Драйверы ввода вывода это
Как и система видов Линнея, система типов устройств является далеко не полной и не строго выдержанной. Устройства обычно принято разделять по преобладающему типу интерфейса на следующие виды:
- символьные (клавиатура, модем, терминал и т. п.);
- блочные (магнитные и оптические диски и ленты, и т. д.);
- сетевые (сетевые карты);
- все остальные (таймеры, графические дисплеи, телевизионные устройства, видеокамеры и т. п.);
Такое деление является весьма условным. В одних операционных системах сетевые устройства могут не выделяться в отдельную группу, в некоторых других – отдельные группы составляют звуковые устройства и видеоустройства и т. д. Некоторые группы в свою очередь могут разбиваться на подгруппы: подгруппа жестких дисков, подгруппа мышек, подгруппа принтеров. Нас такие детали не интересуют. Мы не ставим перед собой цель осуществить систематизацию всех возможных устройств, которые могут быть подключены к вычислительной системе. Единственное, для чего нам понадобится эта классификация, так это для иллюстрации того положения, что устройства могут быть разделены на группы по выполняемым ими функциям, и для понимания функций драйверов, и интерфейса между ними и базовой подсистемой ввода-вывода .
Для этого мы рассмотрим только две группы устройств: символьные и блочные . Как уже упоминалось в предыдущем разделе, символьные устройства – это устройства, которые умеют передавать данные только последовательно, байт за байтом, а блочные устройства – это устройства, которые могут передавать блок байтов как единое целое.
К символьным устройствам обычно относятся устройства ввода информации, которые спонтанно генерируют входные данные: клавиатура, мышь, модем, джойстик. К ним же относятся и устройства вывода информации, для которых характерно представление данных в виде линейного потока: принтеры, звуковые карты и т. д. По своей природе символьные устройства обычно умеют совершать две общие операции: ввести символ (байт) и вывести символ (байт) – get и put .
Для блочных устройств , таких как магнитные и оптические диски, ленты и т. п. естественными являются операции чтения и записи блока информации – read и write , а также, для устройств прямого доступа, операция поиска требуемого блока информации – seek .
Драйверы символьных и блочных устройств должны предоставлять базовой подсистеме ввода-вывода функции для осуществления описанных общих операций. Помимо общих операций, некоторые устройства могут выполнять операции специфические, свойственные только им – например, звуковые карты умеют увеличивать или уменьшать среднюю громкость звучания, дисплеи умеют изменять свою разрешающую способность. Для выполнения таких специфических действий в интерфейс между драйвером и базовой подсистемой ввода-вывода обычно входит еще одна функция, позволяющая непосредственно передавать драйверу устройства произвольную команду с произвольными параметрами, что позволяет задействовать любую возможность драйвера без изменения интерфейса. В операционной системе Unix такая функция получила название ioctl (от input-output control).
Помимо функций read , write , seek (для блочных устройств ), get , put (для символьных устройств ) и ioctl , в состав интерфейса обычно включают еще следующие функции.
- Функцию инициализации или повторной инициализации работы драйвера и устройства – open .
- Функцию временного завершения работы с устройством (может, например, вызывать отключение устройства) – close .
- Функцию опроса состояния устройства (если по каким-либо причинам работа с устройством производится методом опроса его состояния, например, в операционных системах Windows NT и Windows 9x так построена работа с принтерами через параллельный порт) – poll .
- Функцию остановки драйвера, которая вызывается при остановке операционной системы или выгрузке драйвера из памяти, halt .
Существует еще ряд действий, выполнение которых может быть возложено на драйвер, но поскольку, как правило, это действия базовой подсистемы ввода-вывода , мы поговорим о них в следующем разделе. Приведенные выше названия функций, конечно, являются условными и могут меняться от одной операционной системы к другой, но действия, выполняемые драйверами, характерны для большинства операционных систем, и соответствующие функции присутствуют в интерфейсах к ним.
Функции базовой подсистемы ввода-вывода
Базовая подсистема ввода-вывода служит посредником между процессами вычислительной системы и набором драйверов. Системные вызовы для выполнения операций ввода-вывода трансформируются ею в вызовы функций необходимого драйвера устройства. Однако обязанности базовой подсистемы не сводятся к выполнению только действий трансляции общего системного вызова в обращение к частной функции драйвера. Базовая подсистема предоставляет вычислительной системе такие услуги, как поддержка блокирующихся , неблокирующихся и асинхронных системных вызовов , буферизация и кэширование входных и выходных данных, осуществление spooling'a и монопольного захвата внешних устройств, обработка ошибок и прерываний , возникающих при операциях ввода-вывода, планирование последовательности запросов на выполнение этих операций. Давайте остановимся на этих услугах подробнее.
Блокирующиеся, неблокирующиеся и асинхронные системные вызовы
Все системные вызовы, связанные с осуществлением операций ввода-вывода, можно разбить на три группы по способам реализации взаимодействия процесса и устройства ввода-вывода.
Как и система видов Линнея, система типов устройств является далеко не полной и не строго выдержанной. Устройства обычно принято разделять по преобладающему типу интерфейса на следующие виды:
- символьные (клавиатура, модем, терминал и т. п.);
- блочные (магнитные и оптические диски и ленты, и т. д.);
- сетевые (сетевые карты);
- все остальные (таймеры, графические дисплеи, телевизионные устройства, видеокамеры и т. п.);
Такое деление является весьма условным. В одних операционных системах сетевые устройства могут не выделяться в отдельную группу, в некоторых других – отдельные группы составляют звуковые устройства и видеоустройства и т. д. Некоторые группы в свою очередь могут разбиваться на подгруппы: подгруппа жестких дисков, подгруппа мышек, подгруппа принтеров. Нас такие детали не интересуют. Мы не ставим перед собой цель осуществить систематизацию всех возможных устройств, которые могут быть подключены к вычислительной системе. Единственное, для чего нам понадобится эта классификация, так это для иллюстрации того положения, что устройства могут быть разделены на группы по выполняемым ими функциям, и для понимания функций драйверов, и интерфейса между ними и базовой подсистемой ввода-вывода .
Для этого мы рассмотрим только две группы устройств: символьные и блочные . Как уже упоминалось в предыдущем разделе, символьные устройства – это устройства, которые умеют передавать данные только последовательно, байт за байтом, а блочные устройства – это устройства, которые могут передавать блок байтов как единое целое.
К символьным устройствам обычно относятся устройства ввода информации, которые спонтанно генерируют входные данные: клавиатура, мышь, модем, джойстик. К ним же относятся и устройства вывода информации, для которых характерно представление данных в виде линейного потока: принтеры, звуковые карты и т. д. По своей природе символьные устройства обычно умеют совершать две общие операции: ввести символ (байт) и вывести символ (байт) – get и put .
Для блочных устройств , таких как магнитные и оптические диски, ленты и т. п. естественными являются операции чтения и записи блока информации – read и write , а также, для устройств прямого доступа, операция поиска требуемого блока информации – seek .
Драйверы символьных и блочных устройств должны предоставлять базовой подсистеме ввода-вывода функции для осуществления описанных общих операций. Помимо общих операций, некоторые устройства могут выполнять операции специфические, свойственные только им – например, звуковые карты умеют увеличивать или уменьшать среднюю громкость звучания, дисплеи умеют изменять свою разрешающую способность. Для выполнения таких специфических действий в интерфейс между драйвером и базовой подсистемой ввода-вывода обычно входит еще одна функция, позволяющая непосредственно передавать драйверу устройства произвольную команду с произвольными параметрами, что позволяет задействовать любую возможность драйвера без изменения интерфейса. В операционной системе Unix такая функция получила название ioctl (от input-output control).
Помимо функций read , write , seek (для блочных устройств ), get , put (для символьных устройств ) и ioctl , в состав интерфейса обычно включают еще следующие функции.
- Функцию инициализации или повторной инициализации работы драйвера и устройства – open .
- Функцию временного завершения работы с устройством (может, например, вызывать отключение устройства) – close .
- Функцию опроса состояния устройства (если по каким-либо причинам работа с устройством производится методом опроса его состояния, например, в операционных системах Windows NT и Windows 9x так построена работа с принтерами через параллельный порт) – poll .
- Функцию остановки драйвера, которая вызывается при остановке операционной системы или выгрузке драйвера из памяти, halt .
Существует еще ряд действий, выполнение которых может быть возложено на драйвер, но поскольку, как правило, это действия базовой подсистемы ввода-вывода , мы поговорим о них в следующем разделе. Приведенные выше названия функций, конечно, являются условными и могут меняться от одной операционной системы к другой, но действия, выполняемые драйверами, характерны для большинства операционных систем, и соответствующие функции присутствуют в интерфейсах к ним.
Функции базовой подсистемы ввода-вывода
Базовая подсистема ввода-вывода служит посредником между процессами вычислительной системы и набором драйверов. Системные вызовы для выполнения операций ввода-вывода трансформируются ею в вызовы функций необходимого драйвера устройства. Однако обязанности базовой подсистемы не сводятся к выполнению только действий трансляции общего системного вызова в обращение к частной функции драйвера. Базовая подсистема предоставляет вычислительной системе такие услуги, как поддержка блокирующихся , неблокирующихся и асинхронных системных вызовов , буферизация и кэширование входных и выходных данных, осуществление spooling'a и монопольного захвата внешних устройств, обработка ошибок и прерываний , возникающих при операциях ввода-вывода, планирование последовательности запросов на выполнение этих операций. Давайте остановимся на этих услугах подробнее.
Блокирующиеся, неблокирующиеся и асинхронные системные вызовы
Все системные вызовы, связанные с осуществлением операций ввода-вывода, можно разбить на три группы по способам реализации взаимодействия процесса и устройства ввода-вывода.
Устройство ввода-вывода - устройства взаимодействия компьютера с внешним миром: с пользователями или другими компьютерами. Устройства ввода позволяют вводить информацию в компьютер для дальнейшего хранения и обработки, а устройства вывода - получать информацию из компьютера.
Содержание
Компоненты устройства ввода-вывода
Компоненты устройства ввода-вывода - устройство ввода-вывода обычно состоят из двух компонентов: самого устройства и контроллера.
Контроллер - микросхема или набор микросхем, которые управляют устройством на физическом уровне. Он принимает от операционной системы команды, например считать данные с помощью устройства, а затем их выполняет.
Устройство имеет простые интерфейсы, и должно удовлетворять двум обязательным условиям: [Источник 1]
- Обладать простыми возможностями;
- Отвечать общим стандартам.
Соблюдение условия об общих стандартах устройства приводит к тому, что любой контроллер SATA-диска может работать с любым SATA-диском. На данный момент SATA является стандартным типом дисков на многих компьютерах. Интерфейс устройства скрыт контроллером. По причине того, что операционные системы видят только интерфейс контроллера, то для общения операционных систем с устройством был создан драйвер устройств .
Типы устройств ввода-вывода - обычно выделяют 2 типа устройств ввода-вывода - блок-ориентированные и байт-ориентированные. [Источник 2]
- Блок-ориентированные устройства нацелены на сохранение информации в блоках фиксированного размера, при этом каждый из них имеет свой собственный адрес. Например, диск.
- Байт-ориентированное устройство не имеет адреса и не позволяет производить операцию поиска. Например, строчные принтеры, сетевые адаптеры.
Драйвер устройств
Драйвер устройств - это компьютерная программа, позволяющая выполнять общение между операционной системой и интерфейсом устройства. Для того,чтобы использовать драйвер, поместив его в операционную систему, необходимо предоставить ему возможность работать в режиме ядра.
Цикл жизни драйвера устройств:
- Инициализация - получение ресурсов драйвером;
- Поиск аппаратуры - получение аппаратуры от ядра или нахождение им самостоятельно;
- Активация - драйвер начинает работу;
- Деактивация - прекращение обслуживания запросов;
- Выгрузка - освобождение всех ресурсов ядра, драйвер больше не существует.
Модели построения драйвера устройств:
Рассмотрим каждую из них.
Драйвера на основе поллинга (циклического опроса)устройства имеются, как правило, только у встроенных микроконтроллерных систем, по причине наличия большого срока службы данного прибора. Также такие драйвера затрачивают достаточное количество электроэнергии.
Драйвера на основе прерываний создают самостоятельно для себя нить - поток управления, который реализуется только на поступлении прерываний от устройства. При получении запроса записи, драйвер включает прерывания и самостоятельно отправляет первый байт данных в устройство. После чего данная нить перестает свою работу, ожидая конца передачи. После обработки данного байта в устройстве, оно подаст сигнал в виде прерывания, что драйверу дает возможность послать очередной байт на обработку, либо закончить работу.
От предыдущего драйвера этот отличается созданием собственной нити, которая имеет большее количество преимуществ, по сравнению с драйвером на основе прерываний. Преимуществами собственной нити являются - выделение памяти,управление таблицами страниц, вызов любой функции ядра.
Способы установки драйвера в ядро
- Заново скомпоновать ядро вместе с новым драйвером и затем перезагрузить систему.
- Создать в специальном файле операционной системы запись, сообщающую ей о том, что требуется, и затем следует перезагрузка системы. Во время перезагрузки ОС сама находит нужный ей драйвер и загружает его.
- Динамический способ загрузки драйвера - ОС принимает самостоятельно новые драйверы в процессе работы и оперативно устанавливает их, при этом не требуя ее перезагрузки.
Ввода и вывод данных
Ввод и вывод данных можно осуществлять тремя способами.
Прерывания часто происходят в очень неподходящие моменты, например во время работы обработчика другого прерывания. Поэтому центральный процессор обладает возможностью запрещать прерывания с последующим их разрешением. Пока прерывания запрещены, любые устройства, закончившие свою работу, продолжают выставлять свои запросы на прерывание, но работа процессора не прекращается, пока прерывания снова не станут разрешены.Побеждает устройство, имеющее наивысший приоритет, которое и обслуживается в первую очередь. Все остальные устройства должны ожидать своей очереди.
Драйвер – компьютерное программное обеспечение, используемое для управления каждым подключенным к компьютеру устройством ввода-вывода, учитывая его особенности. Оно создается производителем устройства и поставляется вместе с этим устройством. Поскольку для каждой операционной системы нужны собственные драйверы, производитель устройства обычно поставляет драйверы для нескольких наиболее популярных операционных систем.
В большинстве случаев драйвер устройства управляет одним типом устройства или как максимум одним классом родственных устройств. Тем не менее технически вполне возможно создание одного драйвера устройства, управляющего несколькими разнородными устройствами. Однако, в большинстве случаев это является не самой лучшей идеей.
Содержание
Драйвер и операционная система
Чтобы получить доступ к аппаратной части устройства, то есть к регистрам контроллера, драйвер устройства, как правило, должен быть частью ядра операционной системы, по крайней мере в существующих на сегодняшний день архитектурах. Но вообще-то можно создавать и драйверы, работающие в пространстве пользователя, используя при этом системные вызовы для чтения и записи регистров устройств. Такое решение позволит изолировать ядро от драйверов и драйверы друг от друга, устранив при этом основной источник системных сбоев — «сырые» драйверы, тем или иным образом мешающие работе ядра. Несомненно, это хороший выход из положения при создании высоконадежных систем.
Так как разработчики любых операционных систем знают, что драйверы, созданные другими разработчиками, будут устанавливаться в их систему, им нужна такая архитектура, которая позволит подобную установку. А это значит, что должна быть вполне определенная модель того, чем занимается драйвер и как он взаимодействует со всей операционной системой. Как показано на рис. 1, драйверы устройств обычно размещаются ниже остальных компонентов операционной системы.
Обычно операционная система относит драйверы к одной из немногочисленных категорий. Самые распространенные категории — это драйверы блочных устройств, к ним относятся драйверы дисков, содержащих множество блоков данных, к которым можно обращаться независимо от всех остальных блоков, и драйверы символьных устройств, к которым относятся драйверы клавиатур и принтеров — устройств, которые генерируют или воспринимают поток символов.
В некоторых системах операционная система представляет собой единую программу в двоичных кодах, в которой содержатся все необходимые ей скомпилированные драйверы. Такая схема долгие годы была нормой для систем семейства UNIX, поскольку они работали в компьютерных центрах, где устройства ввода-вывода менялись очень редко. При добавлении нового устройства системный администратор просто перекомпилировал ядро с новым драйвером для создания нового двоичного кода.
С наступлением эры персональных компьютеров с несметным количеством устройств ввода-вывода эта модель уже не работает. Лишь немногие пользователи способны перекомпилировать или перекомпоновать ядро, даже если у них будут исходные коды или объектные модули, что случается довольно редко. Вместо этого операционные системы, начиная с MS-DOS, перешли к модели, в которой драйверы стали динамически загружаться в систему в процессе работы. Управление загрузкой драйверов ведется в разных системах по-разному.
Алгоритм работы
Затем драйвер может проверить, используется ли устройство в данный момент. Если оно используется, запрос будет поставлен в очередь для последующей обработки. Если устройство простаивает, проверяется состояние аппаратуры, чтобы определить, может ли запрос быть обработан. Перед началом передачи данных может понадобиться включить устройство или запустить его двигатель. Как только устройство включится и будет готово к работе, им можно будет управлять.
Управление устройством означает выдачу в его адрес последовательности команд. Именно драйвер определяет последовательность команд в зависимости от того, что должно быть сделано. После того как драйвер поймет, какие команды он собирается выдать, он начнет записывать их в регистры контроллера устройства. После записи каждой команды в контроллер может потребоваться проверка того, принял ли контроллер команду и готов ли к приему следующей команды. Эта последовательность повторяется до тех пор, пока не будут выданы все команды. Некоторым контроллерам можно указывать на связанный список команд (в памяти) и предписывать самостоятельное чтение и обработку этих команд без дальнейшей помощи со стороны операционной системы.
После того как команды были выданы, может сложиться одна из двух ситуаций. В большинстве случаев драйвер должен ждать, пока контроллер не сделает в его интересах какую-нибудь работу, поэтому он самоблокируется до тех пор, пока не поступит прерывание на его разблокировку. Но в других случаях операция завершается без задержки и драйверу не нужно блокироваться. В качестве примера последней ситуации можно привести прокрутку экрана в символьном режиме, требующую лишь записи нескольких байтов в регистры контроллера. Для этого не нужно никаких механических перемещений, поэтому вся операция может быть завершена за несколько наносекунд.
В первом случае заблокированный драйвер будет активизирован прерыванием. Во втором случае он никогда не будет переходить в неактивное состояние. В любом случае по завершении операции драйвер должен провести проверку на отсутствие ошибок. Если все в порядке, драйвер может получить данные для передачи программному обеспечению, не зависящему от применяемого устройства. И наконец, он возвращает вызывавшей его программе определенную информацию о состоянии устройства, наличии или отсутствии ошибок. Если в очереди были какие-нибудь другие запросы, то теперь один из них может быть выбран и запущен на выполнение. Если запросов в очереди не было, драйвер блокируется в ожидании следующего запроса.
Функции программного обеспечения, не зависящего от конкретных устройств
Основная роль программного обеспечения, не зависящего от конкретного устройства, состоит в выполнении общих для всех устройств функций ввода-вывода и предоставлении унифицированного интерфейса для программного обеспечения на уровне пользователя. Далее перечисленные задачи будут рассмотрены более подробно.
Предоставление унифицированного интерфейса для драйверов устройств
Одной из острых проблем при создании операционных систем является придание всем устройствам и драйверам ввода-вывода более или менее однообразного вида.
Один из аспектов этой проблемы — интерфейс между драйверами устройств и остальной операционной системой. На рис. 2 (а) показана ситуация, в которой у каждого драйвера устройства имеется собственный интерфейс с операционной системой. Это означает, что функции драйвера, доступные для вызова системой, различаются от драйвера к драйверу. Это может означать, что и функции ядра, в которых нуждается драйвер, различаются от драйвера к драйверу. Все вместе взятое это означает, что обеспечение интерфейса с каждым новым драйвером требует множества новых усилий по созданию программного кода.
В противоположность этому на рис. 2 (б) показана другая конструкция, в которой у всех драйверов имеется одинаковый интерфейс. Теперь стало намного проще подключить новый драйвер, обеспечив его соответствие интерфейсу драйверов. Также это означает, что создатели драйверов знают, чего от них ожидают. Фактически не все устройства абсолютно одинаковы, но обычно приходится иметь дело лишь с небольшим количеством типов устройств, и даже они в целом практически одинаковы.
Все это работает следующим образом. Для каждого класса устройств, таких как диски или принтеры, операционной системой определяется набор функций, которые драйвер должен поддерживать. Для диска в этот набор будут входить не только чтение и запись, но и включение и выключение электропитания, форматирование и другие присущие диску операции. Зачастую драйвер содержит таблицу с указателями на эти функции. При загрузке драйвера операционная система записывает адрес таблицы указателей на функции, чтобы, когда потребуется вызвать одну из этих функций, она могла выполнить опосредованный вызов через таблицу. Таблица указателей на функции определяет интерфейс между драйвером и всей остальной операционной системой. Все устройства определенного класса должны соответствовать этому условию.
Буферизация
Буферизация по многим причинам также является актуальным вопросом как для блочных, так и для символьных устройств. Чтобы понять, в чем состоит одна из таких причин, рассмотрим процесс, которому необходимо прочитать данные, получаемые от ADSL-модема, который многие используют дома для связи с Интернетом. По одной из возможных стратегий работы с поступающими символами нужно заставить пользовательский процесс осуществить системный вызов READ и заблокироваться в ожидании одного символа. При этом прерывание возникает по случаю поступления каждого символа. Процедура обработки прерывания передает символ пользовательскому процессу и снимает с него блокировку. Поместив куда-нибудь символ, процесс переходит к чтению следующего символа и снова блокируется.
Проблема реализации такого способа заключается в том, что пользовательский процесс должен возобновляться для каждого поступающего символа. Из-за низкой эффективности многократных краткосрочных запусков процесса это далеко не самая лучшая модель.
В улучшенном варианте пользовательский процесс предоставляет буфер объемом N символов и выполняет чтение такого же количества символов. Процедура обработки прерывания помещает поступающие символы в этот буфер до тех пор, пока он не заполнится. Затем она возобновляет работу пользовательского процесса. Эта схема работает намного эффективнее предыдущей, но у нее есть один недостаток. Что получится, если буфер выйдет за границу страницы при поступлении очередного символа? Буфер будет зафиксирован в памяти, но если множество процессов начнет фиксировать страницы в памяти, то запас доступных страниц сократится и производительность резко снизится.
Другой широко распространенной формой буферизации является использование кольцевого буфера. Он состоит из области памяти и двух указателей, один из которых указывает на следующее свободное слово, в которое можно поместить новые данные, а другой — на первое слово тех данных в буфере, которые еще не были из него выведены. Во многих случаях аппаратура по мере добавления данных (например, только что поступивших из сети) передвигает вперед первый указатель; операционная система, по мере того как она выводит из буфера и обрабатывает данные, перемещает вперед второй указатель. Оба указателя ходят по кругу, переходя обратно к нижним адресам буфера, как только достигнут его верхних адресов.
Буферизация является широко используемой технологией, но у нее имеются и недостатки. Если данные будут подвергаться буферизации слишком часто, упадет производительность. Рассмотрим, к примеру, сеть, показанную на рис. 4. Здесь пользовательский процесс осуществляет системный вызов для записи данных по сети. Ядро копирует пакет данных в буфер ядра, позволяя пользовательскому процессу немедленно возобновить работу (шаг 1). Теперь пользовательская программа может использовать буфер повторно.
Когда вызывается драйвер, он копирует пакет в контроллер для его последующего вывода (шаг 2). Причина, по которой он не осуществляет вывод в сеть непосредственно из памяти ядра, состоит в том, что как только будет запущена передача пакета, она должна продолжаться на постоянной скорости. Драйвер не может гарантировать, что он будет получать доступ к памяти на постоянной скорости, поскольку множество циклов обращения к шине могут отвлекать на себя каналы DMA и другие устройства ввода-вывода. Неудача при своевременном получении слова приведет к порче пакета. Эту проблему можно устранить за счет буферизации пакета внутри контроллера.
После того как пакет будет скопирован во внутренний буфер контроллера, он копируется в сеть (шаг 3). Биты поступают получателю вскоре после их отправки, поэтому сразу же после отправки последнего бита этот бит поступает получателю, у которого пакет попадает в буфер контроллера. Затем пакет копируется в буфер ядра получателя (шаг 4). И наконец он копируется в буфер процесса получателя (шаг 5). Обычно после этого получатель посылает подтверждение. Когда отправитель получает подтверждение, он имеет возможность послать следующий пакет. Но при этом следует понимать, что операции копирования существенно снижают скорость передачи данных, поскольку шаги должны осуществляться последовательно.
При вводе-выводе данных ошибки являются более распространенным событием, чем в других сферах работы компьютерных устройств. При возникновении ошибок операционная система должна их обработать наилучшим образом. Многие ошибки зависят от специфики конкретного устройства и должны обрабатываться соответствующим драйвером, но структура обработки ошибок не зависит от специфики устройств.
К одному из классов ошибок ввода-вывода относятся ошибки программирования. Они возникают в том случае, если процесс запрашивает что-нибудь невозможное, к примеру запись в устройство ввода информации или чтение из устройства вывода информации. Другие ошибки возникают при предоставлении неверного адреса буфера или указании неверного устройства. На такие ошибки следует весьма простая реакция: вызывающей программе отправляется код возникшей ошибки.
Действия этого программного обеспечения зависят от среды окружения и характера ошибки. Если речь идет о простой ошибке чтения и есть возможность общения с пользователем, то может быть выведено диалоговое окно с вопросом к пользователю, что делать дальше. Варианты могут включать повторение попытки определенное количество раз, игнорирование ошибки или уничтожение вызывающего процесса. Если пользователь недоступен, то, возможно, единственным вариантом будет аварийное завершение системного вызова с указанием кода ошибки.
Распределение и высвобождение выделенных устройств
Некоторые устройства, в любой момент времени могут использоваться только одним процессом. Операционная система должна проверять запросы на использование и принимать их или отвергать в зависимости от доступности запрашиваемого устройства. Простой способ обработки этих запросов заключается в требовании к процессам непосредственно открывать специальные файлы для этих устройств с помощью системных вызовов OPEN. Если устройство недоступно, то системный вызов OPEN потерпит неудачу. Освобождение выделенного устройства происходит после его закрытия с помощью системного вызова CLOSE. Альтернативный подход заключается в использовании специальных механизмов для запроса и освобождения выделенных устройств. Попытка получить в свое распоряжение недоступное устройство приводит не к отказу, а к блокировке процесса, предпринявшего эту попытку. Заблокированные процессы помещаются в очередь. Рано или поздно запрашиваемое устройство станет доступным, и первому процессу из этой очереди будет позволено получить устройство и продолжить свою работу.
Предоставление размера блока, не зависящего от конкретных устройств
У разных дисков могут быть разные размеры секторов. Не зависимое от устройств программное обеспечение должно скрыть этот факт и предоставить расположенным выше уровням унифицированный размер блока, например, рассматривая несколько секторов в качестве одного логического блока. Таким образом, вышестоящие уровни будут работать только с абстрактными устройствами, использующими один и тот же размер логического блока, не зависящий от физического размера сектора. Аналогичным образом некоторые символьные устройства осуществляют побайтовую доставку данных, а другие устройства доставляют данные блоками более крупного размера. Эти различия также могут быть скрыты.
Горячее подключение устройств
Виртуальные драйверы
Драйверы виртуальных устройств представляют собой особый вариант драйверов. Они используются для эмуляции аппаратного устройства, особенно в средах виртуализации, например, когда программа DOS запускается на компьютере Microsoft Windows. Вместо того, чтобы разрешать гостевой операционной системе взаимодействовать с настоящим оборудованием, драйверы виртуальных устройств принимают противоположную роль и эмулируют часть оборудования, так что гостевая операционная система и ее драйверы, запущенные внутри виртуальной машины, имеют только иллюзию доступа к нему. Попытки гостевой операционной системы получить доступ к оборудованию маршрутизируются к драйверу виртуального устройства в операционной системе хоста. Драйвер виртуального устройства также может посылать в виртуальную машину смоделированные события уровня процессора, такие как прерывания.
Читайте также: