Драйвер agp что это
Все хорошее когда-нибудь кончается. Обидно — но истинно. Сколько писали про то, что шина PCI наконец-то устранила "узкое место" РС — обмен с видеокартами — но не тут-то было! Прогресс, как известно, не стоит на месте. Появление разных там 3D ускорителей привело к тому, что ребром встал вопрос: что делать? Либо увеличивать количество дорогой памяти непосредственно на видеокарте, либо хранить часть информации в дешевой системной памяти, но при этом каким-нибудь образом организовать к ней быстрый доступ.
- шина способна передавать два блока данных за один 66 MHz цикл (AGP 2x);
- устранена мультиплексированность линий адреса и данных (напомню, что в PCI для удешевления конструкции адрес и данные передавались по одним и тем же линиям);
- дальнейшая конвейеризация операций чтения/записи, по мнению разработчиков, позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.
В результате пропускная способность шины была оценена в 500 МВ/сек, и предназначалась она для того, чтобы видеокарты хранили текстуры в системной памяти, соответственно имели меньше памяти на плате, и, соответственно, дешевели.
Парадокс в том, что видеокарты все-таки предпочитают иметь БОЛЬШЕ памяти, и ПОЧТИ НИКТО не хранит текстуры в системной памяти, поскольку текстур такого объема пока (подчеркиваю — пока) практически нет. При этом в силу удешевления памяти вообще, карты особенно и не дорожают. Однако практически все считают, что будущее - за AGP, а бурное развитие мультимедиа-приложений (в особенности — игр) может скоро привести к тому, что текстуры перестанут влезать и в системную память. Поэтому имеет смысл, особо не вдаваясь в технические подробности, рассказать, как же это все работает.
Итак, начнем с начала, то есть с AGP 1.0. Шина имеет два основных режима работы: Execute и DMA. В режиме DMA основной памятью является память карты. Текстуры хранятся в системной памяти, но перед использованием (тот самый execute) копируются в локальную память карты. Таким образом, AGP действует в качестве "тыловой структуры", обеспечивающей своевременную "доставку патронов" (текстур) на передний край (в локальную память). Обмен ведется большими последовательными пакетами.
В режиме Execute локальная и системная память для видеокарты логически равноправны. Текстуры не копируются в локальную память, а выбираются непосредственно из системной. Таким образом, приходится выбирать из памяти относительно малые случайно расположенные куски. Поскольку системная память выделяется динамически, блоками по 4К, в этом режиме для обеспечения приемлемого быстродействия необходимо предусмотреть механизм, отображающий последовательные адреса на реальные адреса 4-х килобайтных блоков в системной памяти. Эта нелегкая задача выполняется с использованием специальной таблицы (Graphic Address Re-mapping Table или GART), расположенной в памяти.
При этом адреса, не попадающие в диапазон GART (GART range), не изменяются и непосредственно отображаются на системную память или область памяти устройства (device specific range). На рисунке в качестве такой области показан локальный фрейм-буфер карты (Local Frame Buffer или LFB). Точный вид и функционирование GART не определены и зависят от управляющей логики карты.
Шина AGP полностью поддерживает операции шины PCI, поэтому AGP-траффик может представлять из себя смесь чередующихся AGP и PCI операций чтения/записи. Операции шины AGP являются раздельными (split). Это означает, что запрос на проведение операции отделен от собственно пересылки данных.
Такой подход позволяет AGP-устройству генерировать очередь запросов, не дожидаясь завершения текущей операции, что также повышает быстродействие шины.
В 1998 году спецификация шины AGP получила дальнейшее развитие — вышел Revision 2.0. В результате использования новых низковольтных электрических спецификаций появилась возможность осуществлять 4 транзакции (пересылки блока данных) за один 66-мегагерцовый такт (AGP 4x), что означает пропускную способность шины в 1GB/сек! Единственное, чего не хватает для полного счастья, так это чтобы устройство могло динамически переключаться между режимами 1х, 2х и 4х, но с другой стороны, это никому и не нужно.
Однако потребности и запросы в области обработки видеосигналов все возрастают, и Intel готовит новую спецификацию — AGP Pro (в настоящее время доступен Revision 0.9) — направленную на удовлетворение потребностей высокопроизводительных графических станций. Новый стандарт не видоизменяет шину AGP. Основное направление — увеличение энергоснабжения графических карт. С этой целью в разъем AGP Pro добавлены новые линии питания.
Предполагается, что будет существовать два типа карт AGP Pro — High Power и Low Power. Карты High Power могут потреблять от 50 до 110W. Естественно, такие карты нуждаются в хорошем охлаждении. С этой целью спецификация требует наличия двух свободных слотов PCI с component side (стороны, на которой размещены основные чипы) карты.
При этом данные слоты могут использоваться картой как дополнительные крепления, для подвода дополнительного питания и даже для обмена по шине PCI! При этом на использование этих слотов накладываются лишь незначительные ограничения.
- Не использовать для питания линии V I/O;
- Не устанавливать линию M66EN (контакт 49В) в GND (что вполне естественно, так как это переводит шину PCI в режим 33 MHz).
- Подсистема PCI I/O должна разрабатываться под напряжение 3.3V c возможностью функционирования при 5 V.
Поддержка 64-разрядного или 66 MHz режимов не требуется.
Карты Low Power могут потреблять 25-50W, поэтому для обеспечения охлаждения спецификация требует наличия одного свободного слота PCI.
При этом все retail-карты AGP Pro должны иметь специальную накладку шириной соответственно в 3 или 2 слота, при этом карта приобретает вид достаточно устрашающий.
При этом в разъем AGP Pro можно устанавливать и карты AGP.
В общем, как представлю себе графическую станцию с двумя процессорами Xeon и видеокартой AGP Pro High Power… Можно здорово сэкономить на отоплении… Закрадывается крамольная мысль, что в спецификацию PC 200? будет заложено жидкостное охлаждение. Опять-таки поживем — увидим.
AGP: полное руководство
Пожалуй, большинство проблем, возникающих при сборке нового компьютера или модернизации старого, связано с видеокартой. При этом решаются эти проблемы чаще всего методом перебора драйверов или простой заменой одной видеокарты на другую. А может нужно просто получше разобраться в принципах работы графической подсистемы современного компьютера и применить, так сказать, научный подход? Если вы - сторонник второго метода, тогда эта статья - для вас.
Зачем AGP?
Все знают, что Accelerated Graphics Port (AGP) - особая высокоскоростная шина, предназначенная специально для видеокарты, в отличие от универсальных PCI и ISA. Она появилась одновременно с чипсетами для процессоров семейства Intel Pentium-II и теперь используется повсеместно. Для чего же потребовалось создавать эту шину, ведь до нее видеокарты нормально работали и на шине PCI?
Что такое 3D-ускоритель? Это, фактически, процессор, рассчитывающий в реальном масштабе времени трехмерную сцену (рендеринг). Сейчас общепринята полигональная модель этой самой сцены, т.е. объекты состоят из полигонов (треугольников), покрытых текстурами. Задача видеокарты, в составе которой "трудится" 3D-ускоритель - принимать координаты треугольников, заполнять их одной или несколькими текстурами (текстурирование), рассчитывать освещенность, прозрачность, рельефность и т.п., проецировать на двумерную плоскость экрана, рассчитывая перекрытие одних объектов другими (используется Z-буфер) и др. Так как работа должна выполняться максимально быстро (вам ведь нужно хотя бы 30 кадров в том же "кваке"), все операции над каждым пикселем производятся конвейерно - каждый пиксель проходит несколько отдельных независимых стадий, одновременно в обработке находятся несколько пикселей - на разных стадиях. Понятно, что данные (а в первую очередь текстуры, накладываемые попиксельно на каждый треугольник) должны подаваться тоже непрерывно, чтобы конвейер не останавливался.
Сначала видеокарты с 3D-ускорителями работали с памятью по шине PCI, закачивая текстуры в свою набортную (локальную) память, к которой и обращался конвейер рендеринга в ходе работы. С ростом сложности трехмерных сцен и повышением качества и размера текстур возникли две проблемы - 1) нужна обширная локальная видеопамять и 2) нужно обеспечить максимальную скорость подачи данных на конвейер. Шина PCI с задачей скорости не справлялась, так как на ней работают много других устройств. Видеопамять дорога, возможности ее расширения в общем случае отсутствуют. В итоге фирма Intel разрабатывает новую локальную шину на основе все той же PCI, но с учетом специфических требований видеокарт с 3D-ускорителем.
Шина AGP соединяет всего одно устройство (AGP-мастер) с AGP-контроллером в составе системного чипа - "северного моста", а тот, в свою очередь, связан с контроллером памяти. Таким образом, пересылка данных между видеочипом и памятью производится по выделенному каналу - шине AGP. Для оптимальной загрузки этого канала все запросы на чтение и запись имеют приоритеты и выстраиваются в очереди, причем сам запрос и транзакция (акт передачи блока данных) не обязательно следуют друг за другом. Транзакции могут выполняться как в стиле PCI, так и AGP, когда данные передаются только в направлении "память-мастер". То есть смысл новой шины в том, чтобы предоставить видеочипу возможность обращаться за данными в основную память по своему, отдельному каналу.
DMA и DME
Есть две причины, по которым видеочип обращается к основной (системной, оперативной) памяти. Первое - загрузить оттуда в свою видеопамять необходимые для работы данные (например, текстуры для очередной трехмерной сцены). Это - обычный режим DMA (Direct Memory Access), который используют, например, контроллеры жестких дисков. Не ради этого была задумана новая шина. Режим DME (Direct in Memory Execution) позволяет видеочипу использовать основную память как источник данных для конвейера, добавляя (подключая) основную память к своей локальной видеопамяти при необходимости. Так как основная память выделяется под нужды прикладных программ страницами по 4 Кб, нужно обеспечить имитацию непрерывного блока памяти. Был выбран метод трансляции адресов по таблице, причем то, как строится эта таблица и как обеспечивается переадресация, остается на совести разработчика чипсета и драйвера GART (Graphic Aperture Remapping Table). Апертура - это тот диапазон адресов, при обращении к которому включается механизм переадресации на реальные страницы памяти. Таким образом, конвейер рендеринга может обращаться за данными прямо к основной памяти, а не к своей локальной - это часто называют AGP-текстурированием.
Четыре скорости передачи
Тактовая частота шины AGP в два раза выше частоты PCI и составляет 66 МГц. Таким образом, мы получаем 66x4=264 Мб/c. Этого было мало уже при проектировании шины AGP, поэтому была добавлена возможность передавать по два 4-байтных блока за один такт (добавлен еще один тактовый сигнал с частотой 133 МГц). Первый режим назвали 1x, второй - 2x. Однако и 528 Мб/с (133x4=528) для работающего в режиме DME конвейера недостаточно. Режим 4x подымает вдвое частоту дополнительного тактового сигнала, таким образом уже четыре блока передается за один такт. Рост частоты потребовал снижения диапазона изменения напряжения, поэтому видеочип, работающий в режиме 4х, ориентируется на 1.5В, а не на 3.3В. Вот откуда появились перемычки на некоторых видеокартах, поддерживающих этот режим работы.
AGP на практике
Однако жизнь показала несостоятельность ключевых идей, лежащих в основе AGP. Конечно, было бы хорошо вообще выкинуть большую часть памяти из состава видеокарты, оставив только буфер кадра (в котором каждому пикселю на экране соответствует 16 или 32 бита) и Z-буфер, а все текстуры поставлять прямо из основной памяти. Но режим DME современными видеочипами практически не используется! Причина - пропускная способность системной памяти. Например, память PC100 позволяет получать данные со скоростью 8x100=800 Мб/с (шина памяти - 64-битная), половину этой пропускной способности займет процессор (хорошо еще, что у него есть кэш, который позволяет обращаться к памяти только в 5% случаев) и контроллеры, работающие в режиме DMA. В итоге имеем всего 400 Мб/с. Сравните - локальная видеопамять, которая работает на частоте около 200 МГц, имеет шину шириной (на современных видеокартах) 256 бит - 16х200=3200 Мб/c. Какой тогда смысл использовать канал AGP? Лучше нарастить память на борту видеокарты.
Выход есть, конечно. Первое - сжимать текстуры. Этот способ одинаково подходит и для основной, и для локальной памяти. Первой до этого додумалась S3 - для ее чипов это было наиболее актуально, потому что "Саваджи" имели узкую шину локальной памяти - 64 бита. Теперь сжатие текстур используют все современные ускорители. Второй трюк - тайловая архитектура (чипы серии PowerVR), текстурирование только тех треугольников, которые не будут закрыты другими на экране. Третий способ - передача данных на удвоенной скорости. Это - память DDR, скоро она будет использоваться в качестве не только локальной видеопамяти, но и обычной системной. Но к тому времени требования к скорости обмена данными между чипом и памятью поднимутся еще выше, так что постоянный рост объемов памяти на борту видеокарт будет продолжаться.
Надеюсь, вы уже поняли, что наращивание скорости самой шины AGP не дает ничего при отсутствии роста скорости шины основной памяти. Зачем эти 1.6 Гбайт/c при режиме 4x, если память PC100 даже теоретически не может выдать больше 800 Мбайт/с?
Решаем проблемы
Итак, вместо облегчения жизни новая шина приносит новые проблемы. Заставить работать AGP-видеокарту удается далеко не каждому. Особенно если используется материнская плата на чипсете не от "автора" самой шины (я имею в виду Intel, конечно), что усугубляется "умелым" производителем вроде Acorp или Zida. Особенно если производитель видеокарты настолько скромен, что не решается обозначить себя.
Проблемы именно с AGP диагностируются просто. Видеокарта нормально работает в обычном режиме Windows (GUI), а при попытке запустить любую 3D-игру намертво зависает либо сразу же, либо через весьма непродолжительный промежуток времени.
- Assign IRQ to VGA = Enabled, PCI/VGA Palette Snoop = Disabled
- AGP Aperture Size = 64M
- Можно также Shadow Video BIOS = Disabled, Video RAM Cacheable = Disabled, Video ROM Cacheable = Disabled
Кроме того, Windows должна иметь версию не ниже 95OSR2.1 с usbsupp-патчем, установлен DirectX 7 и последний видеодрайвер, а для не-Intel-чипсетов - последний AGP-драйвер.
Если все это соблюдается, то причину неработоспособности AGP-шины нужно искать в невозможности одной из сторон - чипсета или видеочипа - правильно работать в установленном драйверами режиме. Причем в случае с чипсетами от VIA, ALi или AMD причина, скорее всего, будет в чипсете.
Посмотреть текущий режим работы AGP и спланировать свои дальнейшие действия можно с помощью большого количества утилит. Например, Sisoft Sandra показывает в модуле "Motherboard Information" пункт "AGP Bus", можно использовать программу PCIList, или PowerStrip, или WCPUID.
Апертура . Этот параметр в BIOS Setup не означает, как думают некоторые, количество видеопамяти. Это диапазон адресов для работы механизма DME. Размер апертуры должен соответствовать половине основной памяти, но не быть меньше 64. Если ее уменьшить до минимума, шина AGP будет работать только в режиме PCI, проблемы сразу исчезнут - вместе с изрядной долей производительности.
SBA. Очень часто этот режим нормально не работает, поэтому всегда есть смысл попробовать его отключить. Как это делать - смотрите ниже. При этом вы потеряете около 10% производительности.
AGP 1x, 2x, 4x . Если проблема не решается, нужно понижать скорость работы шины AGP - до 1х. Особенно это помогает при разгоне процессора поднятием частоты шины процессора (FSB), так как вместе с ней поднимается частота шины AGP. Для дешевых видеокарт - особенно актуально.
Управление режимом AGP со стороны чипсета
Если есть возможность установить режим в BIOS Setup - хорошо, но часто такой возможности нет, поэтому придется полазить в реестре.
Режимом работы чипсета с шиной AGP управляет тот же драйвер, что осуществляет табличную переадресацию. Называется он VGARTD.VXD - для чипсета Intel, VIAGART.VXD для VIA, AGARTD.VXD для ALi и т.п.
ALi . Для этих чипсетов все просто - с AGP-драйвером идет утилита.
VIA . Найдите в реестре раздел "HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\VIAGART", в нем будут ключи "Sideband" (0-выкл., 1-вкл.) и "Turbo" (0-AGP1x, 1-AGP2x/4x).
Intel . Управление отсутствует, хотя точно есть возможность принудительного включения AGP1x (если знаете, как - сообщите).
Управление режимом AGP со стороны видеочипа
Очень часто производители видеокарт поставляют вместе со своими драйверами утилиты (пример - Creative AGP Wizard), которые позволяют управлять режимом AGP. Фирма AOpen изготовила BIOS с возможностью установки всех параметров с помощью вызываемого при загрузке Setup. ASUS предоставляет возможность заменить VideoBIOS с отключенным Sideband на BIOS со включенным. Но это - только частные случаи.
- ReqAGPRate (тип dword) - 1=1x, 2=2x, 3=3x
- EnableIrongateSBA (тип dword) - режим Sideband для чипсета AMD750
- Super7Compat (тип dword) - для материнских плат под Socket7 может помочь установка значения 1.
S3 . Есть утилитка S3Tweak - она все и решает.
Matrox . Совсем недавно появилась утилита Matrox Tweak.
С другими видеокартами не сталкивался, либо для них нет подобной возможности. Для них есть кое-что другое.
- /AGP:xx - где хх может быть 1х, 2х или 4х
- /SBA:xx - где хх принимает значения on или off.
Вообще-то не каждая видеокарта позволит PowerStrip сменить режим. RivaTNT2 работает, а вот ATI Rage128 вешается намертво.
Проблемы с питанием
С современными видеокартами (особенно GeForce и более новые) может случиться и такая проблема. Особенно на старых материнских платах (на чипсете LX, например) или питаемых от блока питания не-ATX. Симптомы - зависание через определенный (постоянный) промежуток времени либо в играх, либо прямо в Windows (самый тяжелый случай). При наличии аппаратного мониторинга срабатывает "сирена", которая отключается через пару секунд.
AGP-слот может получать напряжение (3.3 В) либо непосредственно от блока питания, либо через стабилизатор на материнской плате. В последнем случае питание видеокарты получается очень стабильным, но в случае "прожорливого" GeForce или Voodoo3 наверняка возникнут проблемы. Кстати, Voodoo5 использует обычный разъем питания, как CD-ROM или винчестер. У плат Gigabyte есть возможность переключиться на режим питания от БП - перемычки называются "Voodoo3 enable". В других случаях нужно либо менять БП на более мощный, либо менять материнскую плату на более современную.
Проблемы с перегревом
Проявляются в виде различного рода искажений и ошибок построения трехмерной сцены с последующим зависанием. Видеочип должен перед этим некоторое время интенсивно поработать. Два-три зависания - и можно совсем потерять видеокарту.
Если у вас видеочип закрыт только радиатором - обязательно купите обычный кулер для Celeron. Отвинтите и смажьте вентилятор и аккуратно прикрутите его на радиатор видеокарты. Если вентилятор больше радиатора по площади - закрепите его на одном краю одним шурупом, но так, чтобы поток воздуха обдувал и видеопамять. Сделать это надо обязательно, так как высокая температура видеочипа увеличивает общую температуру внутри корпуса, что не может положительно отозваться на остальных компонентах компьютера.
Если радиатор такой, что вентилятор не прикрутить - из двух металлических пластин можно изготовить такую конструкцию: один конец пластины изгибается под прямым углом и заправляется под пластину, закрывающую щель для соседнего слота, а в другом конце пластины просверливается отверстие для крепления вентилятора. Таким образом вентилятор закрепляется как раз напротив радиатора, закрывающего чип.
Шина персонального компьютера (PC) претерпела множество изменений в связи с повышаемыми к ней требованиями. Исходным расширением шины PC была Industry Standard Architecture (ISA), которая, несмотря на свои ограничения, все еще используется для периферийных устройств c преимущественно низкой шириной полосы пропускания, как, например, звуковые карты типа Sound Blaster. Шина Peripherals Connection Interface (PCI), стандарт пришедший на смену спецификации VESA VL bus, стала стандартной системной шиной для таких быстродействующих периферийных устройств, как, например, дисковые контроллеры и графические платы. Тем не менее, внедрение 3D графики угрожает перегрузить шину PCI.
Ускоренный графический порт (AGP); это расширение шины PCI, чье назначение — обработка больших массивов данных 3D графики. Intel разрабатывала AGP для решения двух проблем перед внедрением 3D графики на PCI. Во-первых, 3D графике требуется как можно больше памяти информации текстурных карт (texture maps) и z-буфера (z-buffer). Чем больше текстурных карт доступно для 3D приложений, тем лучше выглядит конечный результат. При нормальных обстоятельствах z-буфер, который содержит информацию, относящуюся к представлению глубины изображения, использует ту же память, что и текстуры. Этот конфликт предоставляет разработчикам 3D множество вариантов для выбора оптимального решения, которое они привязывают к большой значимости памяти для текстур и z-буфера, и результаты напрямую влияют на качество выводимого изображения.
Разработчики PC имели ранее возможность использовать системную память для хранения информации о текстурах и z-буфера, но ограничением в этом подходе была передача такой информации через шину PCI. Производительность графической подсистемы и системной памяти ограничиваются физическими характеристиками шины PCI. Кроме того, ширина полосы пропускания PCI, или ее емкость, не достаточна для обработки графики в режиме реального времени. Чтобы решить эти проблемы, Intel разработала AGP.
Если определить кратко, что такое AGP, то это — прямое соединение между графической подсистемой и системной памятью. Это решение позволяет обеспечить значительно лучшие показатели передачи данных, чем при передаче через шину PCI, и явно разрабатывалось, чтобы удовлетворить требованиям вывода 3D графики в режиме реального времени. AGP позволит более эффективно использовать память страничного буфера (frame buffer), тем самым увеличивая производительность 2D графики также, как увеличивая скорость прохождения потока данных 3D графики через систему.
Определением AGP, как вида прямого соединения между графической подсистемой и системной памятью, является соединение point-to-point. В действительности, AGP соединяет графическую подсистему с блоком управления системной памятью, разделяя этот доступ к памяти с центральным процессором компьютера (CPU).
Через AGP можно подключить только один тип устройств — это графическая плата. Графические системы, встроенные в материнскую плату и использующие AGP, не могут быть улучшены.
Производительность текстурных карт
Определение Intel, подтверждающее, что после реализации AGP становится стандартом, следует из того, что без такого решения достижение оптимальной производительности 3D графики в PC будет очень трудным. 3D графика в режиме реального времени требует прохождения очень большого потока данных графическую подсистему. Без AGP для решения этой проблемы требуется применение нестандартных устройств памяти, которые являются дорогостоящими. При применении AGP текстурная информация и данные z-буфера могут хранится в системной памяти. При более эффективном использовании системной памяти графические платы на базе AGP не требуют собственной памяти для хранения текстур и могут предлагаться уже по значительно более низким ценам.
Теоретически PCI могла бы выполнять те же функции, что и AGP, но производительность была бы недостаточной для большинства приложений. Intel разрабатывала AGP для функционирования на частоте 133 MHz и для управления памятью по совершенно другому принципу, чем это осуществляет PCI. В случае с PCI, любая информация, находящаяся в системной памяти, не является физически непрерывной. Это означает, что существует задержка при исполнении, пока информация считывается по своему физическому адресу в системной памяти и передается по нужному пути в графическую подсистему. В случае с AGP Intel создала механизм, в результате действия которого, физический адрес, по которому информация хранится в системной памяти, совершенно не важен для графической подсистемы. Это — ключевое решение, когда приложение использует системную память, чтобы получать и хранить необходимую информацию. В системе на основе AGP не имеет значения, как и где хранятся данные о текстурах, графическая подсистема имеет полный и беспроблемный доступ к требуемой информации.
Intel ожидает, что AGP будет внедрен почти в 90% всех систем к концу столетия. Индустрия компьютерной графики как сообщество разработчиков аппаратных и программных средств поддержала и приняла спецификацию AGP. В отличие от PCI, где существует много соперничающих между собой различных устройств для управления шиной, в случае с AGP единственным устройством является графическая подсистема. Ожидается, что первоначально, к концу 1997 года, Intel начнет поставки материнских плат с поддержкой AGP для систем на базе Pentium II. Предположительно, поддержка AGP будет реализована в новых чипсетах Intel для систем на базе Pentium Pro и Pentium II под наименованием i440LX и позднее — i440BX. Поддержки со стороны Intel AGP для системных плат для Pentium не ожидается. Правда, конкуренты Intel по производству и разработке чипесетов уже анонсировали собственные наборы логики с поддержкой AGP для систем на базе Socket7; это SiS и VIA в альянсе с AMD.
Дизайн шины AGP призван преодолеть ограничения шины PCI при передаче данных в системной памяти. AGP позволяет улучшить физическую скорость передачи данных, работая на тактовой частоте в 66 MHz, по сравнению с 33 MHz тактовой частоты шины PCI, и, кроме того, AGP обеспечивает согласованное управление памятью, которое допускает разбросанность данных в системной памяти и их быстрое считывание случайным образом. AGP позволяет увеличить не только производительность 3D графики в режиме реального времени за счет ускорения вывода текстур, но и уменьшает общую стоимость создающихся высокопроизводительных графических подсистем, за счет использования существующих архитектур системной памяти.
Аббревиатура AGP расшифровывается как - ускоренный графический разъем, считается стандартным типом подключения для внутренних видеокарт. Как правило, Accelerated Graphics Port относится к фактическому слоту расширения на материнской плате, который принимает видеокарты AGP, а также к типам самих видеокарт.
Версии ускоренного графического порта
Существует три общих разъема АГП:
Тактовая частота | Напряжение | Скорость | Скорость передачи | |
AGP 1.0 | 66 МГц | 3,3 В | 1X и 2X | 266 МБ/с и 533МБ/с |
AGP 2.0 | 66 МГц | 1,5 В | 4X | 1,066 МБ/с |
AGP 3.0 | 66 МГц | 0,8 В | 8X | 2,133 МБ/с |
Скорость передачи - это в пропускная способность и измеряется мегабайтами.
Номера 1X, 2X, 4X и 8X указывают скорость полосы пропускания относительно скорости AGP разъема 1.0 (266 МБ / с). Например, разъем 3.0 работает в восемь раз быстрее АГП порта 1.0, поэтому максимальная пропускная способность составляет восемь раз (8X), что и для версии 1.0.
Microsoft назвала AGP 3.5 Universal Accelerated Graphics Port (UAGP), но его скорость передачи, требование напряжения и другие детали идентичны шине версии 3.0.
Что такое разъем AGP Pro?
AGP Pro - это слот расширения, который длиннее стандартного АГП разъема. Оснащен большим колличеством контактов, обеспечивая высокую мощность видеокарты в таком разъеме. Формат Pro, хорош для энергоемких задач, таких как продвинутые графические программы. Можете узнать больше об спецификации AGP Pro.
Характеристика и отличия AGP от PCI разъема
АГП порт на материнской плате AGP Интерфейс на устройствеАГП внедрена Intel в 1997 году в качестве замены медленных интерфейсов периферийных компонентов (PCI). АГП слот обеспечивает прямую линию связи с ЦП и ОЗУ, что в свою очередь позволяет ускорить рендеринг графики.
Одним из основных улучшений, с которым этот разъем обладает интерфейсами PCI, это его работа с ОЗУ. Вызывается память АГП или нелокальная память, АГП может напрямую обращаться к системной памяти, вместо того чтобы полагаться только на память видеокарты.
Память AGP позволяет картам избежать необходимости хранить карты текстур (которые могут использовать большую часть памяти) на самой карте, потому что вместо этого они хранят их в системной памяти. Это означает не только то, что общая скорость разъема улучшена по сравнению с PCI, но также и то, что ограничение размера текстурных блоков больше не определяется объемом памяти в видеокарте.
Видеокарта PCI получает информацию в «группах», прежде чем она сможет ее использовать, а не сразу. Например, хотя графическая карта PCI Express будет собирать высоту, длину и ширину изображения в три раза, а затем объединить их вместе для формирования изображения, АГП разъем может получить всю эту информацию одновременно. Это обеспечивает более быструю и плавную графику, чем то, что увидите с картой PCI.
PCI Express порт PCI Интерфейс на устройстве
Шина PCI обычно работает со скоростью 33 МГц, что позволяет передавать данные со скоростью 132 МБ / с. Используя таблицу сверху, можете видеть, что АГП разъем 3.0 может работать в 16 раз быстрее, чем скорость передачи данных намного быстрее, и даже версия 1.0 превосходит скорость PCI в два раза.
Когда АГП заменил PCI на графику, PCIe (PCI Express) заменил АГП как стандартный интерфейс видеокарты, почти полностью заменив его к 2010 году.
Совместимость AGP разъема
Материнские платы, поддерживающие АГП порт, либо имеют слот для видеокарты, либо будут иметь встроенный разъем. Видеокарту АГП 3.0 можно использовать на материнской плате, поддерживающей не только версию 2.0, но она будет ограничена поддержкой материнской платы, а не поддержкой видеокарты. Другими словами, материнская плата не позволит видеокарте работать лучше, только потому, что это карта версии 3.0; сама материнская плата не способна к таким скоростям (в этом сценарии).
Некоторые материнские платы, которые используют только версию 3.0, могут не поддерживать более старые карты версии 2.0. Таким образом, в обратном сценарии, описанном выше, видеокарта может даже не функционировать, если она не способна работать с более новым интерфейсом.
Доступны универсальные слоты АГП, которые поддерживают как карты на 1,5 В, так и 3,3 В, а также универсальные карты. Некоторые операционные системы, такие как Windows 95, не поддерживают АГП порт из-за отсутствия поддержки драйверов. Другие операционные системы, такие как Windows 98 до Windows XP, требуют загрузки драйвера набора микросхем для поддержки AGP 8X.
Установка видеокарты AGP
Установка видеокарты в слот расширения должна быть довольно простым процессом. Можете увидеть, как это делается, следуя инструкциям и рисункам в этом руководстве по установке видеокарты.
Если возникли проблемы с установленной видеокартой, подумайте о повторной установке карты. Это касается АГП, PCI или PCI Express.
Перед покупкой и установкой новой видеокарты для AGP разъема, проверьте руководство по материнской плате или компьютеру. Установка видеокарты AGP, не поддерживаемой материнской платой, не будет работать и может повредить компьютер.
Читайте также: