Какие этапы кодирования видеоинформации вам известны какие форматы видео файлов вы знаете
В последнее время компьютер все чаще используется для работы с видеоинформацией. Простейшей такой работой является просмотр кинофильмов и видеоклипов. Следует четко представлять, что обработка видеоинформации требует очень высокого быстродействия компьютерной системы.
Что представляет собой фильм с точки зрения информатики? Прежде всего, это сочетание звуковой и графической информации. Кроме того, для создания на экране эффекта движения используется дискретная по своей сути технология быстрой смены статических картинок. Исследования показали, что если за одну секунду сменяется более 10-12 кадров, то человеческий глаз воспринимает изменения на них как непрерывные.
Казалось бы, если проблемы кодирования статической графики и звука решены, то сохранить видеоизображение уже не составит труда. Но это только на первый взгляд, поскольку, как показывает разобранный выше пример, при использовании традиционных методов сохранения информации электронная версия фильма получится слишком большой. Достаточно очевидное усовершенствование состоит в том, чтобы первый кадр запомнить целиком (в литературе его принято называть ключевым), а в следующих сохранять лишь отличия от начального кадра (разностные кадры).
Существует множество различных форматов представления видеоданных.
В среде Windows, например, уже более 10 лет (начиная с версии 3.1) применяется формат Video for Windows, базирующийся на универсальных файлах с расширением AVI (Audio Video Interleave – чередование аудио и видео).
Более универсальным является мультимедийный формат Quick Time, первоначально возникший на компьютерах Apple.
Задание №1. (2 балла)
Задание №2 (1 балл)
Расшифруйте следующие слова и определите правило кодирования:
ЕРАВШН, УМЫЗАК, АШНРРИ, РКДЕТИ.
Задание №3. ( 4 балла)Используя таблицу символов, записать последовательность десятичных числовых кодов в кодировке Windows для своих ФИО. Таблица символов отображается в редакторе MS Word с помощью команды: вкладка ВставкаСимволДругие символы
В поле Шрифт выбираете Times New Roman, в поле из выбираете кириллица. Например, для буквы «А» (русской заглавной) код знака– 192.
И | В | А | Н | О | В | А | Р | Т | Е | М |
П | Е | Т | Р | О | В | И | Ч |
Задание №4.(3 балла)Используя стандартную программу БЛОКНОТ, определить, какая фраза в кодировке Windows задана последовательностью числовых кодов и продолжить код. Запустить БЛОКНОТ. С помощью дополнительной цифровой клавиатуры при нажатой клавише ALT ввести код, отпустить клавишу ALT.В документе появиться соответствующий символ.
Задание №5.(3 балла)Перевести десятичные числа 137, 98, 175 в двоичную, восьмеричную и шестнадцатеричную системы счисления и сделать проверку, используя программу «Калькулятор».
Задание №6. (3балла)
Выполните следующие арифметические действия, используя программу «Калькулятор», и переведите ответы в десятичную систему счисления:
а) 10111112 + 1010112; б) 3568 *718; в) 1FB16 + DC916.
Задание №7. Ответить на вопросы: (6 баллов)
- Что такое информация?
- Перечислить свойства информации.
- Какие виды информации Вы знаете?
- Приведите примеры аналогового представления графической информации.
- Что такое пиксель?
- Что такое система счисления?
- Напишите правило перевода десятичных чисел в двоичный код.
- Перечислите единицы измерения информации.
- Чем отличается непрерывный сигнал от дискретного?
- Какие звуковые форматы вы знаете?
- Какие этапы кодирования видеоинформации вам известны?
- Какие форматы видео файлов вы знаете?
Задание №8. Сделать вывод о проделанной практической работе.(2 балла)
Статьи к прочтению:
представление видеоинформации в компьютере реферат
Похожие статьи:
Звук представляет собой волну с меняющейся интенсивностью и частотой (громкостью и его тональностью соответственно). Чем больше амплитуда, тем громче звук. Чем больше частота, тем больше тон.
Хранение и передача аналогового звукового сигнала осуществляется за счёт представления его в виде электрического сигнала с помощью модуляции.
Существуют разные виды модуляции:
Цифровой сигнал
Для того чтобы аналоговый (непрерывный) сигнал представить последовательностью чисел определённой разрядности, его необходимо превратить в дискретный (прерывистый) сигнал, а затем подвергнуть квантованию.
На современном ПК карта всегда интегрирована в материнской плате, и имеет разрядность не ниже 24 бит.
1-й этап: Дискретизация сигнала по времени
Допустим, Вы, с помощью микрофона записали свой голос длительностью 5 сек. Этот фрагмент можно разбить на равные малые временный отрезки, которые в сумме дают нам 5 сек. Получаем частоту дискретизации (f, Гц), которая является обратной величиной времени: t сек. При частоте дискретизации 8 кГц=8 000 Гц, из формулы получаем отрезок, равный 0,000125 сек. или 125 миллисекунд.
2-й этап: Квантование сигнала по уровню
Чем больше уровней будет доступно для кодирования временных отрезков, тем ближе к аналогу будет закодированный файл, но при этом объём файла увеличится.
Например, возьмём 8 уровней, чтобы их закодировать в двоичный код нам достаточно 3 бита, что мы получаем из формулы Хартли:
3 этап: Определяем скорость потока звука
Именно такой канал передачи данных потребуется для воспроизведения звукового файла в режиме он-лайн.
Расчёт количество звуковой информации
Для определения информационного объёма звуковой информации, нам необходимы следующие параметры:
Задача 1:
Одна минута записи цифрового аудиофайла занимает 1,3 МБ, разрядность звуковой платы — 8 бит. С какой частотой дискретизации записан звук?
Воспользуемся формулой: I=f∙t∙i∙n , из формулы видно что для нахождения частоты дискретизации формула примет вид: f=I/t∙i∙n.
1,3 МБ = 13,31,2 КБ = 1 363 148,8 Байт. Принимая во внимание что 8 бит = 1 Байту, делим 1 363 148,8 на 60, канал у нас записан 1, поэтому n=1.
Ответ: 22719,1 Гц или 22 050 Гц, см. основные настройки параметров звукового файла в программе Audacity
Задача 2:
Две минуты записи цифрового аудиофайла занимают на диске 5,1 МБ. Частота дискретизации — 22 050 Гц. Какова разрядность аудиоадаптера?
Решение: 5,1 МБ = 5 347 737,6 Байт, делим по формуле: i = I / f∙ t ∙ n.
5 347 737,6 / 22 050 ∙ 120 = 2,02 Байт.
Ответ: 16 бит.
Кодирование видео
Информация хранится на различных носителях в виде файлов. Файл занимает память и может быть измерен в единицах измерения информации: бит, Байт, КБ и т.д.
Стремительное развитие интернета резко увеличило обмен информацией между людьми, для оптимизации хранения данных люди стали использовать специальные алгоритмы сжатия.
В основе цифрового видео лежит графический и звуковой файлы. Если рассчитать объём видеофайла без сжатия, нам необходимо учитывать тот факт, что человек начинает воспринимать смену кадров (картинок), как непрерывное плавное движение, если за 1 сек. будет мелькать 24 кадра.
Основы ТВ
Кадровая развёртка, в сочетании со строчной служит для преобразования плоского двумерного изображения в одномерную последовательность, то есть, видеосигнал, а в телевизоре или мониторе компьютера для преобразования видеосигнала обратно в изображение на экране.
Для создания такой последовательности, используются специальные стандарты разложения:
480i, 525/60 — стандарт разложения, принятый в США, число активных строк составляет 480.
Существует также прогрессивная (p) кадровая развёртка, где все строки каждого кадра отображаются последовательно. Прогрессивная развертка стала широко распространена с появлением персональных компьютеров. Для комфортного чтения мелкого текста с экрана монитора, чересстрочная развертка стала малопригодна, так как мерцание строк вызывало быстрое утомление глаз.
Форматы со сжатием
Решение:
Видео: I = 576 ∙ 1024 ∙ 25 ∙ 5400 ∙ 24 = 1 911 029 760 000 бит = 222,5 ГБ
Звук: I = 44 100 ∙ 5400 ∙ 24 = 5 715 360 000 бит = 681,3 МБ = 0,665 ГБ
Ответ: 223,2 ГБ.
Графический формат JPEG
Алгоритм JPEG (от англ. Joint Photographic Experts Group) в большей степени пригоден для реалистичных изображений с плавными переходами яркости и цвета, таковыми являются фотографии.
Видео и аудио форматы MPEG
При сжатии аудио используются хорошо разработанные психоакустические модели, чтобы выбросить звуки, которые не слышны человеческому уху.
Современные цифровые стандарты
Современные дисплеи и мониторы уже давно вышли за рамки старых добрых стандартов.
Всем здравствуйте! Меня зовут Александр Георгиевич. Я профессиональный московский рейтинговый репетитор по информатике, математике, базам данных, алгоритмам и программированию.
Я прекрасно понимаю, что вы достаточно занятой и деловой человек, но, несмотря на это я настоятельно рекомендую вам ознакомиться с текстовыми отзывами клиентов, которые прошли подготовку под моим чутким контролем. Все они достигли поставленных целей, а некоторые даже превзошли собственные ожидания.
Уже несколько лет я веду собственный канал на видеохостинге YouTube, куда с регулярной периодичностью выкладываю мультимедийные ролики, показывающие решения информатических и математических заданий. Вступайте в мое многотысячное сообщество, чтобы становится успешнее в информационных технологиях.
Специально для своих потенциальных клиентов я разработал мощную многофакторную фильтрационную систему о стоимости своих услуг. Даже самый взыскательный потребитель сумеет за разумное время определиться с тарифным планом.
В данной публикации я бы хотел рассказать о том, что такое кодирование видеоинформации, о базовых алгоритмах кодирования видеоинформации, а также лаконично сделать обзор современных видеохостингов, которыми ежедневно пользуются десятки миллионов человек по всему миру.
Мои частные уроки проходят в различных территориальных форматах. Даже, если вы физически проживаете не в Москве, то я не вижу абсолютно никаких проблем, которые могут препятствовать проведению наших эффективных занятий. Выбирайте необходимый вам формат!
Звоните мне на мобильный телефон, задавайте любые интересующие вопросы и записывайтесь на первый пробный урок. Я достаточно известный и востребованный репетитор по информатике и ИКТ, а количество ученических мест ограниченно. Успевайте записаться на индивидуальную подготовку прямо сейчас, т к завтра уже может не остаться свободных мест!
Общие сведения о видеоинформации
Видеоинформация – достаточно новый вид информации, которая с каждым днем все интенсивнее проникает во все сферы человеческой деятельности. По официальной статистике, каждый пятый человек в России ежедневно воспринимает видеоинформацию либо посредством телевизора, либо посредством персонального компьютера.
Под видеоинформацией можно понимать:
Кинофильм | Видеоклип | Телепрограмму | Рекламный ролик |
Любой видеоряд можно разложить на две составляющие: звуковую и графическую.
Наверняка у вас появился первый вопрос: какое отношение графическая информация имеет к видео? Необходимо очень хорошо уяснить следующий факт: для создания на экране эффекта движения применяется дискретная технология, обеспечивающая быструю смену статических картинок.
Научные исследования доказали, что если в течение одной секунды сменить около 15 статических изображений, которые похожи друг на друга, то человеческий глаз воспринимает подобные изменения на них как аналоговые, то есть как непрерывные. На данном эффекте и реализуется любое современное видео.
Поскольку видеоинформация состоит из звуковой и графической компоненты, то и для обработки видеоматериалов требуется очень мощный персональный компьютер. Под обработкой видеоматериалов я понимаю процесс оцифровки, то есть кодирования видеоинформации.
После кодирования видеоинформация будет находиться в двоичном формате, а, как известно, процессор персонального компьютера только и способен взаимодействовать с любой информацией, которая является двоичным кодом. Двоичный код – последовательность бит, состоящая из 0 и 1.
Алгоритм кодирования видеоинформации
Итак, представим, что в нашем распоряжении есть какая-либо видеоинформация. В качестве примера возьмем видеоролик, размещенный на популярнейшем видеохостинге YouTube.
Как было ранее сказано, любую видеоинформацию можно дифференцировать, то есть разложить на две ключевые составляющие: звуковую и графическую. Следовательно, операция кодирования видеоинформации будет заключаться в сочетании операций кодирования звуковой информации и кодирования графической информации.
Как мы ранее узнали, видео – быстрая смена, как правило, похожих друг на друга статических изображений, называемых кадрами. Но в современном мире данный процесс стандартизирован, и все поставщики видеоконтента придерживается данных стандартов.
Я не буду приводить все существующие стандарты, касающиеся частоты смены кадров, а лишь опишу два ключевых эталона в этой области:
В процессе киносъемок используют частоту смены кадров, равную 25 раз в секунду. Подобным стандартом пользуются при производстве телепрограмм, телешоу, телерепортажей.
В процессе создания широкоформатного видеоконтента прибегают к частоте смены кадров, равной 30 раз в секунду.
В первую очередь происходит разложение аналогового видеосигнала на две дорожки: звуковую и графическую. Давайте в качестве эксперимента примем частоту смены кадров 25 раз в секунду. Это означает, что одна секунда видеопотока состоит из 25 быстросменяющих друг друга статических изображения.
Ссылки на публикации, описывающие алгоритмы кодирования звуковой и графической информации, были даны выше. То есть, по сути, нет как такового отдельного алгоритма кодирования видеоинформации, а есть симбиоз алгоритмов кодирования отдельно звука и отдельно графики.
После проведения операции цифрования звука и изображений на выходе получается бинарный, двоичный код, который будет понятен процессору персонального компьютера. Именно в формате двоичного кода наша видеоинформация и будет храниться на электронных носителях.
Если мы захотим проиграть видеоконтент на нашем ПК или другом устройстве, то нам придется провести операцию восстановления информации, то есть осуществить преобразование информации, записанной в двоичном коде в формат понятный человеку.
Единственное, на чем бы я хотел акцентировать ваше внимание, это на том, что при просмотре видеоинформации мы одновременно и видим «картинку» и слышим звук.
Чтобы добиться синхронного исполнения звука и смены графических изображений процессор персонального компьютера выполняет эти операции в различных потоках. За счет этого происходит запараллеливание двух сигналов: звукового и графического, которые в совокупности образуют видеопоток.
Как найти информационный объем видеофайла
После проведения операции кодирования видеоинформации получается двоичный поток битов. Следовательно, операционной системе необходимо выделить некое пространство для хранения данного двоичного кода (этот двоичный код является дискретным форматом нашего аналогового видеофайла).
Общая формула расчета объема памяти, необходимой для хранения закодированного видеофайла:
V = [Память, занимаемая звуковым сигналом] ∙ [Память, занимаемая графическими кадрами] = [Память, занимаемая звуковым сигналом] ∙ [Память, занимаемая одним кадром] ∙ [Количество кадров]. |
Рассмотрим конкретный пример. Дан видеофайл, который длится 52 секунды. Известно также, что частота смены кадров составляет 25 раз в секунду. Каждый кадр представляет собой изображение, имеющее разрешение 1280 на 1024 пиксела. Также известно, что цвет кодируется в 24-х битной RGB-модели. Частота дискретизации звука составляет 44.1 КГц, а разрядность звуковой карты равна 2 байта. Необходимо найти информационный объем данного видеофайла.
Решение:
Определим информационный объем звукового сигнала.
Vзв = [Время звучания] ∙ [Разрядность звука] ∙ [Частоту дискретизации] = 52 ∙ 16 ∙ 44100 = 36691200 [бит] = 4586400 [байт] = 4478.90 [Кбайт] = 4.37 [Мбайт].
Определим информационный объем одного кадра.
Vк = [Количество пикселей изображения] ∙ [Глубину цвета] = 1280 ∙ 1024 ∙ 24 = 31457280 [бит] = 3932160 [байт] = 3840 [Кбайт] = 3.75 [Мбайт].
Определим информационный объем заданного видеофайла.
Vв = [Память, занимаемая звуковым сигналом] ∙ [Память, занимаемая одним кадром] ∙ [Количество кадров] = 4.37 ∙ 3.75 ∙ 25 = 409.69 [Мбайт] = 0.4 [Гбайт].
То есть информационный объем заданного видеофайла составляет около 0.4 Гигабайта. Файлы с видеоконтентом всегда были и будут «тяжелыми», следовательно, необходимо предусматривать пространство для их хранения.
Кстати, сам процесс кодирования видеоинформации занимает значительное время и зависит от характеристик процессора персонального компьютера. Среди всех земных профессий можно выделить профессию видеомонтажера, который наиболее интенсивно из всех занимается обработкой и отвечает за правильность кодирования видеоинформации.
Краткий обзор современных популярных мировых видеохостингов
Разумеется, одним из самых узнаваемых видеохостингов является YouTube. Лично я интенсивно пользуюсь этим сервисом, так как имею собственный YouTube-ский партнерский канал. Удобный пользовательский интерфейс привлекает к использованию этого сервиса сотни миллионов людей по всему миру.
Вторым бы я выделил видеохостинг Vimeo. Очень популярный англоязычный сервис, не имеющий русскоязычной версии. Привлекает миллионы пользователей изощренным дизайном и простотой в использовании.
Третьим можно выделить русскоязычный видеохостинг RuTube. Он, по сути, является русифицированной версией глобального YouTube. Достаточно популярен на территории РФ. Из минусов многие отмечают нестабильное функционирование.
А вообще, в данный момент в мире существуют сотни различных видеохостингов. Одни полностью скопировали функционал других, некоторые предлагают своим посетителям уникальные возможности.
Лично мне больше всех импонирует видеосервис YouTube. Я им пользуюсь уже свыше 10 лет и думаю, что со временем еще больше интегрируюсь в эту систему.
А вы сами думайте, каким видеохостингом вам пользоваться! Выбор широчайший.
Остались вопросы? Не получается закодировать видеоинформацию?
Мой образовательный канал на YouTube является официальным партнером, следовательно, о кодировании информации я знаю не понаслышке, так как практически ежедневно имею с ним какие-либо «взаимоотношения».
Вы должны понимать, что на официальном экзамене ЕГЭ по информатике в любой момент может появиться категория, ориентированная на кодирование видеоинформации. Но не стоит этого опасаться, так как вы всегда можете обратиться ко мне за качественной помощью.
Я репетитор-практик, это означает, что на своих индивидуальных уроках львиную долю времени я посвящаю разбору различных тематических упражнений. Мы с вами прорешаем десятки задач, связанных с кодированием видеоинформации. У вас сформируется крепкая платформа знаний в этой области.
Также я помогу вам разобраться и в других видах кодирования информации: текстовой, графической, звуковой и числовой. Но нужно понимать и помнить, что видеоинформация – смесь графической и звуковой информации.
Берите сотовый телефон, набирайте мой контактный номер и записывайтесь на первый пробный урок уже сегодня.
Начинать готовиться к экзамену нужно прямо сейчас, именно такой подход позволит вам получить максимально высокий балл и стать уверенным специалистом в области компьютерных технологий.
Видеоинформация - достаточно новый вид информации, которая с каждым днем все интенсивнее проникает во все сферы человеческой деятельности. По официальной статистике, каждый пятый человек в России ежедневно воспринимает видеоинформацию либо посредством телевизора, либо посредством персонального компьютера.
Под видеоинформацией можно понимать:
Любой видеоряд можно разложить на две составляющие: звуковую и графическую.
Наверняка у вас появился вопрос: какое отношение графическая информация имеет к видео? Необходимо очень хорошо уяснить следующий факт: для создания на экране эффекта движения применяется дискретная технология, обеспечивающая быструю смену статических картинок.
Научные исследования доказали, что если в течение одной секунды сменить около $15$ статических изображений, которые похожи друг на друга, то человеческий глаз воспринимает подобные изменения на них как аналоговые, то есть как непрерывные. На данном эффекте и реализуется любое современное видео.
Поскольку видеоинформация состоит из звуковой и графической компоненты, то и для обработки видеоматериалов требуется очень мощный персональный компьютер. Под обработкой видеоматериалов понимается процесс оцифровки, то есть кодирования видеоинформации.
После кодирования видеоинформация будет находиться в двоичном формате, а, как известно, процессор персонального компьютера только и способен взаимодействовать с любой информацией, которая является двоичным кодом. Двоичный код -- последовательность бит, состоящая из $0$ и $1$.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимостьАлгоритм кодирования видеоинформации
Итак, представим, что в нашем распоряжении есть какая-либо видеоинформация. Как было ранее сказано, любую видеоинформацию можно дифференцировать, то есть разложить на две ключевые составляющие: звуковую и графическую. Следовательно, операция кодирования видеоинформации будет заключаться в сочетании операций кодирования звуковой информации и кодирования графической информации.
Как мы ранее узнали, видео - быстрая смена, как правило, похожих друг на друга статических изображений, называемых кадрами. Но в современном мире данный процесс стандартизирован, и все поставщики видеоконтента придерживается данных стандартов.
Не будем приводить все существующие стандарты, касающиеся частоты смены кадров, а лишь опишем два ключевых эталона в этой области:
В процессе киносъемок используют частоту смены кадров, равную $25$ раз в секунду. Подобным стандартом пользуются при производстве телепрограмм, телешоу, телерепортажей.
В процессе создания широкоформатного видеоконтента прибегают к частоте смены кадров, равной $30$ раз в секунду.
В первую очередь происходит разложение аналогового видеосигнала на две дорожки: звуковую и графическую. Давайте в качестве эксперимента примем частоту смены кадров $25$ раз в секунду. Это означает, что одна секунда видеопотока состоит из $25$ быстросменяющих друг друга статических изображения.
По сути, нет как такового отдельного алгоритма
кодирования видеоинформации, а есть симбиоз алгоритмов кодирования отдельно звука и отдельно графики.
После проведения операции цифрования звука и изображений на выходе получается бинарный, двоичный код, который будет понятен процессору персонального компьютера. Именно в формате двоичного кода наша видеоинформация и будет храниться на электронных носителях.
Если мы захотим проиграть видеоконтент на нашем персональном компьютере или другом устройстве, то нам придется провести операцию восстановления информации, то есть осуществить преобразование информации, записанной в двоичном коде в формат понятный человеку.
Единственное, на чем хотелось бы акцентировать внимание, это на том, что при просмотре видеоинформации мы одновременно и видим «картинку» и слышим звук.
Чтобы добиться синхронного исполнения звука и смены графических изображений процессор персонального компьютера выполняет эти операции в различных потоках. За счет этого происходит запараллеливание двух сигналов: звукового и графического, которые в совокупности образуют видеопоток.
Как найти информационный объем видеофайла
После проведения операции кодирования видеоинформации получается двоичный поток битов. Следовательно, операционной системе необходимо выделить некое пространство для хранения данного двоичного кода (этот двоичный код является дискретным форматом нашего аналогового видеофайла).
Общая формула расчета объема памяти, необходимой для хранения закодированного видеофайла:
Рассмотрим конкретный пример. Дан видеофайл, который длится $52$ секунды. Известно также, что частота смены кадров составляет $25$ раз в секунду. Каждый кадр представляет собой изображение, имеющее разрешение $1280$ на $1024$ пикселя. Также известно, что цвет кодируется в $24$-х битной RGB-модели. Частота дискретизации звука составляет $44.1$ КГц, а разрядность звуковой карты равна $2$ байта. Необходимо найти информационный объем данного видеофайла.
Решение:
Определим информационный объем звукового сигнала.
$V_= [Время \ звучания] \cdot [Разрядность \ звука] \cdot [Частоту \ дискретизации] = 52 \cdot 16 \cdot 44100 = 36691200 [бит] = 4586400 [байт] = 4478.90 [Кбайт] = 4.37 [Мбайт]$.
Определим информационный объем одного кадра.
$V_k= [Количество \ пикселей \ изображения] \cdot [Глубину \ цвета] = 1280 \cdot 1024 \cdot 24 = 31457280 [бит] = 3932160 [байт] = 3840 [Кбайт] = 3.75 [Мбайт]$.
Определим информационный объем заданного видеофайла.
$V_в= [Память, \ занимаемая \ звуковым \ сигналом] \cdot [Память, \ занимаемая \ одним \ кадром] \cdot [Количество \ кадров] = 4.37 \cdot 3.75 \cdot 25 = 409.69 [Мбайт] = 0.4 [Гбайт].$
То есть информационный объем заданного видеофайла составляет около $0.4$ Гигабайта. Файлы с видеоконтентом всегда были и будут «тяжелыми», следовательно, необходимо предусматривать пространство для их хранения.
Кстати, сам процесс кодирования видеоинформации занимает значительное время и зависит от характеристик процессора персонального компьютера. Среди всех земных профессий можно выделить профессию видеомонтажера, который наиболее интенсивно из всех занимается обработкой и отвечает за правильность кодирования видеоинформации.
Читайте также: