Как определить четное или нечетное число в эксель
Как определить четное нечетное число в эксель. Четные и нечетные числа
Немного теорииСреди олимпиадных задач для 5-6 классов обычно особую группу составляют такие, где требуется использовать свойства чётности (нечётности) чисел. Простые и очевидные сами по себе эти свойства легко запоминаются или выводятся, и часто у школьников не возникает каких-либо сложностей при их изучении. Но порой применить эти свойства и, главное, догадаться, что именно их надо применить для того или иного доказательства, бывает непросто. Перечислим здесь эти свойства.
Рассматривая с учениками задачи, в которых следует воспользоваться этими свойствами, нельзя не рассмотреть и такие, для решения которых важно знать формулы чётного и нечётного чисел. Опыт преподавания этих формул пяти-шестиклассникам показывает, что многие из них даже не задумывались, что любое чётное число, как и нечётное, можно выразить формулой. Методически бывает полезно озадачить ученика вопросом написать сначала формулу нечётного числа. Дело в том, что формула чётного числа выглядит понятной и очевидной, а формула нечётного числа является своего рода следствием из формулы чётного числа. А если ученик в процессе изучения нового для себя материала задумался, сделав паузу для этого, то он скорее запомнит обе формулы, чем если начинать с объяснение с формулы чётного числа. Так как чётное число - это то число, которое делится на 2, то его можно записать, как 2n, где n - целое число, а нечётное - соответственно как 2n+1.
Ниже приведены наиболее простые задачи на чётность/нечётность, которые бывает полезно рассматривать в виде лёгкой разминки.
1) Докажите, что нельзя подобрать 5 нечётных чисел, сумма которых равна 100.
2) Имеется 9 листов бумаги. Некоторые из них разорвали на 3 или 5 частей. Некоторые из образовавшихся частей снова разорвали на 3 или 5 частей и так несколько раз. Можно ли после нескольких шагов получить 100 частей?
3) Чётна или нечётна сумма всех натуральных чисел от 1 до 2019?
4) Докажите, что сумма двух последовательных нечетных чисел делится на 4.
5) Можно ли соединить 13 городов дорогами так, чтобы из каждого города выходило ровно 5 дорог?
6) Директор школы в своём отчёте написал, что в школе 788 учащихся, причём мальчиков на 225 больше, чем девочек. Но проверяющий инспектор сразу сообщил, что в отчёте допущена ошибка. Как он рассуждал?
7) Записано четыре числа: 0; 0; 0; 1. За один ход разрешается прибавить 1 к любым двум из этих чисел. Можно ли за несколько ходов получить 4 одинаковых числа?
8) Шахматный конь вышел из клетки a1 и через несколько ходов вернулся обратно. Докажите, что он сделал чётное число ходов.
9) Можно ли сложить замкнутую цепочку из 2017-ти квадратных плиток таким способом, как показано на рисунке?
10) Можно ли число 1 представить в виде суммы дробей
11) Докажите, что если сумма двух чисел есть число нечётное, то произведение этих чисел всегда будет числом чётным.
12) Числа a и b - целые. Известно, что a + b = 2018. Может ли сумма 7a + 5b равняться 7891?
13) В парламенте некоторой страны две палаты с равным количеством депутатов. В голосовании по важному вопросу приняли участие все депутаты. По окончании голосования председатель парламента сказал, что предложение принято большинством в 23 голоса, причём воздержавшихся не было. После чего один из депутатов сказал, что результаты сфальсифицированы. Как он догадался?
14) На прямой расположено несколько точек. Между двумя соседними точками поставили по точке. И так ставили точки дальше. После точки подсчитали. Может ли количество точек быть равным 2018?
15) У Пети есть 100 рублей одной купюрой, а у Андрея полные карманы монет по 2 и 5 рублей. Сколькими способами Андрей может разменять купюру Пети?
16) Запишите в строчку пять чисел так, чтобы сумма любых двух соседних чисел была нечётная, а сумма всех чисел была чётная.
17) Можно ли записать в строчку шесть чисел так, чтобы сумма любых двух соседних чисел была чётная, а сумма всех чисел была бы нечёитная?
18) В секции фехтования мальчиков в 10 раз больше, чем девочек, при этом всего в секции не более 20-ти человек. Смогут ли они разбиться на пары? Смогут ли они разбиться на пары, если мальчиков будет в 9 раз больше, чем девочек? А если в 8 раз больше?
19) В десяти коробках лежат конфеты. В первой - 1, во второй - 2, в третьей - 3, и т.д., в десятой - 10. Пете за один ход разрешается в любые две коробки добавлять по три конфеты. Сможет ли Петя за несколько ходов уравнять количество конфет в коробках? Может ли Петя уравнять количество конфет в коробках подкладывая в две коробки по три конфеты, если изначально коробок 11?
20) 25 мальчиков и 25 девочек сидят за круглым столом. Докажите, что у кого-то из сидящих за столом оба соседа одного пола.
21) Маша и несколько пятиклассников встали в круг, взявшись за руки. Оказалось, что каждый держит за руки либо двух мальчиков, либо двух девочек. Если в кругу стоит 10 мальчиков, то сколько там стоит девочек?
22) На плоскости расположено 11 шестеренок, соединенных по замкнутой цепочке, причём 11-я соединена с 1-й. Могут ли все шестеренки вращаться одновременно?
23) Докажите, что дробь есть целое число при любом натуральном n.
24) На столе лежат 9 монет, причём одна из них вверх олрлом, другие - вверх решкой. Можно ли все монеты положить вверх орлом, если разрешено одновременно переворачивать две монеты?
25) Можно ли в таблице 5х5 расставить 25 натуральных чисел так, чтобы во всех строках суммы были чётные, а во всех столбцах - нечётные?
26) Кузнечик прыгает по прямой: первый раз - на 1 см, второй раз на 2 см, третий раз на 3 см и т.д. Может ли он через 25 прыжков вернуться на старое место?
27) Улитка ползает по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом. Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.
28) В ряд выписаны числа от 1 до 2000. Можно ли меняя местами числа через одно, переставить их в обратном порядке?
29) На доске написаны 8 простых чисел, каждое из которых больше двух. Может ли их сумма равняться 79?
30) Маша и её друзья встали в круг. Оба соседа любого из детей - одного пола. Мальчиков 5, сколько девочек?
· Четные числа - это те, которые делятся на 2 без остатка (например, 2, 4, 6 и т.п.). Каждое такое число можно записать в виде 2K, подобрав подходящее целое K (например, 4 = 2 х 2, 6 = 2 х 3, и т.д.).
· Нечетные числа - это те, которые при делении на 2 дают в остатке 1 (например, 1, 3, 5 и т.п.). Каждое такое число можно записать в виде 2K + 1, подобрав подходящее целое K (например, 3 = 2 х 1 + 1, 5 = 2 х 2 + 1, и т.д.).
- Сложение и вычитание:
- Ч ётное ± Ч ётное = Ч ётное
- Ч ётное ± Н ечётное = Н ечётное
- Н ечётное ± Ч ётное = Н ечётное
- Н ечётное ± Н ечётное = Ч ётное
- Ч ётное × Ч ётное = Ч ётное
- Ч ётное × Н ечётное = Ч ётное
- Н ечётное × Н ечётное = Н ечётное
- Ч ётное / Ч ётное - однозначно судить о чётности результата невозможно (если результат целое число , то оно может быть как чётным, так и нечётным)
- Ч ётное / Н ечётное --- если результат целое число , то оно Ч ётное
- Н ечётное / Ч ётное - результат не может быть целым числом, а соответственно обладать атрибутами чётности
- Н ечётное / Н ечётное ---если результат целое число , то оно Н ечётное
Сумма любого числа четных чисел – четно.
Сумма нечетного числа нечетных чисел – нечетно.
Сумма четного числа нечетных чисел – четно.
Разность двух чисел имеет ту же четность, что и их сумма .
(напр. 2+3=5 и 2-3=-1 оба нечетные)Идея четности имеет много разных применений. Самые простые из них:
1. Если в некоторой замкнутой цепочке чередуются объекты двух видов, то их четное число (и каждого вида поровну).
2. Если в некоторой цепочке чередуются объекты двух видов, а начало и конец цепочки разных видов, то в ней четное число объектов, если начало и конец одного вида, то нечетное число. (четное число объектов соответствует нечетному числу переходов между ними и наоборот . )
2". Если у объекта чередуются два возможных состояния, а исходное и конечное состояния различны , то периодов пребывания объекта в том или ином состоянии - четное число, если исходное и конечное состояния совпадают - то нечетное . (переформулировка п.2)
3. Обратно: по четности длины чередующийся цепочке можно узнать, одного или разных видов ее начало и конец.
3". Обратно: по числу периодов пребывания объекта в одном из двух возможных чередующихся состояний можно узнать, совпадает ли начальное состояние с конечным. (переформулировка п.3)
4. Если предметы можно разбить на пары, то их количество четно.
5. Если нечетное число предметов почему-то удалось разбить на пары, то какой-то из них будет парой к самому себе, причем такой предмет может быть не один (но их всегда нечетное число).
(!) Все эти соображения можно на олимпиаде вставлять в текст решения задачи, как очевидные утверждения.
Задача 1. На плоскости расположено 9 шестеренок, соединенных по цепочке (первая со второй, вторая с третьей. 9-я с первой). Могут ли они вращаться одновременно?
Решение: Нет, не могут. Если бы они могли вращаться, то в замкнутой цепочке чередовалось бы два вида шестеренок: вращающиеся по часовой стрелке и против часовой стрелки (для решения задачи не имеет никакого значения, в каком именно направлении вращается первая шестеренка ! ) Тогда всего должно быть четное число шестеренок, а их 9 штук?! ч.и.т.д. (знак "?!" обозначает получение противоречия)
Задача 2. В ряд выписаны числа от 1 до 10. Можно ли расставить между ними знаки + и -, чтобы получилось выражение, равное нулю?
Решение: Нет, нельзя. Четность полученного выражения всегда будет совпадать с четностью суммы 1+2+. +10=55, т.е. сумма всегда будет нечетной . А 0 - четное число?! ч.т.д.Итак, я начну свою историю с четных чисел. Какие числа четные? Любое целое число, которое можно разделить на два без остатка, считается четным. Кроме того, четные числа заканчиваются на одну из данного ряда цифру: 0, 2, 4, 6 или 8.
Например: -24, 0, 6, 38 — все это четные числа.
m = 2k — общая формула написания четных чисел, где k - целое число. Данная формула может понадобиться для решения многих задач или уравнений в начальных классах.
Есть еще один вид чисел в огромном царстве математики — это нечетные числа. Любое число, которое нельзя разделить на два без остатка, а при делении на два остаток равен единице, принято называть нечетным. Любое из них заканчивается на одну из таких цифр: 1, 3, 5, 7 или 9.
Пример нечетных чисел: 3, 1, 7 и 35.
n = 2k + 1 — формула, с помощью которой можно записать любые нечетные числа, где k - целое число.
Сложение и вычитание четных и нечетных чисел
В сложении (или вычитании) четных и нечетных чисел есть некоторая закономерность. Мы представили ее с помощью таблицы, которая находится ниже, для того чтобы вам было проще понять и запомнить материал.
Набор четных и нечетных чисел, которые следует автоматически выделить разными цветами:
1. Выделите диапазон ячеек A1:A8 и выберите инструмент: «ГЛАВНАЯ»-«Стили»-«Условное форматирование»-«Создать правило» .
2. Ниже выберите: «Использовать формулу для определения форматируемых ячеек» .
3. Чтобы найти четное число в Excel ниже введите формулу: =ОСТАТ(A1;2)=0 и нажмите на кнопку «Формат» , чтобы задать зеленый цвет заливки ячеек. И нажмите ОК на всех открытых окнах.
4. Чтобы додать второе условие, не снимая выделения с диапазона A1:A8 , снова выбираем инструмент: «ГЛАВНАЯ»-«Стили»-«Условное форматирование»-«Создать правило»-«Использовать формулу для определения форматируемых ячеек» .
5. В поле ввода введите формулу: =ОСТАТ(A1;2)<>0 и нажмите на кнопку «Формат», чтобы задать синий цвет заливки ячеек. И нажмите ОК на всех открытых окнах.
6. К одному и тому же диапазону должно быть применено 2 правила условного форматирования. Чтобы проверить выберите инструмент: «ГЛАВНАЯ»-«Стили»-«Условное форматирование»-«Управление правилами» .
Читайте также: