Построить верхнюю часть эллипсоида в excel
Цель работы. Изучение графических возможностей электронных таблиц MS Excel, приобретение навыков работы с Мастером диаграмм в электронных таблицах.
Задание.
1. Построить верхнюю (четные варианты) или нижнюю (нечетные варианты) часть эллипсоида, заданного уравнением . Варианты заданий представлены в табл. 9.
2. Построить однополостный (четные варианты) или двухполостный (нечетные варианты) гиперболоид, заданный уравнением . Знак плюс относится к уравнению однополостного гиперболоида, знак минус – к уравнению двухполостного гиперболоида. Варианты заданий представлены в табл. 10.
3. Построить эллиптический (четные варианты) или гиперболический (нечетные варианты) параболоид, заданного уравнением . Знак плюсотносится к уравнению эллиптического параболоида, знак минус – к уравнению гиперболического параболоида. Варианты заданий представлены в табл.11.
Таблица 9. Варианты заданий
№ | a | b | с | № | a | b | c |
3.1 | 3.2 | 5.3 | |||||
0.9 | 1.1 | 1.25 | 1.95 | 1.5 | |||
1.5 | 1.25 | 1.95 | |||||
0.71 | 0.75 | 1.21 | |||||
1.72 | 2.9 | 3.1 | |||||
5.71 | 4.75 | 4.21 | 7.1 | 7.5 | 4.21 | ||
2.72 | 3.9 | 5.1 | 7.2 | 8.9 | |||
1.5 | 0.78 | 1.45 | 1.5 | 2.78 | 3.45 |
Таблица 10. Варианты заданий
№ | a | b | с | № | a | b | c |
3.1 | 3.2 | 5.3 | |||||
0.9 | 1.1 | 1.25 | 1.95 | 1.5 | |||
1.5 | 1.25 | 1.95 | |||||
0.71 | 0.75 | 1.21 | |||||
1.72 | 2.9 | 3.1 | |||||
5.71 | 4.75 | 4.21 | 7.1 | 7.5 | 4.21 | ||
2.72 | 3.9 | 5.1 | 7.2 | 8.9 | |||
1.5 | 0.78 | 1.45 | 1.5 | 2.78 | 3.45 |
Таблица 11. Варианты заданий
№ | p | q | № | p | q |
1.5 | 2.5 | ||||
2.5 | 1/5 | ||||
1.4 | 3.4 | ||||
3.4 | 1.4 | ||||
2.5 | 5.6 | ||||
5.4 | 2/5 | ||||
1.1 | 4.1 | ||||
4.1 | 1.2 | ||||
1.5 | 5.1 | ||||
5.5 | 1.5 | ||||
3.3 | 5.3 | ||||
5.1 | 3.7 | ||||
4.1 | 5.1 | ||||
5.3 | 4.2 | ||||
6.05 | 1.9 |
Рекомендации к выполнению лабораторной работы. Рассмотрим пример построения поверхности z=x 2 -y 2 при x, y Î[-1;1]. В диапазон B1:L1 введем последовательность значений переменной x: -1, -0.8, …,1, а в диапазон ячеек А2:А12 последовательность значений переменой y. В ячейку В2 введем формулу =$A2^2-B$1^2. Знак $, стоящий перед буквой в имени ячейки, дает абсолютную ссылку на столбец с данным именем, а знак $, стоящий перед цифрой – абсолютную ссылку на строку с этим именем. Поэтому при копировании формулы из ячейки В2 в ячейки диапазона B2:L12 в них будет найдено значение z для соответствующих значениях x, y. Таким образом, будет создана таблица значений z.
Для построения поверхности выделим диапазон ячеек A1:L12, содержащий таблицу значений функции. Далее обратимся к Мастеру диаграммивыберемтип диаграммы Поверхность. Затем заполним диалоговые окна в соответствии с вариантом задания и получим трехмерный график, показанный на рис 17.
Рис. 17. Поверхность вида z=x 2 -y 2
Лабораторная работа №6
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Эллипсоидом называется поверхность, которая в некоторой системе декартовых прямоугольных координат определяется уравнением:
Это уравнение называется каноническим уравнением эллипсоида.
Эллипсоид представляет собой замкнутую овальную поверхность, обладающую тремя взаимно перпендикулярными плоскостями симметрии.
Для построения эллипсоида в Excel каноническое уравнение (7.7) необходимо разрешить относительно переменной z (представить в виде z=f(x, у)).
Упражнение 8.2.Рассмотрим построение эллипсоида в Excel на примере уравнения:
Пусть необходимо построить верхнюю часть эллипсоида, лежащую в диапазонах: хÎ[–3; 3], уÎ[–2; 2] с шагом D=0,5 для обеих переменных.
Решение.Вначале необходимо разрешить уравнение относительно переменной z. В примере
Введем значения переменной х в столбец А. Для этого в ячейку А1 вводим символ х. В ячейку А2 вводится первое значение аргумента — левая граница диапазона (–3). В ячейку A3 вводится второе значение аргумента — левая граница диапазона плюс шаг построения (–2,5). Затем, выделив блок ячеек А2:АЗ, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А14).
Значения переменной у вводим в строку 1. Для этого в ячейку В1 вводится первое значение переменной — левая граница диапазона (–2). В ячейку С1 вводится второе значение переменной — левая граница диапазона плюс шаг построения (–1,5). Затем, выделив блок ячеек В1:С1, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки J1).
(при х=–3 и у=–2 точек рассматриваемого эллипсоида не существует).
Теперь необходимо скопировать функцию из ячейки В2. Для этого автозаполнением (протягиванием вправо) копируем эту формулу вначале в диапазон B2:J2, после чего (протягиванием вниз) — в диапазон ВЗ:J14.
В результате должна быть получена следующая таблица точек эллипсоида.
Для построения диаграммы на панели инструментов Стандартная необходимо нажать кнопку Мастер диаграмм. В появившемся диалоговом окне Мастер диаграмм (шаг 1 из 4): тип диаграммы указываем тип диаграммы — Поверхность, и вид — Проволочная (прозрачная) поверхность (правую верхнюю диаграмму в правом окне). После чего нажимаем кнопку Далее в диалоговом окне.
В появившемся диалоговом окне Мастер диаграмм (шаг 2 из 4): источник данных диаграммы необходимо выбрать вкладку Диапазон данных и в поле Диапазон мышью указать интервал данных B2:J14.
Далее необходимо указать в строках или столбцах расположены ряды данных. Это определит ориентацию осей х и у. В примере переключатель Ряды в с помощью указателя мыши установим в положение столбцах.
Выбираем вкладку Ряд и в поле Подписи оси X указываем диапазон подписей. Для этого щелкните в нем указателем мыши и введите диапазон подписей оси х — А2: A14.
Вводим значения подписей оси у. Для этого в рабочем поле Ряд указываем первую запись Ряд 1 иврабочее поле Имя, активизировав его указателем мыши, вводим первое значение переменной у: –2. Затем в поле Ряд указываем вторую запись Ряд 2 и в рабочее поле Имя вводим второе значение переменной у: –1,5. Повторяем таким образом до последней записи — Ряд 9.
После появления требуемых записей необходимо нажать кнопку Далее.
В третьем окне требуется ввести заголовок диаграммы и названия осей. Для этого необходимо выбрать вкладку Заголовки, щелкнув на ней указателем мыши. Щелкнув в рабочем поле Название диаграммы указателем мыши, ввести с клавиатуры в поле название: Эллипсоид. Затем аналогичным образом ввести в рабочие поля Ось X (категорий), Ось Y (рядов данных) и Ось Z (значений) соответствующие названия: х, у и z.
Далее следует нажать кнопку Готово, и после небольшого редактирования будет получена следующая диаграммаэллипсоида.
Ячейки могут содержать данные трех типов:
Ввод формулы в ячейку необходимо начинать со знака =. В ячейке вместо правильного результата, финансирования при ее вычислении.
Формулы можно копировать, использую относительную и абсолютную адресацию . Относительный адрес доступа к помещению, исходя из ее расстояния до другого ячейки столбца или строки. При копировании формулы, хранящиеся адреса, эти адреса изменяются в соответствии с новым положением формулы.
Абсолютный адрес ячейки описывает ее точные координаты. При копировании формулы, сохраненный адрес, эти адреса не изменяются. Запись абсолютных адресов содержит знаки доллара ($ A $ 2). Можно использовать смешанные адреса, которые задают столбец относительно, а строку абсолютно, или наоборот (A $ 5, $ D3).
1.2.Типы диаграмм
В зависимости от типа диаграммы данные отображаются на ней разным способом.
Можно отметить несколько стандартных типов:
1. Гистограмма . В этом типе диаграмм данные отображаются в виде вертикальных или горизонтальных столбцов. Высота каждого столбца соответствует отображаемому значению. Если отображается несколько согласованных рядов, то столбцы либо строятся рядом, либо один над другим.
2. Линейчатая . Создание и настройка Линейчатой диаграммы аналогично Гистограмме. Различие состоит в том, что столбцы расположены не вертикально, а горизонтально.
3. График . Диаграмма График создана для отображения графиков функций (одному значению Х соответствует только одно значение Y). В этих диаграммах точки соединяются линиями.
4. С областями . Диаграмма с областями похожа на график.
5. Круговая диаграмма . В этом типе диаграмм величины отражаются секторами круга. Чем больше величина, тем большую долю круга занимает ее отображение.
Диаграмма Круговая не похожа на другие типы диаграмм, прежде всего потому, что формально в ней не используются Оси.
6. Точечная . Визуально Точечная диаграмма похожа на диаграмму типа График (если у Точечной диаграммы точки соединены линиями)
7. Поверхность . Диаграмма, в которой ряды становятся линиями для некоторой поверхности в объеме.
8. Лепестковая диаграмма . Каждый ряд отображается как линия, соединяющая точки на радиусах.
Подробнее о типах диаграмм здесь
1.3 Основы построения диаграмм в Excel
Чтобы создать диаграмму в MS Excel, сначала необходимо создать таблицу с исходными данными.
Для построения диаграммы необходимо как минимум один столбец (строка) числовых данных.
Необходимо выделить необходимый диапазон данных в таблице. Далее на вкладке Вставка в группе Диаграммы выбрать тип диаграммы.
Практически у всех типов диаграмм есть следующие элементы:
1. Название диаграммы
2. Область диаграммы
3. Область построения
4. Ряд данных (может быть несколько)
5. Подписи данных (для каждого ряда)
6. Легенда (нужна при наличии нескольких рядов данных, позволяет отличить разные наборы данных на диаграмме)
7. Оси (вертикальная, горизонтальная, вспомогательные). Осей нет у круговой диаграммы.
Совокупность этих элементов определяет макет диаграммы.
Для настройки макета существует отдельная вкладка Макет. В этой вкладке, а также на вкладке Формат есть группа Текущий фрагмент, с помощью которой можно быстро выделить нужный элемент.
Разберем основные элементы макета.
1. Название диаграммы. При создании диаграммы на основе таблицы с одним числовым столбцом, заголовок столбца автоматически становится названием диаграммы и именем ряда.
Выделить название диаграммы можно просто кликнув на него левой кнопкой мыши (или можно выбрать пункт Название диаграммы).
Дважды кликнув по Названию диаграммы левой клавишей мыши, будет выведено окно его свойств. Можно настроить отображение названия в нужном стиле.
Основные настройки также можно сделать через вкладку Формат, группа Стили фигур и Стили WordArt или через вкладку Главная, группа Шрифт.
2. Область диаграммы – это прямоугольник, на котором располагаются все остальные элементы диаграммы. Область диаграммы можно отформатировать по своему усмотрению
Для каждого типа диаграмм в MS EXCEL 2010 существуют заранее созданные стили.
Применение стиля коснется формата всех элементов макета (названия, области диаграммы, подписей данных, осей, области диаграммы и др.), даже если они в данный момент не выделены (в отличие от Стилей фигур на вкладке Формат, которые применяются только к выделенному элементу диаграммы).
3. Область построения . Настройка формата Области построения аналогична настройке формата Области диаграммы.
4. Ряды данных . Каждая диаграмма должна содержать хотя бы 1 Ряд данных. В зависимости от типа диаграммы отображение Ряда данных и его настройка будут различными.
Чтобы выделить Ряд данных, нужно кликнуть левой клавишей мыши по одному из столбцов гистограммы (или линии на диаграмме типа График, или по кругу на круговой диаграмме и т.д.) Также можно выбрать нужный Ряд в выпадающем списке, который находится в группе Текущий фрагмент на вкладке Макет или Формат.
Если Ряд данных выделен, то на листе также выделяется диапазон ячеек, содержащий источник данных. Настроить формат Ряда данных можно с помощью вкладки Формат или с помощью Окна свойств.
Чтобы удалить Ряд данных: кликните на нужный ряд данных и нажмите на клавиатуре клавишу DELETE. Если будет удален последний ряд, то вместе с ним удалятся Оси, Легенда и Область построения, но останется Область диаграммы.
5. Подписи данных . Чтобы отобразить подписи данных, необходимо выделить нужный ряд данных, а затем во вкладке Макет в группе Подписи выбрать нужный вариант размещения подписи.
Подписи данных, как правило, представляют собой значения из исходной таблицы, на основании которых и была построена диаграмма. Дважды кликнув на одну из подписей левой клавишей мыши можно вызвать диалоговое окно для настройки свойств подписи.
В качестве подписи можно установить не только само значение, но и имя ряда и имя категории (для Точечной диаграммы – значения Х).
В окне Формат подписей данных имеется вкладка Число, через которую можно настроить отображение числовых значений.
В случае необходимости можно индивидуально отредактировать подпись к определенной точке ряда.
6. Легенда . Полезна только при наличии нескольких рядов данных, т.к. позволяет отличить их на диаграмме.
Чтобы отобразить Легенду, необходимо во вкладке Макет в группе Легенда выбрать нужный вариант размещения. В том же меню доступно диалоговое окно Формат легенды для настройки свойств. Через тоже меню можно удалить Легенду (или нажать на клавиатуре клавишу DELETE).
В случае необходимости можно удалить из Легенды отображение имени определенного ряда.
7. Оси . При создании Гистограммы, Графика или Точечной диаграммы создаются горизонтальная и вертикальная оси (основные).
Конкретные параметры оси зависят от типа диаграммы и от типа оси (вертикальная или горизонтальная). Диалоговое окно свойств оси можно вызвать, выбрав пункт Горизонтальная ось или Вертикальная ось в выпадающем списке, который находится в группе Оси на вкладке Макет или Формат.
Можно создать Названия для осей и линии сетки по основным и вспомогательным значениям оси.
Если необходимо изменить источник данных или добавить новый ряд данных, то для этого выделите диаграмму, на вкладке Конструктор в группе Данные нажмите пункт Выбрать данные.
ГЛАВА 2. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА
2.1 Уравнения поверхностей второго порядка и их графики
Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.
Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется каноническим уравнением: x^2/a^2+y^2/b^2+z^2/c^2=1, где a, b, c – полуоси эллипсоида.
Если a = b = c, имеем сферу (шар): x^2+y^2+z^2=a^2.
Эллиптическим параболоидом называется поверхность, которая в зависимости от типа канонического уравнения: x ^ 2 / a ^ 2 + y ^ 2 / b ^ 2 = z.
Гиперболическим параболоидом называется поверхность, которая определяется в каноническом соотношении: x ^ 2 / a ^ 2-y ^ 2 / b ^ 2 = z. Ввиду геометрической схожести гиперболический параболоид часто называют «седлом».
2.2. Построение поверхностей второго порядка в Excel
Для построения шаблонов в Excel необходимо использовать диаграммы типа Поверхность и уметь работать с относительными и абсолютными адресами ячеек.
Для построения следующего порядка:
1. Из уравнения второй порядка выразить переменную z.
2. Подготовить изменения функций по двум координатам и другим направлениям, а также другим направлениям вдоль прилегающей строки вправо.
3. Ввести на пересечении геометрия для построения поверхности (и использовать марксист автозаполнения для ее копирования на всю область построения поверхности.
4. Выделить подготовленные данные и построить диаграмму типа Поверхность (вкладка Вставка, группа Диаграммы, Кнопка Другие).
4. Отформатировать полученную поверхность. Полученную фигуру можно вращать (кнопка Поворот объемной фигуры на вкладке Макет).
Для осуществления рассмотренного построения, заданной формулой:
x ^ 2 + y ^ 2 + z ^ 2 = 1
Для построения:
1. Выразим z: z = √ (x ^ 2 + y ^ 2-1)
2. Зададим диапазон С3: AR3 для x от -1 до 1 с шагом 0,1, причем каждое значение дублируется последовательно. Аналогично вводятся значения у для диапазона B4: B45.
3. Для расчёта z при изменяющихся x и y в ячейку С4 введем формулу:
= КОРЕНЬ (1-C $ 3 ^ 2- $ B4 ^ 2) * ЕСЛИ (ОСТАТ ($ A4; 2) = 0; 1; -1).
4. В диапазоне A4: A45 введем повторяющиеся числа 2 и 3 для определения знака в формуле.
5. Выделил подготовленные данные и построил диаграмму типа Поверхность.
6. Отформатируем полученную поверхность как показано на рисунке.
Для наиболее наглядного и полного отображения фигуры необходимо подбирать область и шаг изменения величины x и y.
Published: Oct 12, 2017
Latest Revision: Oct 12, 2017
Ourboox Unique Identifier: OB-373576
Copyright © 2017
Изучим графические возможности пакета Excel по построению графиков функций в трехмерном пространстве.
Пример 1. Построить верхнюю часть эллипсоида:
Для построения поверхности необходимо разрешить заданное уравнение относительно переменной z.
Так как в условии речь идет о верхней части эллипсоида, то рассмотрим ОДЗ положительной части уравнения:
Приступим к построению поверхности. В диапазон B1:J1 введем последовательность значений переменной y: -4, -3, …,4, а в диапазон ячеек А2:А14 последовательность значений переменой x: -3, -2,5,…3.
В ячейку В2 введем формулу = 2*(1-($A2^2)/9-(B$1^2)/16)^0,5.
Знак $, стоящий перед буквой в имени ячейки, дает абсолютную ссылку на столбец с данным именем, а знак $, стоящий перед цифрой - абсолютную ссылку на строку с этим именем. Поэтому при копировании формулы из ячейки В2 в ячейки диапазона B2:J14 в них будет найдено значение z при соответствующих значениях x, y. Т.о. создается таблица значений z.
Рис. 2.19. Образцы заполнения таблицы для построения поверхности
Перейдем к построению поверхности. Выделим диапазон ячеек A1:J14, содержащий таблицу значений функции и ее аргументов, вызовем Мастер диаграмм и тип диаграммы Поверхность, далее заполним диалоговые окна так как было описано в лабораторной работе по построению графиков функций. После нажатия кнопки Готово получим изображение заданной поверхности.
Рис. 2.20. Образцы построения поверхностей
Пример 2. Построить поверхность z = x 2 -y 2 при x, y [-1;1].
В диапазон B1:L1 введем последовательность значений переменной x: -1, -0.8, …,1, а в диапазон ячеек А2:А12 последовательность значений переменой y. В ячейку В2 введем формулу = $A2^2-B$1^2 и скопируем ее в ячейки диапазона B2:L12. На рисунке 2 изображена заданная поверхность.
Самостоятельная работа
Задание 1. Построить верхнюю (четные варианты) или нижнюю (нечетные варианты) часть эллипсоида, заданного уравнением:
ПОСТРОЕНИЕ ПОВЕРХНОСТЕЙ В MS EXCEL Муниципальное автономное общеобразовательное учреждение «Начальная общеобразовательная школа № 1» Автор: Заслуженный учитель школы Российской Федерации Никифоров Юрий Васильевич Пермский край, г. Губаха, 2013 год
Данная разработка урока является исследованием таких возможностей MS Excel, которые нигде не рассматриваются, но которые позволяют взглянуть на MS Excel с непривычной для многих стороны. Этот слайд можно скрыть.
Ключом для создания поверхностей является прямоугольная таблица, состоящая из ячеек со смешанной адресацией. =$F$1*SIN(D$3/$I$1)*COS($A11/$L$1)
ПРИМЕРЫ Качество прорисовки Эффект «лесенки» Более 5 млн. Блики, тень Интерференция Логические функции ЕСЛИ/И
ФОРМУЛЫ В файле «Формулы.xlsx» представлена таблица с формулами и условными названиями поверхностей. Имеются графические примечания.
АССОЦИАЦИИ В презентации «Ассоциации.pptx» представлены поверхности, которые ассоциируются с конкретными объектами окружающего мира.
Выбранный для просмотра документ Ассоциации.pptx
для работы онлайн
в проекте «Инфоурок»
Описание презентации по отдельным слайдам:
Муниципальное автономное общеобразовательное учреждение «Начальная общеобразовательная школа № 1» Автор: Заслуженный учитель школы РФ Никифоров Юрий Васильевич Пермский край, г. Губаха, 2013 год «АССОЦИАЦИИ»
ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД ( С Е Д Л О )
МИТОХОНДРИЯ (Энергетический центр живой клетки организма)
ПИРАМИДЫ НАРОДНОСТИ МАЙЯ (Центральная Америка)
ЭПИТЕЛИЙ (внутренние стенки сосудов)
КУНГУРСКАЯ ЛЕДЯНАЯ ПЕЩЕРА СТАЛАКТИТЫ СТАЛАГМИТЫ
ЦВЕТЫ ТЮЛЬПАНЫ РОЗЫ
Выбранный для просмотра документ Библиотека поверхностей.docx
Выбранный для просмотра документ НикифоровЮВ_разработка_урока.docx
ОПИСАНИЕ РАБОТЫ
Название работы: построение поверхностей в MS Excel .
Номинация: сценарий медиаурока с компьютером.
Предмет: информатика + математика + воображение.
Участники: ученики 9-11 классов.
Цели и задачи: раскрыть графические возможности MS Excel при построении поверхностей, удивить их многообразием этих возможностей и научить строить их, обратить внимание учеников на красоту этих поверхностей.
Задачи:
— обучающие: повторение синтаксиса формулы логического условия, повторить понятие смешанной адресации, тюнинг поверхностей;
— развивающие: сформировать у учащихся ассоциации между графическими объектами и объектами окружающего мира;
— воспитательные: научить учащихся удивляться красоте поверхностей, находить «схожесть» с реальными объектами, развивать фантазию и воображение.
Данная разработка урока имеет своей целью раскрыть графические возможности табличного процессора MS Excel , которые в большинстве справочной и учебной литературы игнорируются или освещаются очень бедно.
Все эти возможности очень ярко проявляются при построении поверхностей.
Сформулируем предположение (гипотезу, догадку): используя богатый арсенал математических и логических функций, имеющихся в MS Excel , можно построить огромное количество поверхностей, которые являются моделями реальных объектов (явлений) окружающего мира. Этот урок является попыткой совместить несовместимое. С одной стороны, мы имеем строгие математические формулы, а с другой - изящные поверхности, которые и являются графическими интерпретациями этих формул.
При построении этих поверхностей не покидает чувство: неужели всё это возможно сделать в обычном и привычном табличном процессоре? Ничего подобного нигде не встречается. Самое первое чувство, которое испытываешь при работе над этой темой, это удивление. Учеников надо удивить многообразием самых фантастических форм. Вы словно открываете ящик Пандоры. Конечно, это эмоции. Но, зная, что за этой красотой и изяществом форм скрываются обычные математические формулы, ученики должны понять, что окружающий нас мир можно описать не только поэтическим языком, но и сухим языком формул.
Кому может пригодиться данная разработка? Наверное, творческим учителям, будущим художникам и дизайнерам, программистам. Всем тем, у
кого богатое воображение и абстрактное мышление тесно переплетены. Данная тема может стать основой для научно-исследовательской работы.
Автор: Никифоров Юрий Васильевич, педагог дополн. образования
Место работы: Пермский край, г. Губаха, Муниципальное автономное общеобразовательное учреждение «Начальная общеобразовательная школа № 1» (МАОУ «НОШ № 1»).
Читайте также: