Ошибка пч сбой программы can
В предыдущей статье мы поговорили о проблемах в шине передачи данных CAN, возникших в результате износа аккумуляторной батареи и просадки питающего напряжения при запуске ниже порога работоспособности шины. Сегодня продолжим разговор о CAN-шине, но немного в другом ключе: прежде всего вспомним принцип ее работы, а затем рассмотрим один из случаев топологии шины и разберем осциллограмму дефекта.
Эта шина используется чаще всего как средство обмена данными в системах, для которых критично быстродействие и время принятия решения. Таковыми являются, например, система управления движением, объединяющая между собой блоки управления двигателем, автоматической трансмиссией, антиблокировочной системой тормозов, усилителем руля и т.п.
Конструктивно шина представляет собой неэкранированную витую пару. Провода шины называются CAN High и CAN Low.
Шина может находиться в двух состояниях:
- Рецессивное состояние, или логическая единица. Оба провода в этой ситуации имеют практически одинаковый потенциал: и на проводе CAN High, и на проводе CAN Low присутствует около 2 , 5 В. В рецессивном состоянии шина может находиться сколь угодно долго, хотя в реальности этого не происходит, ведь рецессивное состояние – это всего лишь пауза между сеансами передачи информации.
- Доминантное состояние, или логический ноль. В него шина переходит тогда, когда один из входящих в сеть блоков управления начинает передачу данных. Потенциалы на проводах шины меняются следующим образом: на проводе CAN High потенциал повышается на один вольт, на проводе CAN Low наоборот, становится на один вольт ниже.
Рассмотрим форму сигнала шины, чтобы обосновать ее помехоустойчивость:
На рисунке показаны доминантный и рецессивный уровни шины, а также воздействие на шину электромагнитной помехи. Особенностью обработки сигналов шины является то, что в расчет берется не сам уровень сигнала, а разница уровней между проводами CAN High и CAN Low. При рецессивном уровне эта разница близка к нулю, при доминантном уровне она максимальна.
В витой паре провода располагаются очень близко друг к другу. Если возникает внешняя электромагнитная помеха X, то она является синфазной и наводит одинаковый всплеск напряжения в обоих проводах шины. В итоге на обоих проводах появляется наведенный помехой импульс, но разница потенциалов между проводами при этом не меняется. Это позволяет эффективно подавлять внешние помехи, что является большим преимуществом CAN-шины.
На самом деле витая пара – давно известный способ борьбы с помехами. В медицине, например, в кардиостимуляторах, где требуется высочайшая помехоустойчивость, она применяется очень широко.
Сигнал шины поступает в блок управления на дифференциальный усилитель и обрабатывается. Иллюстрация поясняет процесс обработки:
Большинство автопроизводителей придерживаются скорости передачи 500 кБд, соответственно, продолжительность одного бита при этом составит 2 мкс.
Поговорим о топологии CAN-шины. Физически у шины нет начала и нет конца, шина – это просто единая сеть. Чаще всего встречаются два типа топологии: линейная топология и топология «пассивная звезда», а также их сочетания.
На современных автомобилях шина CAN очень разветвленная. Чтобы не перегружать линию большим количеством передаваемых данных, шина может состоять из нескольких ветвей, объединенных межсетевым шлюзом, иначе называемым Gateway. В итоге сеть представляет собой несколько ответвлений, в том числе и на диагностический разъем, использующих разную скорость и протоколы обмена.
Поэтому топология шины – вопрос для диагноста очень актуальный и, к сожалению, довольно сложный. Из тех электрических схем, которыми располагает диагност, не всегда можно понять топологию. Но в документации некоторых автопроизводителей приводится полная и подробная информация, в этом случае задача сильно упрощается.
Не зная тонкостей организации шины, найти в ней неисправность бывает достаточно сложно. Например, при наличии окисления контактов в разъеме пропадает связь с целым рядом блоков управления. Наличие под рукой топологии шины позволяет легко находить подобные проблемы, а отсутствие приводит к большой потере времени.
Ну что ж, мы немного освежили в памяти теорию шины, теперь самое время перейти к практике.
Перед нами автомобиль Infinitit Q 50 , оснащенный весьма редким турбированным мотором VR 30 DDT объемом 3 . 0 л и мощностью 400 лошадиных сил. Но проблема заключается не в этом замечательном агрегате, а как раз в CAN-шине: подключив диагностический сканер, не удается установить связь с доброй половиной блоков управления.
Нам повезло – Nissan относится к тому узкому кругу производителей, которые дают диагностам качественную и полноценную информацию. В том числе есть в документации и подробная топология бортовой шины обмена данными. Открываем, смотрим:
Следует сказать, что приведенная блок-схема достаточно общая. В документации имеется гораздо более подробная электрическая схема со всеми проводами и номерами контактов в блоках, но сейчас она нам пока что ни к чему, нам важно понять общую топологию.
Итак, первое, что нужно увидеть, это то, что вся сеть разделена на три большие ветви, обведенные пунктиром:
- CAN communication circuit 1 (Коммуникационная цепь CAN 1 );
- CAN communication circuit 2 (Коммуникационная цепь CAN 2 );
- Chassis communication circuit (Коммуникационная цепь шасси).
Первые две цепи связаны между собой посредством CAN gateway (найдите его на иллюстрации). Цепь шасси связана с цепью CAN 2 через блок управления шасси, который также играет роль своеобразного Gateway.
А теперь вновь обратимся к сканеру и посмотрим, какие из блоков управления не выходят на связь. Дилерский сканер предоставляет нам очень удобную функцию: на экран выводятся блоки каждой из цепей по отдельности, а цветом отображается возможность (зеленый) либо невозможность (красный) установить с ними связь. Вот блоки цепи CAN 1 :
А это – блоки цепи CAN 2 . Как видно, связи с ними попросту нет:
Также нет связи с блоками цепи шасси, но это и понятно: эта цепь, согласно блок-схеме, подключена к цепи CAN 2 .
Ну что ж, задача почти решена, осталось лишь локализовать неисправность. А для этого воспользуемся мотортестером и снимем осциллограмму на проводах шины сначала в CAN 1 , а затем в CAN 2 и сравним их.
Сделать это очень несложно, ведь обе шины выведены прямо на диагностический разъем. Согласно более подробной схеме, о которой упоминалось выше, на контакты диагностической колодки 6 и 14 выведены провода CAN 1 , а на контакты 12 и 13 – провода CAN 2 .
Снимаем осциллограмму в цепи CAN 1 . Она имеет прямо-таки академический вид:
Давайте обмерим ее с помощью линеек.
- На проводе CAN High в рецессивном состоянии потенциал составил 2 , 26 В, на проводе CAN Low – 2 , 25 В.
- На проводе CAN High в доминантном состоянии потенциал составил 3 , 58 В, на проводе CAN Low – 1 , 41 В.
- Ширина импульса, соответствующего одной единице передаваемой информации, составляет 2 мкс (обведено красным прямоугольником).
Просто идеальное соответствие теории и практики. Конечно, полосы пропускания нашего прибора явно недостаточно для корректного отображения сигнала, слишком уж широк его спектр. Однако, если закрыть на это глаза, то вполне можно оценить качество сигнала и сделать необходимые выводы.
А теперь делаем ту же операцию на контактах диагностической колодки 12 и 13 , чтобы получить осциллограмму сигнала CAN 2 . Вот она:
Для наглядности масштаб осциллограмм на обеих иллюстрациях один и тот же.
То, что вы видите на этой осциллограмме, называется «мусор». Часто диагносты так и говорят: блок мусорит в шину. Вот только как найти блок, который это делает? Методика здесь очень проста и сводится она к поочередному отключению блоков и повторному наблюдению за сигналом шины.
Где именно находится тот или иной блок на автомобиле, в документации, как правило, показано. Например, на этом «финике» блоки расположены так:
Но в нашем случае все проще. Кстати, маленький лайфхак, возьмите на заметку. В автомобилях Nissan и Infiniti чаще всего причиной наличия мусора в CAN-шине является блок ABS. Сняв разъем с блока, сразу получаем нормальный обмен и связь сканера со всеми блоками ветви CAN 2 :
Обратите внимание на то, что связь в цепи CAN 2 есть со всеми блоками, кроме блока ABS, ведь он отключен.
Завершая разговор, хотелось бы обратить ваше внимание еще на один важный нюанс. Частота следования импульсов по CAN-шине составляет 500 кГц. Поэтому при получении осциллограммы необходимо задействовать максимально возможную частоту дискретизации мотортестера, на какую только он способен.
Если частоту дискретизации вы зададите низкую, то импульсы на осциллограмме будут сильно искажены. В качестве примера посмотрите, как выглядит осциллограмма сигнала CAN-шины при специально сниженной частоте дискретизации прибора:
Красным прямоугольником обведено время, в которое укладывается одно деление сетки. Оно составляет 0 , 2 мс. А на осциллограмме, которую мы рассматривали ранее, это время было равно 5 мкс, поэтому отображение импульсов было более правильным. Имейте это ввиду и не допускайте ошибок!
Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Последние посетители 0 пользователей онлайн
Вот уж не знаю. У меня на "стенде" во время зарядки ток стремиться к нулю по мере заряда аккумуляторов. Да, она не может стабилизировать входной ток, для этого я и ищу вариант ограничения максимального тока, т.к. севшие аккумуляторы при старте заряда отжирают все, что может дать БП. По поводу TexasInstruments изучу вопрос, спасибо за направление.
Нельзя. Почитайте про алгоритм заряд лития. BMS умеет максимум балансировать. На ток она не влияет. Ну так и купите нормальную микруху ЗУ от тех же TexasInstruments. Серия BQ. Ибо литий не переносит постоянного капельного заряда. А модуль повышайки не будет прекращать заряд. Спец. микруха же по окончанию заряда полностью его прекращает.
Да, она не умеет заряжать аккумуляторы, но её, наверное, можно "научить". Если бы в моей задаче можно было обойтись iMax я бы с ним и работал. Плата контроля в данной схеме очень хорошо справляется с задачей понижая ток заряда и балансируя его в режиме зарядки. Уже циклов 5-7 провел, ничего не взорвалось и не сгорело. Для информации, я пытаюсь сделать UPS на 12 В на базе 3х18650 и мне интересно сделать это самому, вместо того, что бы покупать аналогичную готовую продукцию на том же самом Али, собранную на тех же модулях.
Вот Терминатор заглянул ко мне Сказал, что не вся истина в вине Принес закуски и бухла немного Сказал, что широка у нас дорога Еще сказал "Разумен человек" Я сомневался в этот странный век Но Термик мне поведал суть "Не будь скотиной, человеком будь!"
Ох, прикольная задачка - дествительно повеселила, спасибо! Очень все логично рассказано и ведь многие поверят. Я таких знаю много, при чем - это люди с техническим образованием. Это надо вообще не в разделе юмора размещать, а создать радел особый раздел, назвать "Абсурд в электротехнике (радиотехнике, электронике, физике или еще где-то )". Я думаю там много интересного и забавного будет.
Добрый день. 1. Конденсаторы NICHICON HD 35V1800UF 16x25 мм, 20 шт. Шаг 7,5 мм, длина выводов 20/25 мм, на магнит выводы липнут, диаметр ножки 0,8 мм. Заказ делался с Аliexpress 11.10.2021г, "заблудилась" она (последний лот и общего заказа). Упаковка была отличная, картонная коробка и куча пупырки. Мне данные кондерчики понравились. Емкость соответствует заявленной. Фото. Чтобы Ваши кондерчики никогда не обижались и не вздувались.
Дизайнерский встраиваемый светильник для нижней подсветки
Остановка работы преобразователя частоты (ПЧ) можно считаться рабочей, если она предусмотрена производителем и разработчиком оборудования. Это может быть как остановка оперативными средствами (команды с органов управления), так и остановка вследствие внешних воздействий (например, пропадание питания).
Все остальные остановки могут считаться нештатными. Нештатная остановка говорит либо ошибке, которую диагностировал сам ПЧ, либо о его неисправности (поломке). Рассмотрим подробно оба этих случая.
Ошибки преобразователей частоты
Когда ошибки возникают во время настройки ПЧ перед первым запуском, это нормально. Преобразователь частоты – «умное» устройство, в котором есть свой контроллер, не позволяющий функционировать преобразователю неправильно. Таким образом ПЧ защищает и себя, и подключенный к нему двигатель.
К ошибкам на экране ПЧ во время первой настройки и пуска нужно относиться как к подсказкам, помогающим правильно произвести настройку.
Перечислим часто встречающиеся при настройке преобразователей частоты ошибки.
Перегрузка по напряжению (OV). В этом случае нужно обратить внимание на процесс торможения. Есть, по крайней мере, три пути решения этой проблемы: увеличение времени торможения, применение тормозного резистора, остановка двигателя на свободной выбеге.
Скорость вращения двигателя значительно ниже заданной. Возможно, включен режим токоограничения при разгоне. Нужно либо отключить этот режим, либо поднять уровень токоограничения. Также проверьте правильность сигнала задания частоты и верхнюю границу выходной частоты. Если двигатель при этом перегревается, проверьте его нагрузку и защиту.
Если ПЧ настроен и работает долгое время, то наиболее часто возникают следующие ошибки.
Перегрузка двигателя (OL1). В этом случае ПЧ на основании сравнения параметров двигателя и условий его работы принимает решение, что двигатель работает в критическом режиме. Нужно проверить температуру двигателя, и если она не превышает допустимую, увеличить порог обнаружения перегрузки. Для этого можно изменить режим работы или увеличить значение времени электронного теплового реле. Возможно, необходимо проверить установленный номинальный ток двигателя и ограничить его работу на низких скоростях.
Перегрузка преобразователя частоты (OL2). Данная ошибка возникает, если выходной ток ПЧ превышает установленный порог в течение определенного времени. Если технические условия позволяют, нужно изменить (повысить) уровень и время обнаружения перегрузки. Многие современные ПЧ имеют такой запас прочности, что могут штатно работать несколько минут на 150% от номинального выходного тока.
Перегрузка преобразователя частоты (OL2). Данная ошибка возникает, если выходной ток ПЧ превышает установленный порог в течение определенного времени. Если технические условия позволяют, нужно изменить (повысить) уровень и время обнаружения перегрузки. Многие современные ПЧ имеют такой запас прочности, что могут штатно работать несколько минут на 150% от номинального выходного тока.
Перегрев преобразователя (ОН). Эта ошибка появляется тогда, когда ПЧ работает в пространстве с недостаточным отводом тепла. Необходимо прочистить сжатым воздухом ПЧ, электрошкаф, вентиляционные отверстия. Возможно, придётся задуматься о принудительном охлаждении ПЧ или новом месте установки.
Поломки преобразователей частоты
ПЧ – промышленное устройство высокой надежности, однако, и оно выходит из строя или начинает работать неправильно.
Прежде всего, для долговременной работы преобразователя нужно следить за его корректным охлаждением. Для этого не реже 1 раза в год (с тяжелых условиях – чаще) его нужно продувать сжатым воздухом. Встроенные вентиляторы подвержены износу, поэтому их нужно менять по необходимости, раз в несколько лет.
При скачках напряжения возможен выход из строя встроенный предохранитель, его можно заменить самостоятельно.
Если ПЧ долгое время (более года) не эксплуатировался, необходимо для сохранности конденсаторов фильтра звена постоянного тока подвергнуть их процедуре формовки. Для этого нужно подключить ПЧ через автотрансформатор (ЛАТР) и медленно (несколько часов) повышать напряжение до номинала.
Устранение других неисправностей требует глубоких знаний электроники, и для этого рекомендуем обратиться в сервисный центр.
Индикация и защита
Для своевременного обнаружения неисправностей техническим персоналом рекомендуется использовать выходы, имеющиеся в ПЧ. Сигнал аварии можно таким образом подать на светодиодный индикатор или на вход контроллера.
Для защиты ПЧ от скачков напряжения и тока, которые могут происходить во время работы по разным причинам, необходимо использовать сетевые дроссели, полупроводниковые предохранители и другие устройства и схемы, рекомендуемые производителем.
Большинство владельцев Touareg сталкивались с этой ошибкой, возникает она в основном при плохом контакте в местах разъемов либо окислении самих скруток кан-шины. На устранении этой беды у меня ушел год =)
Сначала я проверил скрутку в районе водительского сидения, там все в порядке. Потом отдал местному электрику, но результата это не принесло. Посмотрел сам все скрутки — все нормально. Потом я отдал машину официальному диллеру Автоганза на Энтузиастов. Почему я решил им отдать на ремонт? Потому что у VW есть волшебный прибор VAS 6356 и четкая программа по поиску и устранению неисправности в виде SSP 269. Но… пообщавшись с представителями после первой фазы ремонта, принял решение тикать от туда. Это полный писец. На 12 косарей они все же развели, но могло быть на несколько порядков больше…
Других вариантов, кроме как самому изучить вопрос и починить машину, я не видел.
Для начала немного ВАГовской теории (выдержки):
Шина CAN системы "Комфорт" (медленная шина), позволяющая передавать информацию со скоростью 100 кбит/с. Она служит для связи между блоками управления, входящими в систему "Комфорт"
Для передачи сигналов используются два скрученных между собой провода.
Один и тот же сигнал передается трансивером блока управления через оба провода шины, но на раз личных уровнях напряжения; только в дифференциальном усилителе принимающего блока управления формируется единый разностный и очищенный от помех сигнал, поступающий затем на вход шины CAN принимающего блока управления.
Шина CAN системы "Комфорт" запитывается через клемму "30" и находится обычно в состоянии готовности. Чтобы снизить нагрузку на бортовую сеть в периоды, когда активное участие этой шины в работе общей системы не требуется, при отключении клеммы "15" она переходит в режим ожидания.
Шина CAN системы "Комфорт" сохраняет свою работоспособность при коротком замыкании или при обрыве одного из ее проводов. При этом производится автоматический переход на режим передачи данных по одному проводу.
Особенностью шины является подключение нагрузочных сопротивлений не между проводами High и Low, а между каждым проводом в отдельности и "массой" или проводом, находящимся под напряжением 5 В. При выключении питания происходит отключение нагрузочных сопротивлений от этой шины, поэтому их нельзя измерить с помощью омметра.
Переход шины CAN в однопроводный режим передачи данных производится при обрыве, коротком замыкании или замыкании на "плюс" одного из ее. При работе в этом режиме обрабатываются только сигналы, передаваемые по исправному проводу. Таким образом шина CAN сохраняет свою работоспособность.
Так как мультиметр в этом деле не помошник, то пришлось раскошелится на осциллограф.
Современные частотные преобразователи совмещают функции управления и защиты электродвигателя. При ненормальных режимах работы, авариях, преобразователь:
- Экстренно отключает электродвигатель (торможение осуществляется выбегом).
- Плавно тормозит привод.
- Запрещает запуск двигателя.
Причинами остановки электродвигателя могут быть:
- Поломки преобразователя частоты.
- Неисправности электропривода или оборудования.
- Аварии в сети.
Большинство частотных преобразователей имеют функцию самодиагностики, которая позволяет определить причину аварийной остановки. Ошибки разделяются на внутренние и внешние. Последние связаны с неисправностями двигателя, авариями сети. Внутренние ошибки говорят о неисправностях преобразователя или неправильных настройках.
Типовые неисправности
Перегрев
Прежде необходимо проверить правильность выбора по мощности. Если ток нагрузки превышает допустимые значение выходного тока преобразователя, частотник необходимо заменить на более мощный.
Также нужно проверить состояние внутренних вентиляторов охлаждения. При необходимости сделать их чистку или замену. При размещении преобразователя в шкафу управления, нужно обеспечить достаточное охлаждение преобразователя. Проблема решается установкой дополнительного вентилятора или переносом частотного преобразователя в место с достаточной циркуляцией воздуха.
Низкое напряжение
- Пуск мощного оборудования, подключенного к одной линии с частотно-регулируемым приводом.
- Обрыв фазы на входе.
- Неправильное подключение.
- Поломки устройств, включенных в цепь перед частотным преобразователем.
При провале напряжения, вызванного включением мощного электрооборудования, требуется подключить привод, регулируемый преобразователем, к другой линии. Также нужно проверить правильность подключения, напряжение на всех фазах, при необходимости устранить обрыв. При ослаблении контактов силовой цепи, необходимо зачистить контактные группы и подтянуть винтовые клеммы. Для выявления неисправностей дополнительных устройств необходимо измерить напряжение до и после них. При наличии отклонений отремонтировать или заменить оборудование.
Превышение напряжения
Перегрузка
- Замыканием в обмотках двигателя или в выходной цепи.
- Превышением допустимой нагрузки на валу.
- Перегрузкой при торможении или разгоне.
При этом необходима диагностика электродвигателя, изменение режима работы оборудования.
Важно!Коды ошибок дают приблизительную оценку неисправностей. При авариной остановке или запрете пуска требуется детальная диагностика.
Прежде всего необходимо проверить условия эксплуатации, исправность двигателя, датчиков и другого внешнего оборудования, проанализировать режимы работы электропривода.
Большинство проблем с частотно-регулируемым приводом можно решить устранением поломок внешних устройств, изменением настроек или обеспечением требуемых условий функционирования устройств.
Диагностика преобразователя частоты
Для диагностики и ремонта преобразователей частоты необходимо специальное оборудование:
- Электродвигатель с требуемыми параметрами. Для тестирования преобразователя в фактических условиях эксплуатации необходим двигатель с нужными характеристиками.
- Преобразователь напряжения 220, 380, 660 В, 50-60 Гц. Устройство нужно для электропитания преобразователя.
- Многофункциональный электроизмерительный прибор. Устройство необходимо для определения параметров полупроводниковых элементов, прозвонки внутренних цепей преобразователя.
- Источник дискретных и аналоговых сигналов. Оборудование нужно для тестирования блока управления и контроллера. Устройство имитирует сигналы с датчиков технологических параметров. В ходе диагностики таким оборудованием проверяют реакцию привода на управляющие сигналы.
- Осциллограф. Прибор служит для тестирования параметров ШИМ-модулятора.
Далее проверяют контактные соединения. Неплотный контакт проводников, неправильное подключение – наиболее вероятные причины запрета пуска или появления ошибок.
Затем тестируют программное обеспечение и корректность настроек. Производители поставляют пакет диагностических программ, позволяющих выявить ошибки ПО. Для этого их устанавливают на ПК, подключают к компьютеру преобразователь частоты.
При корректно работающих программах, отсутствии ошибок при подключении, преобразователь разбирают, прозванивают цепи, выполняют диагностику элементной базы силового и управляющего блока. Все выявленные неисправности устраняют. При необходимости чистят или заменяют внутренние вентиляторы охлаждения. Далее собирают устройство, тестируют его на холостом ходу без нагрузки. Затем подключают преобразователь к двигателю и генератору аналоговых и дискретных сигналов, проверяют ПЧ во всех режимах работы.
Для проведения диагностики и ремонта ПЧ требуется соответствующая квалификация, специализированное оборудование и программное обеспечение.
Если проблема не вызвана неправильным подключением, неполадками внешних устройств и двигателя, ошибками при монтаже, следует обратиться в сервисный центр производителя.
Читайте также: