вспомогательные определители.
Главный определитель системы определяется:
1. Составить табличку (матрицу) коэффициентов при неизвестных и вычислить основной определитель .
2. Найти - дополнительный определитель x, получаемый из заменой первого столбца на столбец свободных членов.
3. Найти - дополнительный определитель y, получаемый из заменой второго столбца на столбец свободных членов.
4. Найти - дополнительный определитель z, получаемый из заменой третьего столбца на столбец свободных членов. Если основной определитель системы не равен нулю, то выполняют пункт 5.
5. Найти значение переменной x по формуле x / .
6. Найти значение переменной у по формуле y / .
7. Найти значение переменной z по формуле z / .
8. Записать ответ: х=…; у=…, z=… .
Решить систему уравнений по формулам Крамера:
Пример 2. Решить систему уравнений по формулам Крамера.
1.4 Решение систем уравнений методом Гаусса
Наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных.Метод последовательного исключения неизвестных Гаусса является одним из наиболее универсальных и эффективных методов решения линейных систем. (Карл Фридрих Гаусс (1777-1855) - немецкий математик и физик, работы которого оказали большое влияние на дальнейшее развитие высшей алгебры, геометрии, теории чисел, теории электричества и магнетизма.) Этот метод известен в различных вариантах уже более 2000 лет. Он относится к числу прямых методов.
Процесс решения по методу Гаусса состоит из двух этапов, называемых прямым и обратным ходом. На первом этапе система (3) приводится к треугольному виду; на втором (обратный ход) идет последовательное определение неизвестных из указанной треугольной системы.
Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую систему, равносильную данной.
При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности
Пример 3. Решить систему уравнений по методу Гаусса.
1. Уравнение (1) разделим на a11, т.е. на 2, получим уравнение
Умножим полученное уравнение (4) на a21, т.е. на 1, получим уравнение (5).
2. Вычтем из уравнений (2) и (3) уравнение (5), получим уравнения (6) и (7).
3. Уравнение (6) разделим на a22 , т.е. на 3/2, получим уравнение (8).
4. Умножим уравнение (8) на a32 , т.е. на 1/2, получим уравнение (9).
5. Вычтем из уравнения (7) уравнение (9) получим уравнение (10).
6. Итак, прямой ход закончен, начинаем обратный ход. Подставим (10) в уравнение (8), получим x2=2 (11)
7. Подставим (11) и (10) в уравнение (5), получим: x1=1 (12)
Ответ: x1=1; x2=2; x3=3
В школьной практике, как правило, встречаются системы с двумя и тремя неизвестными, хотя, разумеется, бывают и исключения.
2. Построение компьютерной модели «Решение системы линейных уравнений» посредством приложения Microsoft Excel
2.1 Среда разработки модели Microsoft Excel
линейный уравнение microsoft
Если же говорить о программе Excel, которая является одной из более узнаваемых в обработке электронных таблиц, то без преувеличения можно утверждать, что её способности фактически неистощимы.
Обработка текста, управление базами данных - программа так массивна, что во многих вариантах превосходит специализированные программы - редакторы либо программы баз данных. Такое обилие функций может сначала запутать, нежели вынудить использовать их на практике. Но по мере приобретения опыта начинаешь по достоинству ценить то, что границ возможностей Excel тяжело достичь.
Программа Microsoft Excel входит в офисный пакет Microsoft Office и предназначена для подготовки и обработки электронных таблиц под управлением операционной системой Windows. Microsoft Excel - это многофункциональный, мощный редактор электронных таблиц. Он представляет возможность производить различные расчеты, составлять списки, сметы и что немаловажно, строить наглядные графики и диаграммы.
Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.
Цели и задачи урока:
- повторение изученных графиков функций;
- повторение и закрепление графического способа решения уравнений;
- закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;
- формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;
- формирование мышления, направленного на выбор оптимального решения;
- формирование информационной культуры школьников.
Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.
Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).
Организационный момент.
Слайд 1 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).
Объявление темы урока.
1. Устная работа (актуализация знаний).
Слайд 2 - Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):
у = 6 - х; у = 2х + 3; у = (х + 3) 2 ; у = -(х - 4) 2 ; .
Слайд 3 Графический способ решения уравнений вида f(x)=0.
Корнями уравнения f(x)=0 являются значения х1, х2, … точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).
Найдите корни уравнения х 2 -2х-3=0, используя графический способ решения уравнений (Рис.3).
Слайд 5 Графический способ решения уравнений вида f (x)=g (x).
Корнями уравнения f(x)=g(x) являются значения х1, х2, … точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):
Слайд 6 Найдите корни уравнения , используя графический способ решения уравнений (Рис. 5).
2. Объяснение нового материала. Практическая работа.
Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).
I. Графический способ решения уравнений вида f(x)=0 в Excel.
Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.
Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение -х 2 +5х-4=0.
Для этого: построить график функции у=-х 2 +5х-4 на промежутке [ 0; 5 ] с шагом 0,25; \найти значения х точек пересечения графика функции с осью абсцисс.
Выполнение задания можно разбить на этапы:
1 этап: Представление функции в табличной форме (рис. 6):
- в ячейку А1 ввести текст Х, в ячейку A2 — Y;
- в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;
- выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).
- в ячейку B2 ввести формулу =-(B1^2)+5*B1-4;
При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.
После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул - сама формула (Рис. 8):
- скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.
2 этап: Построение диаграммы типа График.
- выделить диапазон ячеек B2:V2;
- на вкладке Вставка|Диаграммы|График выбрать вид График;
- на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси - откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;
- на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:
Интервал между делениями: 4;
Интервал между подписями: Единица измерения интервала: 4;
Положение оси: по делениям;
Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);
- самостоятельно изменить ширину и цвет линии для вертикальной оси;
- на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.
Примерный результат работы приведен на рис. 10:
3 этап: Определение корней уравнения.
График функции у=-х 2 +5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня: х1=1; х2=4.
II. Графический способ решения уравнений вида f(x)=g(x) в Excel.
Пример 2: Решить графическим способом уравнение .
Для этого: в одной системе координат построить графики функций у1= и у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.
1 этап: Представление функций в табличной форме (рис. 1):
2 этап: Построение диаграммы типа График.
Примерный результат работы приведен на Рис. 12:
3 этап: Определение корней уравнения.
Графики функций у1= и у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение имеет один корень – абсцисса этой точки: х=0.
III. Метод Подбор параметра.
Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.
Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.
Пример 3: Разберем метод Подбор параметра на примере решения уравнения -х 2 +5х-3=0.
1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.
Построить график функции у=-х 2 +5х-3, отредактировав полученные в Примере 1 формулы.
- выполнить двойной щелчок по ячейке B2, внести необходимые изменения;
- с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.
Все изменения сразу отобразятся на графике.
Примерный результат работы приведен на Рис. 13:
2 этап: Определение приближенных значений корней уравнения.
График функции у=-х 2 +5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня.
3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.
1) Начать с поиска более точного значения меньшего корня.
По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.
- Выделить ячейку Е2;
- перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;
В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.
В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).
Щелкнуть по кнопке ОК.
- В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:
- В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).
Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).
IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).
При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.
3. Закрепление изученного материала. Самостоятельная работа.
Задание: Используя метода Подбор параметров, найти корни уравнения с точностью до 0,001.
- ввести функцию у= и построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):
Слайд 12 Проверка результатов самостоятельной работы.
Слайд 13 Повторение графического способа решения уравнения вида f(x)=0.
Слайд 14 Повторение графического способа решения уравнения вида f(x)=g(x).
5. Домашнее задание.
Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х 2 -5х+2=0 с точностью до 0,01.
Читайте также: