Как называется программное обеспечение которое служит для создания компьютерных программ на языке
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.
ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".
В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги.."
2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.
В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.
Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.
В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).
История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.
СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.
90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире - "глобальной информационной среде обитания".
6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.
ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.
Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.
Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .
Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .
1 бит- 2 варианта,
2 бита- 4 варианта,
3 бита- 8 вариантов;
Продолжая дальше, получим:
4 бита- 16 вариантов,
5 бит- 32 варианта,
6 бит- 64 варианта,
7 бит- 128 вариантов,
8 бит- 256 вариантов,
9 бит- 512 вариантов,
10 бит- 1024 варианта,
N бит - 2 в степени N вариантов.
В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.
ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.
СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).
ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.
A - 01000001, B - 01000010, C - 01000011, D - 01000100, и т.д.
Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.
Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р - греческая буква альфа, вместо буквы л - одна вторая и т.д.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.
Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,
Остальные единицы объема информации являются производными от байта:
1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,
1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,
1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,
1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.
Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.
СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.
1 БОД = 1 БИТ/СЕК.
В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.
7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ
ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.
Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие - графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого "Война и мир" несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел - по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.
Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте
Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.
Программное обеспечение – это совокупность всех программ, предназначенных для выполнения на компьютере.
Программа – это описание на формальном языке, «понятном» компьютеру, последовательности действий, которые необходимо выполнить над данными для решения поставленной задачи.
Операционная система – это комплекс программ, обеспечивающих совместное функционирование всех устройств компьютера и предоставляющих пользователю доступ к ресурсам компьютера.
Аппаратный интерфейс – средства, обеспечивающие взаимодействие между устройствами компьютера.
Пользовательский интерфейс – средства, обеспечивающие взаимодействие человека и компьютера.
Загрузка компьютера – это последовательная загрузка программ операционной системы из долговременной памяти в оперативную память компьютера.
Сервисные программы – это программы-архиваторы, антивирусные программы, коммуникационные программы и другие.
Прикладными программами или приложениями называют программы, с помощью которых пользователь может работать с разными видами информации, не прибегая к программированию.
Комплекс программных средств, предназначенных для разработки компьютерных программ на языке программирования, называют системой программирования.
Программирование ‑ процесс создания программ, разработки всех типов программного обеспечения.
Основная литература:
- Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.
Дополнительная литература:
- Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
- Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
- 3. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
- Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.
Теоретический материал для самостоятельного изучения
Что же такое компьютерная программа? Это описание на понятном компьютеру языке последовательности действий, которые нужно выполнить над данными для решения конкретной задачи.
Без программного обеспечения компьютер работать не сможет. Поэтому компьютер рассматривают как систему взаимосвязанных частей: аппаратного обеспечения и программного обеспечения. Программным обеспечением компьютера называют совокупность всех программ, предназначенных для выполнения различных задач.
В настоящее время насчитывается огромное количество программ, они непрерывно развиваются, совершенствуются, на смену одним программам приходят другие.
Все программы можно разделить на три группы: системное программное обеспечение, прикладное программное обеспечение и системы программирования.
Системное программное обеспечение включает в себя операционную систему и сервисные программы.
Главной частью программного обеспечения является операционная система. Без неё компьютер работать не сможет.
Самыми распространёнными на сегодняшний день считаются операционные системы Windows, Linux, Mac OS.
Операционная система обеспечивает совместное функционирование всех устройств компьютера и предоставляет пользователю доступ к ресурсам компьютера. Средства, обеспечивающие взаимосвязь между объектами операционной системы, называют интерфейсом.
Аппаратный интерфейс обеспечивает взаимодействие между устройствами компьютера. Он содержит программы – драйверы, которые отвечают за работу подключённых к компьютеру устройств, например, принтера, монитора, клавиатуры и других.
Пользовательский интерфейс содержат программы, которые поддерживают диалог пользователя с компьютером, то есть, запуск программ, печать текста на принтере и так далее.
Загрузка операционной системы из долговременной памяти в оперативную память компьютера происходит поэтапно. Сначала загрузчик BIOS из постоянного запоминающего устройства производит тестирование и настройку всех аппаратных средств. Этот процесс виден на экране монитора. Если всё оборудование функционирует нормально, происходит поиск начального загрузчика операционной системы на внешнем носителе, который является системным. Например, на жёстком диске. После обнаружения, программа-загрузчик загружается в оперативную память. После этого операционная система начинает функционировать.
К сервисным программам относятся различные программы, которые обслуживают диски: проверяют их, восстанавливают, очищают. А также программы-архиваторы, программы для борьбы с компьютерными вирусами, коммуникационные программы и многие другие.
Архиваторы – это программы, которые обеспечивают уменьшение объёма хранимой информации.
Антивирусные программы защищают компьютер от вирусов, обнаруживают и удаляют компьютерные вирусы.
Коммуникационные программы необходимы для обеспечения доступа к сети Интернет.
Прикладными программами или приложениями называют программы, с помощью которых можно работать с различными видами информации, не прибегая к программированию. Выделяют приложения общего и специального назначения.
К приложениям общего назначения относятся: текстовые редакторы, электронные таблицы, графические редакторы, редакторы презентаций, мультимедийные проигрыватели, системы управления базами данных.
К программам специального назначения можно отнести: издательские системы, бухгалтерские программы, системы проектирования, программы компьютерного моделирования, математические пакеты, геоинформационные системы, медицинские экспертные системы.
Комплекс программных средств, предназначенных для разработки компьютерных программ на языке программирования, называют системой программирования. Такие программы разрабатывают программисты. Программирование является процессом создания программ, то есть разработки всех типов программного обеспечения.
Для записи программ используют специальные языки – языки программирования. Сейчас насчитывается несколько тысяч таких языков.
Все программы можно разделить ещё на две большие группы по их правовому статусу: программное обеспечение, которое является частной собственностью авторов или правообладателей, и свободное программное обеспечение.
Программы, входящие в первую группу, также можно разделить на: коммерческие, условно бесплатные и свободно распространяемые.
Свободное программное обеспечение даёт возможность пользователям иметь доступ к исходным кодам программ.
Материал для углублённого изучения темы.
Операционная система Linux.
«Linux» ‑ это компьютерная операционная система, которая распространяется бесплатно.
ОС Linux никому не принадлежит. Точнее можно сказать, что она принадлежит сообществу программистов. На бесплатной основе каждый желающий может вносить свои изменения, которые в дальнейшем принимаются сообществом.
История этой операционной системы началась в 1983 году, тогда Linux ещё не носила своего современного названия, работать над ней начал Ричард Столлман. Примерно через восемь лет он уже практически закончил разработку всех системных программ входящих в её состав.
В 90-ые годы к работе над системой присоединился молодой хакер и программист Линус Торвальдс, он и разработал ядро для операционной системы. И, как видно из имени этого человека, своё название система получила именно в честь него. Кстати и пингвин, ставший эмблемой системы, был до этого личным талисманом Линуса, а вот сделать этого пингвина символом операционной системы придумала жена программиста – Туве.
Широкое распространение система получила после того, как сообщество программистов подхватило основную идею Linux и стало вкладывать свои усилия в развитие проекта.
Довольно часто к операционной системе Linux относят программы, которые дополняют эту OС, и прикладные программы, которые делают её полноценной многофункциональной операционной средой.
Бесплатность. Установив Linux, вы получите набор из тысяч бесплатных программ. Хоть они и не столь привычны как Windows-программы, но абсолютно функциональны.
Надёжность. Корректная работа аппаратной части ПК, позволит Linux работать годы без перезагрузки и зависаний. А кнопка Reset вообще никогда не понадобится.
Безопасность. В Linux практически нет вирусов. Само построение операционной системы исключает работу вредоносных программ.
На данный момент вокруг ОС Linux сформировалось огромное сообщество программистов, которые постоянно совершенствуют систему. Они разрабатывают новые версии и разновидности данной ОС, пишут самые разнообразные программы, работающие под Linux.
Разбор решения заданий тренировочного модуля.
№1.Тип задания: подстановка элементов в пропуски в таблице.
Предложите имена известных вам программ, открывающие файлы со следующими расширениями:
Расширение doc имеют только текстовые редакторы, например, MSWord; расширение bmp у графических редакторов, например, Paint. Программы-архиваторы имеют расширение zip, поэтому можно выбрать, например, программу WinZip, ну, а расширение txt есть только у программы Блокнот.
Среды программирования (или как их еще называют, среды разработки) - это программы, в которых программисты пишут свои программы. Иными словами, среда программирования служит для разработки ( написания) программ и обычно ориентируется на конкретный язык или несколько языков программирования (в этом случае языки, обычно, принадлежат одной языковой группе, например, Си-подобные). Интегрированная среда программирования содержит в себе все необходимое для разработки программ:
- редактор с подсветкой синтаксиса конкретного языка программирования. В нем программист пишет текст программы, так называемый программный код;
- компилятор. Он, как мы уже с вами знаем, транслирует программу, написанную на высокоуровневом языке программирования в машинный язык (машинный код), непосредственно понятный компьютеру. Язык С++ относится к компилируемым языкам, поэтому для обработки текстов его программ служит компилятор, иногда вместо компилятора (либо вместе с ним) используется интерпретатор, для программ, написанных на интерпретируемых языках программирования;
- отладчик. Служит для отладки программ. Как мы все знаем, ошибки в программах допускают абсолютно все: и новички, и профессионалы - они могут быть синтаксическими (обычно они выявляются еще на стадии компиляции) и логическими. Для тестирования программы и выявления в ней логических ошибок служит отладчик.
Мы рассмотрели базовую комплектацию среды программирования, но иногда в них присутствуют еще и такие компоненты, как система управления версиями, различные инструменты для конструирования графического интерфейса программы, браузер классов, инспектор объектов и другие.
Общее описание работы среды программирования
Давайте сейчас подробно рассмотрим процесс разработки программы в среде программирования, от момента начала написания кода программы до получения скомпилированного экзешника (файла с расширением .exe), который уже можно непосредственно запускать вне среды разработки. Как правило, для того, чтобы выполнить программу на С++, надо пройти шесть этапов:
- Первый этап - редактирование;
- Второй этап - предварительная (препроцессорная) обработка;
- Третий этап - компиляция;
- Четвертый этап - компоновка;
- Пятый этап - загрузка;
- Шестой этап - выполнение.
Мы остановимся на системе С++, ориентированной на UNIX, чтобы лучше понять этот процесс. В Windows некоторые из этих этапов будут проходить автоматически без участия программиста.
Редактирование. Это первый этап разработки программы в среде программирования и представляет он собой редактирование файла (исходного файла, который в последствии будет содержать код программы). Он выполняется с помощью редактора программ, который напоминает нам обычный текстовый редактор, такой как блокнот, word и т.д. Программист набирает в этом редакторе свою программу на С++ и, если это необходимо, вносит в нее различные изменения или исправления. Одним словом, работает с кодом программы как с обычным текстом. Имена файлов программ на С++ часто оканчиваются расширением .с или .срр. (это вы сами сможете пронаблюдать, когда загляните в папку с проектом).
Компиляция. На этом этапе компилятором проверяется текст программы на наличие синтаксических ошибок и затем, если все хорошо, текст программы с подстановками, сделанными на предыдущем этапе, преобразуется в машинный код (код на языке, уже непосредственно понятный компьютеру). Иногда его еще называют объектным. На этом этапе создается файл с расширением .obj. Также в вашей программе могут использоваться кусочки уже готового машинного кода, расположенного в иных библиотеках (например, в файлах с расширением .lib). На этапе компиляции эти библиотеки еще не будут подключены к только что созданному машинному коду. Они подключаются на следующем этапе.
Компоновка. Следующий этап называется компоновка. Программы на С++ обычно содержат ссылки на функции, определенные где-либо вне самой программы, например, в стандартных библиотеках или в личных библиотеках групп программистов, работающих над данным проектом. Объектный код, созданный компилятором, обычно содержит «дыры» из-за этих отсутствующих частей. Компоновщик связывает объектный код с кодами отсутствующих функций, чтобы создать исполняемый загрузочный модуль (без пропущенных частей). Получаем в итоге файл с расширением .exe (для Windows), либо .out (для Linux).
Загрузка. Следующий этап называется загрузка. Перед выполнением программа должна быть размещена в оперативной памяти компьютера. Это делается с помощью загрузчика, который забирает исполняемый загрузочный модуль с диска (наш файл с расширением .exe) и перемещает его в оперативную память.
Выполнение. И наконец, рассмотрим самый последний этап - выполнение. С этого момента компьютер под управлением своего ЦПУ (центральное процессорное устройство) начинает последовательно выполнять в каждый момент времени по одной команде программы. Эти моменты времени носят название такт, каждый процессор имеет свою тактовую частоту, которую задает его внутренний тактовый генератор. Чем более высокая частота работы вашего процессора, тем, соответственно, лучше и тем быстрее выполняются ваши программы. На маленьких программах это, конечно же, не очень ощутимо, но когда запускаете какую-нибудь новомодную игрушку, то все очень даже заметно.
Среда CodeBlocks
Для разработки своих программ лично я использую среду программирования CodeBlocks. Вам, как начинающим советую использовать именно ее, т.к. она проста в использовании и, соответственно, лучше приемлема для начинающего программиста. В этой среде есть минимально необходимый комплект (редактор, компилятор и отладчик) для разработки программ. А сейчас займемся установкой (скачать CodeBlocks можно в разделе "В помощь программисту"):
- Распаковываем скачанный архив и запускаем инсталляционный файл, соглашаемся с лицензией. В окошке выбора компонентов для установки выбираем либо standart, либо full (принципиальной разницы нет).
- Выбираем путь установки, либо оставляем по умолчанию, ставим.
- Процесс установки благополучно завершен.
Программы, написанные на языках программирования высокого уровня, перед выполнением на ЭВМ должны транслироваться в эквивалентные программы , написанные на машинном коде. Транслятор – это программа , которая переводит программу на исходном (входном) языке в эквивалентную ей программу на результирующем (выходном) языке. Если исходный язык является языком высокого уровня, например, таким как Паскаль , С++, и если объектный язык – автокод , то такой транслятор называется компилятором.
Достоинство компилятора заключается в том, что программа компилируется один раз, и при каждом выполнении не требуется дополнительных преобразований. Соответственно, не требуется наличие компилятора на целевой машине, для которой компилируется программа . Недостаток: отдельный этап компиляции замедляет написание и отладку и затрудняет исполнение небольших, несложных или разовых программ. В том случае, если исходный язык является языком ассемблера (низкоуровневым языком, близким к машинному языку), компилятор такого языка называется ассемблером.
Другой метод реализации программ, написанных на языке высокого уровня, – интерпретация [21]. Интерпретатор программно моделирует машину, цикл выборки-исполнения которой работает с командами на языках высокого уровня, а не с машинными командами. Такое программное моделирование создает виртуальную машину, реализующую язык. Этот подход называется чистой интерпретацией. Чистая интерпретация применяется, как правило, для языков с простой структурой (например, АПЛ или Лисп ). Интерпретаторы командной строки обрабатывают команды в скриптах в UNIX или в пакетных файлах (.bat) в MS-DOS , как правило, также в режиме чистой интерпретации.
Достоинство чистого интерпретатора: отсутствие промежуточных действий для трансляции упрощает реализацию интерпретатора и делает его удобнее в использовании, в том числе в диалоговом режиме. Недостаток – интерпретатор должен быть в наличии на целевой машине, где должна исполняться программа . А свойство чистого интерпретатора, что ошибки в интерпретируемой программе обнаруживаются только при попытке выполнения команды (или строки) с ошибкой, можно признать как недостатком, так и достоинством [20].
Существуют компромиссные между компиляцией и чистой интерпретацией варианты реализации языков программирования, когда интерпретатор перед исполнением программы транслирует ее на промежуточный язык (например, в байт-код или p-код), более удобный для интерпретации (т.е. речь идет об интерпретаторе со встроенным транслятором). Такой метод называется смешанной реализацией. Примером смешанной реализации языка может служить Perl. Этот подход сочетает как достоинства компилятора и интерпретатора (бомльшая скорость исполнения и удобство использования ), так и недостатки (для трансляции и хранения программы на промежуточном языке требуются дополнительные ресурсы; для исполнения программы на целевой машине должен быть представлен интерпретатор ). Так же, как и в случае компилятора, смешанная реализация требует, чтобы перед исполнением исходный код не содержал ошибок (лексических, синтаксических и семантических).
Для компиляции компилятор должен выполнить анализ исходной программы, а затем синтез объектной программы. Сначала исходная программа разлагается на ее составные части; затем из них строятся части эквивалентной объектной программы. Для этого на этапе анализа компилятор строит несколько таблиц (рис.4.2), которые используются затем как при анализе, так и при синтезе [12].
При анализе программы из описаний, заголовков процедур, заголовков циклов и т.д. извлекается информация и сохраняется для последующего применения. Эта информация обнаруживается в отдельных точках программы и организуется так, чтобы к ней можно было обратиться из любой части компилятора. Например, при каждом использовании идентификатора необходимо знать, как был описан этот идентификатор и как он работал в других местах программы. Что конкретно следует хранить, зависит, конечно, от исходного языка, объектного языка и сложности компилятора. Но в каждом компиляторе в той или иной форме используется таблица символов (иногда ее называют списком идентификаторов или таблицей имен). Это таблица идентификаторов, встречающихся в исходной программе, вместе с их атрибутами. К атрибутам относятся тип идентификатора, его адрес в объектной программе и любая другая информация о нем, которая может понадобиться при генерации объектной программы.
Лексический анализатор ( сканер ) – самая простая часть компилятора. Сканер просматривает литеры исходной программы слева направо и строит символы программы – целые числа, идентификаторы, служебные слова и т. д. (символы передаются затем на обработку фактическому анализатору). На этой стадии может быть исключен комментарий. Сканер также может заносить идентификаторы в таблицу символов и выполнять другую простую работу, которая фактически не требует анализа исходной программы. Он может выполнить большую часть работы по макрогенерации в тех случаях, когда требуется только текстовая подстановка .
Обычно сканер передает символы анализатору во внутренней форме. Каждый разделитель ( служебное слово , знак операции или знак пунктуации) будет представлен целым числом. Идентификаторы или константы можно представить парой чисел. Первое число, отличное от любого целого числа, использующегося для представления разделителя, характеризует сам " идентификатор " или "константу"; второе число является адресом или индексом идентификатора или константы в некоторой таблице. Это позволяет в остальных частях компилятора работать эффективно, оперируя с символами фиксированной длины, а не с цепочками литер переменной длины.
Синтаксический и семантический анализаторы выполняют сложную работу по расчленению исходной программы на составные части, формированию ее внутреннего представления и занесению информации в таблицу символов и другие таблицы. При этом также выполняется полный синтаксический и семантический контроль программы. Синтаксис – способ соединения слов (и их форм) в словосочетания и предложения. Семантика – это значения единиц языка. Обычный анализатор представляет собой синтаксически управляемую программу.
В действительности стремятся отделить синтаксис от семантики настолько, насколько это возможно. Когда синтаксический анализатор ( распознаватель ) узнает конструкцию исходного языка, он вызывает соответствующую семантическую процедуру, или семантическую программу, которая контролирует данную конструкцию с точки зрения семантики и затем запоминает информацию о ней в таблице символов или во внутреннем представлении программы. Например, когда распознается описание переменных, семантическая программа проверяет идентификаторы, указанные в этом описании, чтобы убедиться в том, что они не были описаны дважды, и заносит их вместе с атрибутами в таблицу символов.
Внутреннее представление исходной программы в значительной степени зависит от его дальнейшего использования. Это может быть дерево , отражающее синтаксис исходной программы. Это может быть исходная программа , в так называемой польской записи, список тетрад и т.д.
Перед генерацией команд обычно необходимо некоторым образом обработать и изменить внутреннюю программу. Кроме того, должна быть распределена память под переменные готовой программы. Одним из важных моментов на этом этапе является оптимизация программы с целью уменьшения времени ее работы. По существу, на этом этапе происходит перевод внутреннего представления исходной программы на автокод или на машинный язык . Это наиболее хлопотная и кропотливая часть компилятора, хотя и наиболее понятная. В интерпретаторе эта часть компилятора заменяется программой, которая фактически выполняет (или интерпретирует) внутреннее представление исходной программы. Само внутреннее представление в этом случае мало чем отличается от того, которое получается при компиляции.
Естественно, возникает вопрос: в чем заключаются главные трудности реализации компилятора? Сканер весьма прост и хорошо изучен. Синтаксические анализаторы, если речь идет о простых формальных языках, также довольно хорошо изучены. В действительности эту часть можно в значительной степени автоматизировать. С тех пор, как синтаксис был формализован, большинство исследований по созданию компиляторов касалось именно синтаксиса, а не семантики. Наиболее трудными и запутанными частями компилятора являются семантический анализ , программы подготовки генерации и программы генерации команд. Эти три части взаимозависимы, должны в значительной степени разрабатываться совместно и могут коренным образом измениться при переходе с одного объектного языка на другой или с одной машины на другую.
Более детальное представление о процессе компиляции можно получить в специальной литературе [12, 20, 21].
4.3. Понятие системы программирования
Всякий компилятор является составной частью системного программного обеспечения. Основное назначение компиляторов – служить для разработки новых прикладных и системных программ с помощью языков высокого уровня. Любая программа , как системная, так и прикладная, проходит этапы жизненного цикла , начиная от проектирования и вплоть до внедрения и сопровождения. А компиляторы – это средства, служащие для создания программного обеспечения на этапах кодирования, тестирования и отладки. Однако сам по себе компилятор не решает полностью всех задач, связанных с разработкой новой программы. Средств только лишь компилятора недостаточно для того, чтобы обеспечить прохождение программой указанных этапов жизненного цикла . Поэтому компиляторы – это программное обеспечение , которое функционирует в тесном взаимодействии с другими техническими средствами, применяемыми на данных этапах.
Основные технические средства, используемые в комплексе с компиляторами, включают в себя следующие программные модули [20]:
- текстовые редакторы, служащие для создания текстов исходных программ;
- компоновщики, которые позволяют объединять несколько объектных модулей, порождаемых компилятором, в единое целое;
- библиотеки прикладных программ, содержащие в себе наиболее часто используемые функции и подпрограммы в виде готовых объектных модулей;
- загрузчики, обеспечивающие подготовку готовой программы к выполнению;
- отладчики, выполняющие программу в заданном режиме с целью поиска, обнаружения и локализации ошибок;
- другие программные средства, служащие для разработки программ и их компонентов.
Все эти средства разработки функционируют не отдельно, каждое само по себе, а в тесном взаимодействии друг с другом. Данные, полученные в одном модуле, поступают на вход другого, и наоборот. В современных средствах разработки интеграция модулей столь высока, что пользователь часто и не представляет, что он работает с несколькими программными средствами – для него вся система разработки представляет собой единое целое. Весь этот комплекс программно-технических средств составляет новое понятие, которое называется системой программирования.
Системы программирования в современном мире доминируют на рынке средств разработки. Практически все фирмы-разработчики компиляторов поставляют свои продукты в составе соответствующей системы программирования в комплексе всех прочих технических средств. Отдельные компиляторы являются редкостью и, как правило, служат только узкоспециализированным целям.
Тенденция такова, что все развитие систем программирования идет в направлении неуклонного повышения их дружественности и сервисных возможностей. Это связано с тем, что на рынке в первую очередь лидируют те системы программирования, которые позволяют существенно снизить трудозатраты, необходимые для создания программного обеспечения на этапах жизненного цикла , в области кодирования, тестирования и отладки программ . Показатель снижения трудозатрат в настоящее время считается более существенным, чем показатели, которые определяют эффективность результирующей программы, построенной с помощью системы программирования.
В качестве основных тенденций в развитии современных систем программирования следует указать внедрение в них средств разработки на основе так называемых языков четвертого поколения 4GL (four generation languages ), а также поддержку систем быстрой разработки программного обеспечения RAD ( rapid application development ).
Языки четвертого поколения 4GL представляют собой широкий набор средств, ориентированных на проектирование и разработку программного обеспечения. Они строятся на основе оперирования не синтаксическими структурами языка и описаниями элементов, а представляющими их графическими образами. На таком уровне проектировать и разрабатывать прикладное программное обеспечение может пользователь , не являющийся квалифицированным программистом, зато имеющий представление о предметной области , на работу в которой ориентирована прикладная программа .
Описание программы, построенное на основе языков 4GL , транслируется затем в исходный текст и файл описания ресурсов интерфейса, представляющие собой обычные тексты на соответствующем входном языке высокого уровня. С этим текстом уже может работать профессиональный программист-разработчик, он может корректировать и дополнять его необходимыми функциями. Такой подход позволяет разделить работу проектировщика, ответственного за общую концепцию всего проекта создаваемой системы, дизайнера, отвечающего за внешний вид интерфейса пользователя, и профессионального программиста, отвечающего непосредственно за создание исходного кода создаваемого программного обеспечения.
В целом языки четвертого поколения решают уже более широкий класс задач, чем традиционные системы программирования. Они составляют часть средств автоматизированного проектирования и разработки программного обеспечения, поддерживающих все этапы жизненного цикла CASE-систем. Их рассмотрение выходит за рамки данного учебного пособия.
Инструменты разработки поставляются в десятках форм, включая компиляторы, компоновщики, ассемблеры, отладчики, дизайнеры графического интерфейса и инструменты анализа производительности. Правильно подобранный инструмент может значительно повысить производительность и помочь вам легко поддерживать рабочий процесс проекта.
Одним из самых простых программных средств является редактор исходного кода, который используется повсеместно и непрерывно. В основном это программа текстового редактора, предназначенная для написания и редактирования программного кода.
Редактор кода может быть как самостоятельным приложением, так и встроенным в веб-браузер или интегрированную среду разработки (IDE). Поскольку на рынке доступны буквально сотни редакторов кода, разработчикам трудно выбрать один из них.
Чтобы облегчить эту работу, мы собрали несколько лучших программных продуктов, которые могут ускорить процесс кодирования, предлагая при этом множество полезных функций.
14. Eclipse
Цена: Бесплатный
Платформа: Linux, MacOS, Windows
Eclipse - это IDE, поддерживающая расширяемую систему подключаемых модулей для настройки среды. Хотя она в первую очередь используется для разработки Java-приложений, вы можете использовать ее для написания приложений и на других языках программирования (через плагины).
Она проверяет ошибки во время компиляции при написании кода. А так как она предоставляет рекомендации и имеет отличное онлайн-сообщество, чтобы помочь пользователям, вы можете увеличить темп написания кода с помощью этого инструмента.
Eclipse эффективно управляет несколькими файлами и проектами и поддерживает широкий спектр форматов файлов с синтаксическим форматированием, зависящим от типа. Она обеспечивает подключение к нескольким базам данных и поддерживает общие методы доступа к БД. Более того, интеграция проекта в GIT практически безупречна.
13. Geany
Цена: Бесплатный
Платформа: Linux, MacOS, Windows
Geany - это легкий текстовый редактор с открытым исходным кодом, специально разработанный для быстрой загрузки при ограниченных зависимостях от внешних библиотек или отдельных пакетов.
В отличие от других редакторов кода, вам не нужно перебирать многочисленные стили синтаксиса, чтобы иметь возможность изменить используемый шрифт. А поскольку в нем используется реальный синтаксический анализ (а не только раскраска), он может отображать внутренние классы и методы в исходном коде.
12. Gedit
Цена: Бесплатно
Платформа: Linux, macOS, Windows
Gedit - легкий, но мощный текстовый редактор общего назначения среды рабочего стола GNOME. В соответствии с философией проекта GNOME, он имеет чистый и простой графический интерфейс для редактирования исходных текстов и структурированный текст вроде языков разметки.
В дополнение к подсветке синтаксиса для различных языков программирования, он также имеет функции проверки орфографии и все другие основные параметры, такие как перейти к строке, найти и заменить.
Инструмент может работать быстро на ПК с низким уровнем производительности: он использует мало памяти и ресурсов процессора при чтении очень больших журналов.
11. Brackets
Цена: Бесплатно
Платформа: Linux, macOS, Windows
Brackets - это редактор кода с открытым исходным кодом, разработанный Adobe Systems. Он в первую очередь ориентирован на функции редактирования HTML, CSS и JavaScript.
Предварительный просмотр в реальном времени мгновенно отправляет изменения кода в браузер для отображения обновленной веб-страницы по мере изменения кода. Еще одна полезная функция под названием Split-Screen позволяет легко работать с CSS и фактическим кодом одновременно.
Brackets имеет приличную библиотеку расширений, таких как prefixer, который анализирует ваш код и автоматические префиксные CSS-селекторы. В текстовом редакторе он по-прежнему относительно невелик, но из-за множества параметров настройки и расширяемости с помощью плагинов реализация кода кажется легкой.
10. NetBeans
Цена: Бесплатно
Платформа: Linux, macOS, Windows
NetBeans - это среда IDE с открытым исходным кодом, которая позволяет быстро разрабатывать мобильные, настольные и веб-приложения с использованием Java, C / C ++, PHP и других языках. Приложения разрабатываются из группы модульных программных компонентов, называемых "модулями".
Инструмент не требует никакого лицензирования и довольно прост в работе. Вы можете сделать отступ кода без особых усилий: просто определите правила для отступа кода на каждом языке, и он будет следовать соответствующим образом. Вы также можете сравнить код в разных файлах, чтобы узнать различия между кодом разных разработчиков.
NetBeans легко интегрируется с несколькими серверами веб-приложений, такими как GlassFish и Tomcat. Он также хорошо работает с инструментами контроля версий, такими как GIT.
9. Vim
Цена: Бесплатно
Платформа: Unix, Linux, macOS, Windows
Vim - это программное обеспечение с открытым исходным кодом, предназначенное для использования как из интерфейса командной строки, так и в качестве отдельного инструмента в графическом интерфейсе. Он имеет автоматический синтаксис и преобразование в HTML, список ошибок, набор компиляторов и автоматическое исправление.
Для лучшей визуализации вы можете либо изменить размер окон, либо разделить их по горизонтали/вертикали. В нем есть много команд для выполнения типичных вещей с клавиатуры вместо мыши. Это увеличивает вашу скорость как минимум в два раза.
Хотя он выглядит как простой текстовый редактор, это отличный инструмент для повышения производительности с множеством полезных плагинов. В опросе разработчиков Stack Overflow (2019) Vim занял пятое место по популярности среди сред разработки.
8. TextMate
Цена: Бесплатно
Платформа: macOS
TextMate - это легкий текстовый редактор с графическим интерфейсом, специально разработанный для MacOS. Он включает в себя записываемые макросы, декларативные настройки, фальцовку разделов, интеграцию с оболочкой и обширную библиотеку плагинов.
Он позволяет легко менять кусок кода и превращать часто используемые куски кода во фрагменты. Повторяющиеся задачи можно устранить с помощью макросов: либо запишите макрос для немедленного воспроизведения, либо сохраните его для повторного использования.
Это очень удобно для начинающих, а форматирование очень полезно при написании и отладке кода.
7. Emacs
Цена: Бесплатный
Платформа: Linux, MacOS, Windows
Emacs - это настраиваемый и расширяемый текстовый редактор, способный выполнять все, что пожелает пользователь. Он содержит более 10 000 встроенных команд, которые можно комбинировать с макросами для автоматизации работы.
Emacs имеет режимы редактирования с учётом контента, полную поддержку Unicode почти для всех сценариев, а также полную экосистему функциональности, выходящую за рамки редактирования текста, включая программу чтения новостей и почты, календарь, интерфейс отладчика и планировщика проектов.
Инструмент расширяется с помощью расширений Lisp, так что вы можете получить все новые преимущества современных IDE, такие как подсветка синтаксиса, полный код, статическая проверка и многое другое, установив плагины.
6. AWS Cloud9
Цена: Бесплатно | 2,05 доллара США за 90 часов использования.
Платформа: Online IDE.
AWS Cloud9 позволяет писать, запускать и отлаживать исходный код с помощью только веб-браузера. Вам не нужно устанавливать файлы или настраивать машину разработки для запуска новых проектов. В нем есть все важные инструменты, необходимые для популярных языков программирования.
Платформа позволяет определять ресурсы, отлаживать и переключаться между удаленным и локальным исполнением бессерверных приложений. Вы также можете делиться своими проектами и парным кодом, а также отслеживать вклад вашей команды в режиме реального времени.
Полнофункциональный редактор поставляется со встроенным терминалом и редактором изображений, возможностью совместного редактирования и чатом, так что вы можете общаться со своей командой, не выходя из IDE.
5. IntelliJ IDEA
Цена: Бесплатно | 49,9 $ в месяц
Платформа: Linux, macOS, Windows
Написанная на Java, IntelliJ IDEA объединяет сотни функций и настроек, упрощающих программирование. Интеллектуальное автозавершение кода для большого количества языков, поддержка инфраструктуры микросервисов и встроенные инструменты разработчика, такие как контроль версий и терминал, делают этот инструмент особенным.
IntelliJ IDEA зарекомендовала себя как одна из самых универсальных IDE, начиная с фронтендовых JavaScript-приложений и заканчивая бэкэндом Java.
Она идеально подходит для разработчиков, имеющих опыт работы с другими инструментами JetBrains. Для новичков пользовательский интерфейс может быть запутанным, так как в нем слишком много опций и сложных функций.
4. Xcode
Цена: Бесплатно
Платформа: macOS
Xcode содержит набор инструментов для разработки программного обеспечения, который включает большую часть документации Apple для разработчиков и встроенный интерфейсный редактор. Он используется для разработки программного обеспечения для iOS, iPadOS, macOS, watchOS и tvOS.
Xcode и Swift (мультипарадигмальный язык, разработанный Apple Inc) вместе делают программирование восхитительно живым. Лучшее в Xcode - это то, что вы можете просто перетащить элемент, и ваш дизайн готов к работе.
Интерфейсный разработчик отображает живую визуализацию вашего кода, мгновенно отражая изменения, внесенные вами в код. Плагины не так важны для этого инструмента: просто обновляйте IDE для бесперебойной работы.
3. Visual Studio
Цена: Бесплатно | 45 долларов США в месяц
Платформа: Windows, macOS
Microsoft Visual Studio - очень мощный инструмент для создания веб-сайтов, веб-сервисов и мобильных приложений. Он в основном используется малым и средним бизнесом для разработки компьютерных программ.
Редактор кода поставляется с IntelliSense (функция завершения кода с учетом контекста), рефакторингом кода и интегрированным отладчиком, который работает как отладчик на уровне машины, так и как отладчик на уровне исходного кода.
Поддержка онлайн-сообщества для этого инструмента превосходна, и Microsoft постоянно держит продукт в актуальном состоянии.
2. Sublime Text
Цена: Бесплатно | 80 долларов за лицензию
Платформа: Linux, Windows, macOS
Sublime Text - это сложный текстовый редактор для кода и разметки. У него есть боковая мини-карта, которая обеспечивает иерархическое представление файлов и сочетаний клавиш для большинства действий.
Это легковесное программное обеспечение, написанное на C/C++ и Python. Он может делать намного более тяжелую работу, не сталкиваясь с проблемами. Существует приличная командная палитра, которая позволяет глубоко использовать редактор.
Sublime Text позволяет пользователям настраивать каждый аспект инструмента и писать код быстро и эффективно. Это также упрощает привязку кода к другим страницам кода. В целом, он отлично справляется со своей задачей.
1. Notepad++
Цена: Бесплатно
Платформа: Windows
Notepad ++ больше, чем редактор: это замена Блокнота, который поддерживает множество различных языков программирования. Он написан на C ++ и использует Win32 и STL, что обеспечивает меньший размер программы и более высокую скорость выполнения.
Это отличный помощник для проектов по написанию кода. Вы можете работать с несколькими документами одновременно, благодаря функции редактирования с несколькими вкладками. Редактор позволяет легко проверять файлы на всех этапах проектов встроенного программного обеспечения, от HEX до исходного кода C ++.
В общем, Notepad ++ - это просто Microsoft Notepad, но на стероидах. Он делает все лучше и предоставляет дополнительные функции для выполнения всех ваших требований.
Читайте также: