Как задиммировать led driver
В одной из своей прошлой стать е я рассказал про светодиодную лампу,в которой драйвер выполнен на балластном конденсаторе.Это самые дешевые,простые по схеме и возможно недолговечные led лампы на 220 Вольт.У них есть недостатки:ток на светодиодах не стабилизирован;броски тока на светодиодах;ток на светодиодах имеет большие пульсации,что не очень хорошо для глаз;конденсатор вносит реактивную составляющую в сеть 220 Вольт.В этой статье расскажу про другой тип драйвера для led лампы,его название линейный драйвер.
Линейный драйвер вы определите сразу.На металлической основе-теплоотводе,должна быть установлена микросхема,с тремя - 8 выводами.Эта микросхема собственно и ограничивает ток от сети и ограничивает-стабилизирует ток для светодиодов.Работает микросхема в линейном режиме,отчего и идет название такого драйвера.
У такой лампы практически нет пульсаций,а также есть терморегулирование.Микросхема установлена на теплоотводе вместе со светодиодами.Если теплоотвод начнет сильно нагреваться,микросхема ограничит ток на светодиоды,тем самым улучшив режим их работы.Ток,поступающий на светодиоды можно уменьшать,тем самым мы уменьшаем яркость лампы.
На фото схема линейного драйвера на микросхеме MT7606T,ее я срисовал с платы лампы.Если увеличить сопротивление резистора Rset,то уменьшается яркость лампы.Насколько это все правильно,экспериментов не проводил,но яркость действительно уменьшается.
драйвер для светодиодной лампы на микросхеме MT7606T драйвер для светодиодной лампы на микросхеме MT7606TЛампа Uniel 8 Вт с линейным драйвером на 8 выводной микросхеме DF6811EC.Схемотехника таких ламп практически везде одинакова и схему срисовывать не стал.Увеличив сопротивление резистора до 100 Ом(было 27 Ом),я уменьшил яркость лампы.На светодиодах было 210 Вольт,а стало 190 Вольт.
Пульсации тока на светодиодах,как видно по экрану осциллографа,не видны.Не будет стробоэффекта и полезно для глаз.
Но у таких ламп есть и недостаток.На микросхеме,линейном элементе,явно есть падение напряжения и последующий ее нагрев.Такие лампы на мощность более 10-12 Вт мне не встречались,видимо по причине нагрева микросхемы.Зато следующий,третий и заключительный драйвер,о котором я напишу в другой статье,работает еще лучше и называется он импульсный драйвер с дросселем.
Разработка LED-драйвера – интересная и комплексная задача. Рынок в этом направлении весьма насыщен – иногда кажется, что производство светодиодных светильников везде. Начиная от гаража и заканчивая огромными заводами. Что касается драйверов, гиганты типа Philips или Meanwell с одной стороны, добротные китайцы вроде Moso и Billion с другой, noname китайцы с третьей… В этих условиях к инженерным составляющим (схемотехнической и конструкторской) добавляется задача оптимизации изделия по цене.
Итак, рассказываю про разработку LED-драйвера при существенном ограничении по цене комплектующих.
В своей предыдущей статье я провёл небольшой анализ требований, предъявляемых к светодиодному оборудованию, а также нормативной документации, описывающей эти требования. Настало время рассказать про разработку. Как известно «без ТЗ – результат непредсказуем», с этого и начнём.
Требования ТЗ
- Питающее напряжение 230±10%
- Потребляемая мощность 15 Вт
- Выходное напряжение: 110 — 120В
- Гальваническая развязка: не требуется
- Пульсации светового потока: не более 5%
- Световая отдача: не менее 100лм/Вт
- Коэффициент мощности: не менее 0,9 (также проработать вариант 0,5)
- Конструктивные ограничения: Высота элементов 14мм, максимум SMD (по возможности).
- Стоимость комплектующих LED-драйвера: не более 1$
Анализ вариантов схемотехники LED-драйвера
Рассмотрим варианты реализации.
Вариант без ККМ. В данном случае, так как выходное напряжение 110-120В, нужно делать понижающий преобразователь (buck). На входе buck-конвертера выпрямитель и накопительный конденсатор, это даст постоянное (пульсирующее) напряжение приблизительно 310В. Для того, чтобы было более понятно о чём идёт речь, здесь и далее для каждого варианта буду приводить примеры микросхем, на которых можно реализовать рассмотренную структуру. Примеры микросхем для понижающего конвертера без ККМ: LM3444, HV9910B, HV9961, BP2831.
Одностадийный совмещённый ККМ/стабилизатор тока. Вариант, когда одна стадия преобразования обеспечивает потребление синусоидального тока по входу и стабилизацию тока линейки светодиодов. Примеры микросхем: TPS92074, BP2366, PT6917. Есть и экзотические варианты типа HV9931.
Линейный драйвер. Вариант, когда стабилизация тока обеспечивается засчёт рассеивания части мощности на регуляторе (по аналогии с линейным стабилизатором). Примеры микросхем NSI45090, FAN5640, PT6913, BCR402, BP5131.
Двухстадийный: PFC+стабилизатор тока. Первая стадия – повышающий (boost) ККМ, после него на накопительном конденсаторе получается постоянное напряжение 380-400В. Вторая стадия понижающий (buck) конвертер со стабилизацией тока. Так как данное решение обычно применяется для более мощных LED-драйверов, то обычно для первой стадии (ККМ) применяется микросхема с внешним ключом, например, NCP1650, UCC38051, LT1249.
Одностадийный с пассивным ККМ типа «Valley fill». ККМ этого типа это довольно известная в узких кругах схема, о ней я более подробно напишу ниже.
Использование активного фильтра. Это не самостоятельный вариант, а дополнение к одному из вариантов, которое позволяет уменьшить пульсации тока, а, следовательно, и пульсации светового потока. Активный фильтр можно реализовать как на полевом, так и на биполярном транзисторе. Пример схемы:
Также существуют специальные микросхемы для этой цели, например, BP5609, JW1210.
Есть и другие варианты построения LED-драйверов, например, обратноходовой преобразователь (flyback) или сегментный линейный драйвер, они не рассматриваются, так как очевидно не подходят под требования ТЗ.
Для удобства анализа плюсы и минусы рассмотренных вариантов сведены в таблицу:
Тип драйвера | Плюсы | Минусы |
---|---|---|
Вариант без ККМ (buck) | Не много элементов ➔ дешевле, компактнее. |
Низкие пульсации света.
Нет проблемы ЭМС.
Сложно получить PF лучше, чем 0,9.
Немного о корректоре «Valley fill»
Перед тем, как анализировать и выбирать варианты нужно кратко пояснить, что такое пассивный корректор «Valley fill». Схема выглядит так:
Конденсаторы C1, C2 заряжены каждый до половины амплитудного напряжения сети. Суть работы схемы заключается в том, что конденсаторы C1, C2 с помощью диодов D1, D2, D3 перекоммутируются с последовательного (при заряде) на параллельное (при разряде на нагрузку) соединение. В результате, нагрузка питается от энергии конденсаторов только в периоды, когда значение выпрямленного напряжения сети становится меньше половины амплитудного значения. Таким образом, длительность потребления тока от сети расширяется и коэффициент мощности увеличивается. Однако, у схемы есть существенный недостаток – выходное напряжение имеет существенную пульсацию – до уровня половины напряжения. Это влияет на выбор напряжения светодиодной линейки, оно должно быть меньше чем половина амплитудного значения входного напряжения плюс некий запас.
Для пояснения принципа работы PFC Valley-Fill сделал spice-модель в LTspice:
Модель доступна тут . Можно скачать и поэкспериментировать, посмотреть принципы работы.
Выбор структуры LED-драйвера
Сначала нужно осветить вопрос гальванической развязки. Устройство (светильник) в целом представляет собой изделие II класса по электробезопасности. Почему не требуется гальваническая развязка? Если устройство в пластиковом корпусе без металлических элементов, к которым может прикоснуться человек, то развязка не нужна, так как защита обеспечена корпусом. Это можно видеть на примере светодиодных ламп – драйверы в LED-лампах никогда не делаются гальванически развязанными.
Вполне очевидно, что мне пришлось отказаться от двухстадийного варианта. Даже если удастся найти для обеих стадий микросхемы со встроенными силовыми ключами (а для boost PFC на первом обзорном этапе (по-быстрому) я не смог найти такие микросхемы, кроме какого-то монстра в гигантском корпусе от Power Integrations), то это всё равно будет две силовых микросхемы и два дросселя. Забегая вперёд скажу, что именно дроссель добавляет существенную часть к стоимости BOM-а. Вариант получается дорогой, кроме того, я прикинул компоновку и понял, что на плату заданного размера это всё не влезет.
Далее, я откинул линейные драйверы. Причина номер один – выходное напряжение 120В, значит на линейнике нужно будет рассеять более половины мощности, это конечно не допустимо. Даже если согласовать увеличение напряжения линейки светодиодов (а такая возможность у меня была), то для таких мощностей линейный драйвер не очень применим. Большая рассеиваемая мощность в компактном пластиковом корпусе превратит его в нагревательный прибор.
Точнее, применить для такой мощности линейный LED-драйвер можно, но только пожертвовав коэффициентом мощности или коэффициентом пульсаций света, чего я делать не собирался. Это и есть вторая причина — невозможно достичь заданных характеристик либо по PF либо по Кп света.
Как вы помните из требований ТЗ, мне нужно предложить два варианта: один без ККМ, а второй с Pf не менее 0,9. В результате анализа выбор для первого варианта очевиден – это понижающий преобразователь (buck) со стабилизацией тока по выходу. То есть, входной фильтр ➔ выпрямитель ➔ электролитический конденсатор большой ёмкости ➔ buck-конвертер. Это вариант довольно простой, и, в общем, не столь интересный для рассмотрения. Далее я буду рассматривать только вариант с ККМ.
А вот для второго варианта я столкнулся с непростым выбором: или . Без активного фильтра получить заданные пульсации света не получится – это было мне очевидно.
Сомнения были такие. Схема с активным фильтром это дополнительный силовой транзистор, а, следовательно, увеличение цены, а также дополнительные потери, значит снижение эффективности. В другом варианте меня смущало, удастся ли получить требуемый Pf с помощью схемы «Valley fill». С одной стороны, в appnote от IR получают коэффициент мощности до 0,96, но там есть и нюансы. Например, не хотелось чрезмерно увеличивать сопротивление резистора Rvf. Кроме того, был риск, что не хватит запаса по напряжению для нормального регулирования buck-ом. Моделирование показывало, что запаса хватает, но не факт, что это будет также в реальности.
Итак, вариант с корректором «Valley fill» по моей оценке позволял получить меньшую или ту же цену, при увеличении эффективности, это и стало решающим в моём выборе.
Разработка схемы
Описание элементов схемы:
FU1 – предохранитель, необходим по требованиям безопасности;
RV1 – варистор для подавления микросекундных импульсных помех большой энергии, а также наносекундных импульсных помех;
R1, R2 – резисторы для разряда входного конденсатора при отключении устройства от сети;
C1 – конденсатор входного фильтра помех (X2-class capacitor), подавляет кондуктивные помехи в сеть, а также вместе с RV1 помогает в борьбе с импульсными помехами;
L1, L3, R3, R4 – элементы входного фильтра помех (кондуктивные, импульсные);
VD1 – выпрямительный мост;
C2, C3, VD2…VD4, R5 – элементы корректора «Valley fill»;
C4 – входной конденсатор buck-конвертера;
R6, R8 – резисторы, обеспечивающие питание микросхемы;
R7 – резистор, устанавливающий порог защиты по превышению выходного напряжения (при обрыве светодиодной линейки);
C5 – конденсатор по питанию микросхемы;
DA1 – микросхема понижающего преобразователя со встроенным силовым MOSFET-ом;
R9, R10 – резисторы токового шунта;
VD5 – силовой диод buck-конвертера;
L3 – силовой дроссель buck-конвертера;
C6 – выходная ёмкость.
Выбор элементов
Предохранитель. Долго искать не пришлось, компактный SMD предохранитель 25F-010H от компании Hollyland всего за 0,048$.
Варистор. Тут мне пришлось попотеть. Кажется, теперь знаю всех производителей SMD варисторов в Китае и Тайване. Из того, что подходит и доставабельно составил список и квотировал такие элементы:
В результате даже китайские цены ужаснули, пришлось отказаться от SMD в данном случае и выбор пал на варистор TVR05391KSY за 0,027$.
Европейских производителей тоже рассматривал, например, у Epcos есть SMD-варисторы, но ещё дороже, к сожалению.
Х-конденсатор. SMD-варианты для таких конденсаторов очень дороги, поэтому 0,1 мкФ 10% 300В X2 J104K300A100 от ведущего мирового производителя Chiefcon – лучший выбор за 0,036$.
Электролитические конденсаторы. Выбор SMD-электролитов на 200В не так велик, а те что есть оказались гигантского размера. Рассмотрел серии «VE», «VEJ» от Lelon, «ULR», «UUG», «UUJ» от Nichicon и тд. 10 мкФ в габарите 12,5х13,5 меня не устраивали. В результате наткнулся на интересного китайского производителя Ymin, у которого на сайте написано «Small expert». И действительно, серия VKM, 12 мкФ в габарите 8х12,5 – отличный вариант и всего за 0,046$ за шт. Дайте два.
Диоды. Диодный мост MB6S (0,028), силовой диод выбрал типа ES1J – тут всё стандартно, а вот диоды для «Valley fill» хотелось выбрать поменьше габаритами и я нашёл очень интересный вариант GS10xxFL от PANJIT. Диоды на напряжения до 1000В в корпусе SOD-123, вы шутите? Нет, они существуют. В результате GS1006FL всего по 0,019$. Найти такие же ультрафасты и может быть применить и в качестве силового диода для понижалки. Эту идею я оставил до проведения тепловых испытаний. Если ES1J не будет греться, то можно будет об этом подумать.
Дроссели. Изначально обратился к евробрендам, но квотирование показало, что самое недорогое из того, что мне подходит это SRR1208 за 0,28$ от Bourns. Даже Wurth не предложили дешевле чем примерно 0,3$. Это речь идёт о силовом дросселе. В результате я повернул вектор поиска в сторону азиатских брендов. Просмотрев и проквотировав продукцию таких контор как Ferriwo, ABC Taiwan, Fuantronics, Coilmaster, я остановился на варианте SRI1207 от тайваньской компании Coremaster. Всего за 0,142$.
Микросхема. Решил остановить свой выбор на компании BPS, так как у них большое портфолио в области микросхем для LED-драйверов, встречал их продукцию во многих устройствах, и, к тому же есть дистрибьютор в России – компания «Платан». Я выбрал микросхему со встроенным силовым ключом BP2832AJ – у неё есть pin-2-pin совместимые «старшие братья» (или «сёстры», простите моё гендерное невежество) BP2833 и BP2836 с меньшим сопротивлением канала встроенного MOSFET-а (если вдруг понадобиться увеличить мощность или получить больший КПД). К тому же эту микросхему можно купить в РФ.
0,81$ – неплохой результат для первой версии. Есть небольшой запас – ведь вы знаете как это бывает, после проведения испытаний первой итерации платы обычно вылезает какое-нибудь… несоответствие, и, приходится добавлять несколько «волшебных» элементов по три бакса каждый.
Заключение
Как уменьшить кондуктивные помехи не добавляя новые элементы в схему? Почему в корректоре «Valley fill» нельзя применять тонкоплёночные резисторы? Как увеличить световую отдачу светильника без увеличения КПД LED-драйвера? Ответы на эти и другие вопросы вы узнаете из следующей статьи. Статья будет посвящена испытаниям, которые автор вместе с первой итерацией платы должны будут пройти, а также разработке второй итерации устройства.
Диммирование (от англ. dimming — затемнение) — это процесс управления интенсивностью освещения, уходящий своими корнями в XIX век. Впервые диммирование было применено в театрах, когда по замыслу режиссёра сцена должна была затемняться и освещаться в зависимости от происходящего на ней действия. Для этого используемые в то время прожекторы с дуговыми лампами прикрывались затемняющими шторками. Чем больше эти шторки перекрывали световой поток, тем больше они диммировали освещение. Сегодняшние диммеры далеко ушли от своего незамысловатого предшественника, однако в целом их назначение осталось прежним.
Регулировка яркости широко используется в современных системах. Так посредством диммирования можно создать мягкое камерное освещение в гостиной или спальне, быстро сменить атмосферу в кафе или ресторане, усилить визуальные «магниты» в ритейле.
1 Преимущества диммирования
- Возможность создания и быстрой смены сценариев освещения, недостижимых при помощи стандартных двухпозиционных выключателей.
- Регулировка яркости позволяет эксплуатировать осветительные приборы в щадящем режиме, что продлевает их срок службы.
- Диммирование приводит к уменьшению энергопотребления и тепловыделения.
Наиболее широкие возможности по управлению световой средой открываются при сочетании диммирования с разделением световых приборов на группы. Такой подход позволяет управлять общим светом и акцентами независимо друг от друга, реализуя самые интересные и сложные сценарии.
Преимущества диммирования светодиодов
Регулировка яркости светодиодов позволяет в полной мере раскрыть весь их потенциал. Особенности работы LED делают этот осветительный элемент идеальным кандидатом на диммирование.
- Яркость светодиода можно менять в очень широком диапазоне, в отличие от люминесцентных ламп.
- Изменение яркости никак не сказывается на цветовой температуре и цветопередаче, в отличие от ламп накаливания.
- Снижение яркости ведёт к увеличению срока службы, а не наоборот, как в случае с галогенными лампами.
- Регулировка яркости светодиодных светильников происходит без задержек, что позволяет использовать их даже в самых динамичных осветительных сценариях.
Особенности диммирования светодиодов
Простейший диммер, регулирующий затемнение ламп накаливания, делает это за счёт «срезания» синусоиды переменного тока. Но в отличие от ламп накаливания, LED светильник имеет более сложное устройство и работает под управлением электронной схемы — драйвера. Таким образом, корректность работы осветительного оборудования напрямую зависит от управляющего им драйвера. В то же время, правильно подобрав драйвер, можно задиммировать абсолютно любые светильники, независимо от их мощности и типа.
2 Стандарты и протоколы диммирования
Симисторный диммер, работающий по отсечке фазы. Его главные преимущества — это низкая цена и возможность встраивания в схему без лишних коммутаций (как выключатель). Для корректного диммирования светодиодов важно проверить совместимость оборудования (связки диммер-драйвер). Это позволит избежать нежелательного гудения и мерцания при работе.
Стандарт, завоевавший широкую популярность в эпоху повсеместного использования люминесцентных ламп. Его суть заключается в отправке по отдельной паре проводов сигнала от 1 до 10V. То есть диммер в данном случае реализован в виде обыкновенного потенциометра. Главным преимуществом такого подхода является полная нечувствительность к нагрузке. Среди недостатков — невозможность управления источником света из нескольких мест и слабая поддержка со стороны производителей светодиодов.
Цифровой протокол, поддерживаемый большинством производителей профессионального осветительного оборудования. Его главное преимущество — это цифровая шина, объединяющая все диммируемые светодиодные светильники в единую систему. Включение, выключение и регулировка яркости осуществляются за счёт сигнальных команд, а не за счёт размыкания питающей цепи. Такой подход позволяет в любое время переназначать, какой выключатель за какой светильник отвечает.
Но самым главным преимуществом цифрового протокола DALI является возможность программирования сцен с их последующим сохранением в памяти. Это полностью переворачивает представление об управлении освещением. Обычная клавиша выключателя может теперь не просто управлять светильником, а задавать режим работы для целой группы.
Из недостатков протокола DALI можно выделить разве что высокую стоимость и необходимость предварительной настройки системы управления.
Интересный в реализации тип диммирования, позволяющий использовать для подключения всего два провода. В роли управляющих элементов служат кнопки с нормально разомкнутыми контактами. Пока вы держите кнопку, сигнал есть, отпустили — сигнала нет.
Метод прост в реализации, не требует дополнительных настроек и может быть реализован почти с любой электрофурнитурой. Но есть и недостатки: малая распространённость драйверов с таким стандартом и ограниченное количество светильников, подключаемых к одной кнопке.
Беспроводная система управления освещением на основе технологии Bluetooth Low Energy.
Позволяет управлять светом с помощью гаджетов на базе iOS и Android или с настенных выключателей и панелей. Подключение светильников к системе происходит за счет добавления в цепь одного из устройств Casambi.
Отсутствие дополнительных проводов позволяет интегрировать управление по Casambi в проект на любой стадии.
Система имеет ряд продуктов с различными вариациями по интеграции и подключению:
- TRIAC диммера Casambi с управлением через смартфон.
- TRIAC драйвера Casambi с управлением через беспроводной переключатель.
Возможности системы:
- Подключение большинства светодиодных приборов и LED лент, представленных на рынке света
- Управление приборами по одному и группами
- Создание статичных и динамичных сценариев
- Управление RGB и Tunable White
- Совместимость со стандартами диммирования TRIAC, 0-10V (1-10V), DALI
- Взаимодействие с датчиками движения, освещенности, присутствия и др.
- Интуитивный интерфейс управления
3 Выбор драйвера
Выбор драйвера и типа диммирования определяется множеством факторов. Самыми гибкими в этом плане являются встраиваемые светильники, так как их драйвер вынесен за пределы корпуса. В случае же с накладными и подвесными светильниками приходится учитывать большое количество нюансов. Однако нерешаемых задач не существует. Заручившись поддержкой квалифицированных специалистов, можно задиммировать даже те светильники, которые изначально не были на это рассчитаны.
Микросхема LM3406 представляет собой импульсный понижающий драйвер мощного светодиода.
- Выходной ток до 1.5 Ампер
- Встроенный полевой транзистор, который способствует увеличению КПД и уменьшению количества внешних компонентов
- Поддерживает цифровую (ШИМ) и аналоговую регулировку яркости
- Защита от перегрева
- Может работать без конденсатора на выходе
- Широкий диапазон питающих напряжений - от 6 до 40В
Схему драйвера светодиода я взял типовую из даташита, только добавил некоторые мелочи:
- Разъем питания
- Нулевые резисторы по входу и выходу
- Светодиодный индикатор питания
- Защиту ножки обратной связи
- Диод для защиты от обрыва в цепи светодиодов
Замечу, что в даташите есть несколько схем, я выбрал схему с защитой от обрыва в нагрузке. Схема получилась вот такая:
В качестве индуктивности использовано желто-красное кольцо из распыленного железа, снятое со старой материнской платы.
Родную обмотку снимаем, наматываем новую обмотку, порядка 20 витков медным проводом диаметром 0.5 мм. Я намотал проводом от витой пары.
Либо ставим готовую индуктивность 22 мкГн, способную протащить через себя ток не менее 1А. Плата выполнена из двустороннего стеклотекстолита толщиной 1.5 мм. На обратной стороне платы оставлен слой меди для более быстрого распределения тепла по плате.
Обратная сторона платы драйвера:
На брюшке микросхемы расположен теплоотводящий контакт, который обязательно должен быть припаян к медному полигону на плате, для должного охлаждения микросхемы. При перегреве микросхемы сработает температурная защита. В совокупности с защитой от обрыва нагрузки, при правильном питании микросхемы, "убить" её практически нереально.
Выходной ток драйвера задаётся резистором, подключенным между выводом "CS" и землёй. Ток рассчитывается по формуле:
Ток_драйвера_Ампер = 0,2 / Сопротивление_резистора_Ом
Я составил резистор из трёх параллельно соединённых резисторов по 1 Ом. Общее сопротивление получившегося резистора - примерно 0,333 Ом.
0,2 / 0,333 Ом = 0,6 А
Выходной ток драйвера равен 0,6 Ампер.
В качестве нагрузки подключим к драйверу 2 светодиода CREE XP-G, соединённых последовательно:
На вход драйвера подадим 12 Вольт
Ну и напоследок, табличка с результатами КПД:
Напряжение падения на светодиодах,
Ток через светодиоды,
Мощность на светодиодах,
Когда я собирал данный светодиодный драйвер 2 года назад, КПД был выше. Скорее всего, причина в использованной индуктивности. Но так как меня устраивает КПД 90%, то переделывать индуктивность не буду.
Список радиоэлементов
Прикрепленные файлы:
Zlodey Опубликована: 27.08.2014 Изменена: 31.08.2014 0 3Оценить статью
Средний балл статьи: 5 Проголосовало: 2 чел.
Комментарии (13)
| Я собрал ( 0 ) | Подписаться
Для добавления Вашей сборки необходима регистрация
01. Зачем вы фильтруете все подряд? Фильтр на входе. Фильтр на выходе. Ведь это не "теплый ламповый" усилитель. По идее светодиодной лампе наплевать на пульсации.
2. Что нужно подключать к "DIM IN"? Резистор? Микроконтроллер? Ничего?
3. Зачем нужны нулевые резисторы на входе и выходе схемы? В даташите их нет. 0 1. Импульсный преобразователь не может работать без кондеров.
2. ШИМ сигнал для регулировки яркости
3. В случае пробоя микросхемы/светодиодов резисторы сработают как предохранители. В некоторых случаях они спасут от пожара. 0
2. Вы пробовали сделать регулятор? К сожалению в инструкции не нашел указаний по ШИМ. Скважность, частота, уровень и пр. Указано только то, что верхняя граница возможной частоты ограничена возможностями светодиода и никаких конкретных цифр.
3. Так может быть ПРАВИЛЬНЕЙ поставить предохранители?
4. Сейчас пробую повторить изделие. В других драйверах как преимущество указано что их можно включать без нагрузки. Вы "защиту от обрыва" поставили. Как поведет себя схема в случае отсутствия нагрузки? Просто не заработает? Что-то сгорит? При тестировании какую нагрузку можно включать? Резистивную можно? Заранее спасибо. 0 В случае обрыва нагрузки откроется диод VD2, и ничего смертельного не случится. Ничего не сгорит.
Тестировать можно на гирлянде обычных выпрямительных диодов. Например, 1N5408. 0
В общем собрал схему. Поэкспериментировал и несколько раз перечитал даташит. Комментарии к тому что сделал автор статьи.
1. На авторской схеме явно излишние С1, С5, С8. Как сама микросхема толерантна к высокочастотным помехам, так и LED диоды.
2. Ставить 0 Ом резисторы в качестве предохранителя - КРАЙНЕ спорное решение.
3. На схеме автора номинал С3 = 0,1мкФ. В даташите латинским по белому указано что он болжен быть 22нФ. Но это не криминально. Я пробовал и так и эдак. Результат одинаковый.
4. Номинал С4 сильно завышен. Если драйвер будет использоваться БЕЗ диммирования, то это не криминально. Если с ШИМ диммированием, то при включении на минимальной яркости диод загорается только через ПОЛ МИНУТЫ!! То есть лампа не загорается пока не зарядятся эти 470мкФ. Сам производитель на своей эвалюэйшен боард там поставил танталовый 2,2мкФ
5. Если будуте использовать ШИМ диммирование, то номинал резистора R6 должен быть от 4,7кОм до 10кОм, но уж никак не 100 Ом. Это ВАЖНО, так как ток там не должен быть превышать 70мкА.
Но это все критика. А вот "респекты и уважухи":
1. Из всего многообразия вариантов схемы в даташите, данный вариант самый безопасный и тяжелоубиваемый. Согласен с выбором автора.
2. Очень правильный вариант разводки платы. Тепло нужно отводить. С другой стороны, у меня 13,2В и 0,24А на выходе не нагрели чип даже на пару градусов. На ощуп!
Замечания о самом чипе.
Цена. Стоимость чипа 160 рублей (2,5$). Что самое интересное у Чипа и Дипа цена = цене у быстрого Али. Ценник конский. С учетом всей обвязки, конечный ценник запросто перевалит за 500р (7,7$)
На этом фоне PT4115 выглядит ЗНАЧИТЕЛЬНО интересней. Сам чип у бастрого Али стоит 10рублей. А из обвязки нужны только доиод, резистор и индуктивность.
Так же у данного чипа несколько ограничено применение. Фонарики. Авто. Настольные лампы.
Для светильника на потолок гораздо интересней HV9910, так как на потолке не важна гальваническая развязка с 220В, а данный чип на вход принимает до 400В.
Спасибо за здравую критику.
0,1 мкФ здесь всёже нужны (у нас здесь частота не 50 Гц).
С остальными пунктами согласен.
Добавлю, что PT4115 при токе 1А имеет КПД примерно 80% или меньше.
LM3406 при токе 1А кпд выше 90%.
Также есть вариант использовать LM3406HV при питающем напряжении до 75 вольт. Если требуется зажечь большую гирлянду из светодиодов. PT4115 так не умеет.
Читайте также: