Чем можно заменить драйвер в светодиодном светильнике
Светодиоды экономичны и долговечны. Но люстра или фонарь часто перестают гореть, хотя все элементы целы. Чтобы восстановить работоспособность различных устройств, необходим ремонт драйвера светодиодного светильника. В большинстве случаев он и является основной причиной неисправности.
Ремонт драйвера (LED) лампы
Иногда источник света отказывается работать в самый неподходящий момент. Это может произойти из-за его неправильной эксплуатации или по вине производителя (так часто бывает с китайской низкокачественной продукцией).
Самый простой драйвер для светодиодной лампы 220 В часто выполняют на обычных элементах (диодах, резисторах и т. д.). В этой схеме один или несколько светодиодов сразу выходят из строя при пробое конденсатора или одного из диодов моста. Поэтому сначала проверяют эти радиодетали.
Вместо светодиодов временно подключают обычную лампочку на 15-20 ватт (например, от холодильника). Если все детали кроме светодиода целы, она слабо горит.
Второй вариант представляет собой выпрямитель с делителем напряжения, импульсным стабилизатором на микросхеме и разделительным трансформатором. При неисправности люстры проверяют последовательно все элементы. Схема может отличаться от приведенной, но алгоритм поиска такой же.
- Сначала проверяют, поступает ли на светодиодные матрицы напряжение. Если оно есть, ищут неисправные LED детали и меняют их. Если с напряжением все в порядке, проверяют диоды моста и входные конденсаторы.
- Если они тоже целы, измеряют напряжение питания микросхемы (4-я ножка). При его отличии от 15-17 В этот элемент скорее всего неисправен, его следует заменить.
- Если микросхема целая и на ее 5 и 6-й ножках есть импульсы (проверяют осциллографом), то «виноваты» трансформатор и его цепи – конденсатор или диоды, подключенные к нему.
Замена электролитических конденсаторов в драйвере для светодиодных светильников.
Многие люди приобретают длинные цепочки светодиодов, укрепленных на гибких подложках. Это LED ленты.
Есть два варианта таких источников:
- только LED приборы без дополнительных деталей;
- изделия с подпаянными к каждому элементу или цепочкам из 4-6 светодиодов резисторами, которые рассчитаны так, чтобы при напряжении 12-36 В и номинальном токе осветительные элементы не сгорали.
В обоих случаях часто применяют драйвера, которые уже были рассмотрены выше. Но иногда питание второго варианта LED лент осуществляется с помощью модуля, представляющего собой трансформаторный блок питания.
При ремонте драйвера светодиодного светильника 36 ватт, если ни один светодиод или цепочка не горят, сначала проверяют трансформатор на обрыв. Затем диоды и конденсатор выпрямителя. Детали R1 и C1 в такой схеме портятся очень редко.
Если хоть один или несколько элементов зажглись – напряжение питания поступает. В этом случае проверяют светодиоды и меняют их.
4 способа ремонта светодиодной лентыБудет полезно ознакомиться: Ремонт драйвера для светодиодной ленты 12 В 100 Вт.
Ремонт драйвера (LED) фонарей
Ремонт переносного источника света зависит от его схемотехнического решения. Если фонарь не горит или светит слабо, сначала проверяют элементы питания и меняют их, если это нужно.
После этого в драйверах с аккумуляторами проверяют тестером или мультиметром детали модуля зарядки: диоды моста, входной конденсатор, резистор и кнопку или переключатель. Если все исправно, проверяют светодиоды. Их подключают к любому источнику питания напряжением 2-3 В через резистор 30-100 Ом.
Рассмотрим четыре типичные схемы фонарей и неисправности, возникающие в них. Первые два работают от аккумуляторов, в них вставлен модуль зарядки от сети 220 В.
В первых двух вариантах светодиоды часто перегорают как по вине потребителей, так и из-за неправильного схемотехнического решения. При извлечении фонаря из розетки после зарядки от сети палец иногда соскальзывает и нажимает на кнопку. Если штыри устройства еще не отсоединились от 220 В, возникает бросок напряжения, светодиоды перегорают.
Видео: Как сделать драйвер мощного света.
Во втором варианте при нажатии кнопки аккумулятор подсоединяется к светодиодам напрямую. Это недопустимо, так как они могут выйти из строя при первом же включении.
Ели при проверке выяснилось, что матрицы сгорели – их следует заменить, а фонари доработать. В первом варианте необходимо изменить схему подключения светодиода, показывающего, что аккумулятор заряжается.
Во втором варианте вместо кнопки следует установить переключатель, а затем последовательно с каждым источником света припаять по одному добавочному резистору. Но это не всегда возможно, так как часто в фонарях устанавливают светодиодную матрицу. В таком случае к ней следует припаять один общий резистор, мощность которого зависит от типа применяемых LED элементов.
Остальные фонари питаются от батарей. В третьем варианте светодиоды могут сгореть при пробое диода VD1. Если это случилось, надо заменить все неисправные детали и установить дополнительный резистор.
Основные элементы последнего варианта фонаря (микросхема, оптрон и полевой транзистор) проверить сложно. Для этого нужны специальные приборы. Поэтому его лучше не ремонтировать, а вставить в корпус другой драйвер.
Ремонт драйвера (LED) светильника
В магазинах можно встретить светодиодные осветительные приборы с регулируемым потоком света. Одна часть таких устройств имеет отдельный пульт. Но почти у всех настольных светильников регулятор ручной, и он встроен в драйвер питания.
Основная схема этих светильников почти ничем не отличается от остальных. Чтобы осуществить ремонт драйвера светодиодной лампы, необходимо действовать по уже указанным алгоритмам.
Рекомендуем к просмотру: Ремонт светодиодного светильника АРМСТРОНГ
Можно посмотреть процесс изготовления самоделки в видео:
Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.
Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.
Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.
Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.
Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА , но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.
Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.
Исторически так сложилось, что в моем загородном доме все освещение сделано с помощью светодиодных ламп мощностью 10-11, а в последнее время и 12-13 вт с цоколем Е27. Лампы накаливания на площадь 200 м2 тратили бы слишком много электроэнергии, что не вписывалось бы в концепцию моего энергоэффективного дома с приличным утеплением, твердотопливным дровяным котлом, бесперебойником на автомобильных аккумуляторах и рекуператором. Люминесцентные "энергосберегайки" я невзлюбил с первого взгляда — они часто перегорают, не имеют той энергоэффективности что светодиодные, хрупкие, токсичные при случайном разбивании, мерцают и имеют неприятный спектр.
Покупать дорогие светодиодные лампы лучшего качества или подешевле с сомнительным качеством? Я решил что буду покупать дешевые, по цене до 120 рублей за штуку, что с учетом периодических скидок в сетевых магазинах типа Леруа Мерлен вполне реально, а при заявленном сроке службы и энергоэффективности выглядит неплохим выбором. За несколько лет чего я только не перепробовал — всякие Космос, Camelion, Фотон, Bellight, Эра, Wolta и т.п… Из последних покупок — 13 ваттные лампы Norma стандартного размера по приемлемой цене 100 с небольшим рублей.
Лампа действительно яркая, инструментальных замеров я не проводил, но визуально светит ярче чем 11 и 12 ваттки того же и аналогичных производителей.
25000 часов работы? Ха-ха. Грубо говоря 3 года непрерывной работы? Ни одна лампа у меня столько не светила, перегорают раньше, как ни крути.
3 года гарантии, но 27 лет работы при условии использования 2.5 часа в сутки? Ха-ха-ха. Больше похоже на 3 года работы при использовании 2.5 часа в сутки, если усреднить те сроки службы, на которых перегорали мои лампы, купленные до этого.
Итак, мы имеем достаточно большой ассортимент неплохих по соотношению цена-яркость недорогих светодиодных ламп среднего качества, которые, к сожалению, склонны внезапно перегорать задолго до заявленного конца срока службы. Почему бы не попробовать продлить их жизнь несложным ремонтом?
Светодиодная лампа устроена довольно просто. Корпус, состоящий из цоколя, теплоотводящего радиатора в средней части и матового рассеивателя, драйвер (плата с микросхемой, диодным мостиком и несколькими конденсаторами) для обеспечения стабильных параметров питания светодиодов и плата со светодиодами.
Чтобы добраться до внутренностей лампы, нам нужно тонким ножом пройтись по щели между плафоном-рассеивателем и средней частью корпуса лампы, они соединены чем-то типа герметика, который легко разрезать и, поддев плафон кончиком ножа, вытащить его из защелок средней части корпуса. Обратная сборка лампы производится простым защелкиванием плафона на свое место, при необходимости промазав место контакта силиконовым герметиком.
Если хочется оценить состояние конденсаторов, трансформатора и микросхемы драйвера — аналогичным способом подрезаем и поддеваем плату со светодиодами и отделяем ее от средней части корпуса
Причин, по которым светодиодная лампа может перестать гореть, может быть несколько. Это может быть вспухание или короткое замыкание в одном из конденсаторов, перегорание микросхемы на драйвере, потеря контакта драйвера с цоколем (с удивлением обнаружил в лампочке Wolta драйвер не припаянный к цоколю, а опирающийся на него ножками-контактами). Наиболее частой причиной выхода лампочки из строя является перегорание одного из светодиодов на плате.
Ремонт в случае вспухания и выхода из строя конденсаторов, микросхемы, диодного мостика и т.п. я рассматривать не буду, т.к. данная статья посвящена простому двухминутному ремонту лампочки, доступному каждому, кто умеет держать в руках паяльник.
Ремонт, связанный с большими трудозатратами по выпаиванию, тестированию, покупке и замене радиодеталей, представляется мне нецелесообразным по соотношению потраченное время/сэкономленные деньги.
Светодиоды на плате соединены последовательно — по одному или блоками из 2-4 штук. В случае если в блоке один светодиод, как в лампочках стандартного типоразмера, при его перегорании размыкается вся цепь и остальные светодиоды перестают гореть т.к. через них перестает проходить электрический ток.
Перегоревший светодиод чаще всего можно определить визуально — он раскрошился или имеет черную точку или потемнение.
Итак, чтобы заставить светодиоды гореть, нам нужно восстановить цепь. Можно пойти по сложному пути — заказать светодиоды такого же номинала по напряжению и силе тока, или использовать как донор одну из лампочек такого же типа — отпаять от нее светодиоды, припаять к ремонтируемой лампе взамен испорченного, но мы уже решили, что наш способ ремонта — для тех, кто не имеет особых навыков работы с мелкими радиодеталями и не сможет воспользоваться столом для нагрева или феном для выпаивания светодиодов с лампы-донора и тем более не сможет припаять микродеталь миллиметрового размера аккуратно на плату при том, что контакты находятся в труднодоступном месте.
Значит нам остается восстановить цепь закорачиванием испорченного светодиода.
Выкрашиваем его отверткой, шилом или ножом, оголяем контакты, капаем на них флюсом — паяльной кислотой, канифолью и т.п. и наносим сверху капельку припоя, который соединит эти контакты и восстановит целостность цепи.
Выполнение этой процедуры займет не больше времени, чем прочитать ее описание.
Есть ли недостатки у данного метода? Очевидно, есть. Например, если у нас в цепи было 18 светодиодов напряжением 9 вольт (суммарное напряжение 162 вольта), то теперь в цепи у нас 17 светодиодов, и на каждый приходится уже не 9, а 9.53 вольта, что, конечно, заставит их гореть немного ярче, но и сократит срок их службы.
Тем не менее, если вы не эксперт в пайке и электронике и не сможете легко найти или выпаять из лампы-донора светодиод на замену сгоревшему, то и такой способ ремонта лампочки можно считать целесообразным, ведь альтернативой обычно является выбрасывание этой лампы. Не думаю что имеет большой смысл везти ее менять по гарантии, т.к. потраченное на это время вряд ли окупит стоимость лампы.
Данную тему всегда игнорировал и относился к ней с долей пренебрежительности. Думал, что эта тема избита радиолюбителями вдоль и поперек, ну как тема компьютерных БП, на коих можно легко найти очень много схем, книг и прочего материала. Да и устройство их как правило банально — простой обратноход на дросселе со стабилизацией тока и все!
Попытался поначалу понять, что это за драйвер по характеристикам.
Так, например в продаже смог найти такого же форм-фактора LED драйвер — КомплектLED DRIVER LD 80 RC 80 Вт с пультом ДУ. Этот драйвер на 24В/3А, в ремонтируемом же, во вторичных цепях стоят конденсаторы на 63В, значит там рабочее напряжение свыше 50 вольт.
Попытался найти в продаже подобные устройства. Вдруг можно взять и купить новый, за недорого – китайский шерпотреб ведь.)) Поиски по сети быстро остудили этот энтузиазм.
Э-эх подумалось мне если бы и у меня она «моргала» или хотябы «подмигивала одним глазом» ))
Ну или хотя-бы конденсаторы были плохие.
У меня же случай оказался весьма тяжелый (об этом будет ниже, а конденсаторы к слову оказались все исправными… я проверил)
Пришлось вернутся к проблеме и плотно заняться поиском решения.
1. Вскрытие, чистка и первичная диагностика.
При вскрытии корпуса сразу видно, что неисправность локализована по первичной цепи.
Оттопырив конденсатор E1, видны следы открытой дуги на поверхности платы:
Берем маленький кусочек ваты, смачиваем 647 растворителем и вычищаем.
Теперь масштаб повреждений виден еще лучше:
Имеем полное разрушение:
— резистора R14 и участка прилегающей дорожки (хотя видны фрагменты кода 101)
— конденсатора С5 и участка прилегающей дорожки.
— транзистора Q3 по фрагментам текста, которого его еще следовало идентифицировать.
Дальше прозваниваю и проверяю входную цепь:
— Предохранитель — цел.
— По входу КЗ нету, диоды сетевого моста — целы, конденсаторы CX1-3 и E1 — исправны.
— Выпаиваю радиатор с транзистором Q1 – пробит.
— Позваниваю тройку параллельно включенных резисторов R5-7 — сожжены на разрыв.
— Диод D7 тот что красный в стекл. Корпусе — пробит.
— ШИМ контроллер IC1 – пробит.
Посчитал, что причиной всего этого был пробой ключевого транзистор Q1 и дальше пошло поехало. Дальнейшее расследование привело к другой причине.
Для полноценного ремонта решил срисовать схему первичной цепи. Уже по опыту знаю, что это лучше все-же сделать. Да это ресурсоемко, но не имея схемы придется потратить на ремонт еще больше времени… и все ровно придется срисовывать схему.
Потому рисуем схему, причем почти всю.
2. Идентификация компонентов, восстановление принципиальной схемы
Для этого требуется идентифицировать компоненты по их SMD коду.
В случае диодов, транзисторов и прочей мелочи все просто, вбиваем в поиск SMD код и приписывает smd marking code. Например в нашем случае Q2 имеет код Y1, вбиваем в поиск “y1 smd marking code”
тут поисковик выдаст массу ссылок на NPN транзистор SS8050. Путем нехитрых рассуждений и предположений было установлено, что разрушенный транзистор Q3 есть PNP собрат Q2 а именно SS8550. Согласно даташиту к smd версии SS8550 его код — Y2. Как раз фрагменты этого кода и видны на остатках этого транзистора:
Самое сложное было выяснить типа ШИМ контроллера. Тут без опыта, куда по сложнее понять где в надписи код, или там название микросхемы. Вот как выглядит оригинальный ШИМ:
И так распознав все детали, построил эскиз первичной цепи со всеми спаленными деталями:
3. Закупка и замена деталей
Выпаиваем все детали и снова зачищаем плату:
Обратите внимание на мощность многожильного обмоточного провода первичной обмотки, таким же и вторичка намотана.
Справа, видно как нагружен диод D5, видать инженеры неправильно рассчитали RCD снаббер.
Когда все опознано начал закупку, причем с ШИМ контроллера. Когда приехали с магазина микросхемы и силовые ключи, прежде чем запаять решил проверить полевой транзистор. Тестер показал, что это именно N канальный транзистор но… но … его емкость составила 880pf. Тут я в своей работе сделал паузу. Я хоть и начинающий в этом деле, но уже слышал про зависимость между емкостью и мощностью полевого ключа. Смотрю даташит на оригинальный 20N60C — типичная емкость такого транзистора – 2400pf! Беру выпаянные полевики с комповых БП
2SK3767 (2.0A/600V) – емкость 490pF,
11N65 (11.0A/650V) – емкость 2080pF,
20N60C3(20.0A/600V) – емкость 6,88nF!
Т.е. мне вместо 20А полевика втулили китайский «фекалистр» на ток в 3-4А, так еще неизвестно на какое рабочее напряжение (вполне может быть низковольтным).
Ну чтож других транзисторов у меня нет, бегать по магазинам с болезнью, нет сил и пользы для ближних — иду на риск и заменяю оригинальный китайский транзистор 20А CS20N65F на (11A) 11N65 с хорошего но убитого компового б/у БП (который был пущен на разборку).
С обычными SMD транзисторами Q2 и Q3 все проще, заменил на подобные по структуре BC817-40 и BC807-40.
Резисторы R5, R6, и R7, купить в одном месте оказалось невозможным, но учитывая то что они включены параллельно, и в совокупности имеют сопротивление 0.155 Ома, предусмотрел замену на другую комбинацию чтобы эквивалент сопротивления был близок. И когда я пошел в ближайший магазин, то номинала 0.39Ом не было были от 0.47, 0.75 и выше. Но ведь если купить все по 0.47, то их эквивалент при 3шт – 0.47/3 = 0,157Ома! Почти то, что надо. Их и купил сразу 10штук.
С конденсатором С5 дело обстоит сложнее, в даташите к Шим контроллеру нет рекомендаций по его номиналу, там вообще он отсутствует как таковой (по цепи токовой ОС). Я полистал свой архив схем подобных узлов и заметил, что там ставят кондер в пределах 1nf. Так и сделал втулил 1.0nf в корпусе 0805.
Резистор R14 поставил, таким же как в оригинальной схеме, дорожку заменил жилой гибкого медного провода.
В итоге схема с новыми компонентами стала такой:
Все запаяно отмыто от канифоли, и выглядит как новое (до подпайки конденсатора E1? был демонтирован чтобы не мешать работе):
Естественно когда все собрал был уверен, что на 90% проблема решена, остальные 10% сомнений полагались на ШИМ контроллер из той же посылки, что и китайские «фекалисторы „20N60С“», мало ли, а вдруг и там вместо ШИМ будет НеЧтоИное. Потому было принято решение вообще подать с лабороторника на сетевой вход драйвера и посмотреть реакцию.
Подключил я RD6006 к входу и начал с 2В наращивать напряжение… и уже на отметке в 5В, появился ток несколько десяток миллиампер, крутанул чуть выше уже сотни… когда крутанул к 23В, блок перезагрузился (ибо питался от слабого адаптера на 20W мощности).
Тут я понял, что нужно немного отдохнуть, и попить чаю.
Что-то, где-то, еще… пробито.
Но ведь перед пайкой за исключением ШИМа IC1, все устанавливаемые компоненты были, проверены. Оборудование силовое, статики не боится, паялось паяльной станцией при темп. 360град.
Выйти из строя по причине пайки ничего не должно.
Решил сделать так — выпаиваю транзистор Q1, и снова подаю низкое постоянное напряжение, и все повторяется снова. Это как так!? Ведь при отсутствии Q1 мы имеем разрыв силовой цепи обратнохода, но при входных 8В ток протекает под 270мА! Щупаю пальцем, ремонтируемый участок платы греется транзистор Q2 и диод D7, который подключен к затвору транзистора Q1.
Стоп, транзистор Q1 выпаян, а через диод D7 ток продолжает идти, ибо он нагрет, и нагрета площадка под ним. Я начинаю более тщательно изучать плату, не проморгал ли я какой либо, еще подключенный компонент к узлу стока транзистора Q1.
Изучал не долго, схема срисована правильно и ничего лишнего там не подпаяно, но ток идет по пути Q2(К->Э)-> D7(K->A) -> на пятак транзистора Q2:G. Аккуратно увеличиваю ток до 1А, и греются пятаки транзистора Q1. Сказка в общем!
Просвечиваю текстолит, вижу между, его слоев пятно, локализованное как раз в области пятоков Q1.
Я видел его видел его и раньше, но проигнорировал это полагая, что оно возникло из-за эксплуатации перегрева текстолита.
И так смотрим с тыльной стороны:
С лицевой стороны
На этих снимках мы видим скрытый диэлектрический пробой текстолита, между монтажными отверстиями транзистора Q1. Пробой был дуговой, и вызвал внутреннюю металлизацию прослойки текстолита между слоями платы.
Коварство такой поломки в том, что снаружи этот дефект не виден, а значит то что при замене всех компонент, при включении будет повтор.
Все это из-за неправильного проекта монтажной площадки под силовой транзистор Q1, тут китайские инженеры выбрали самый простой, низковольтный вариант, когда все выводы расположены в один ряд. Хороший же проектировщик предусматривает применить шахматное расположение выводов с фрезерованием канала вокруг центрального вывода, как то так:
Немного поразмыслив принял ряд мер:
1. Рассверлить, отверстие под первый вывод (G) до 4мм
2. Убрать остаточную металлизацию вплотную к аноду D7.
3. Вывод G транзистора Q1 подключить навесным способом.
4. Заменить убитый на испытаниях Q2 и до кучи Q3
После выполнения всех этих мер, проблемы с коротким замыканием между 1 и 2 пятаками Q1, исчезли.
Но забегая вперед скажу, что надо было п. 1-3 повторить и для третьего вывода Q1, я об этом не подумал и поплатился.
Теперь уже испытание постоянным низким напряжением все выдержало. Подал 90В из рабочего LED драйвера, и заметил, что устройство ожило, на выходе появился потенциал, однако были слышны тихие периодические прищёлкивания. Звук проигнорировал думал неустойчивая работа обратнохода на 90В дают такой эффект.
Тогда подключаю и подаю сеть 220В, звук усилился и через 5-6век работы возникла открытая дуга на том же участке платы!
Результат этого микрочернообыля:
Снова решил отдохнуть и попить чаю.
Теперь, мало того, что сгорело все тоже самое, что и раньше, теперь добавились диоды моста D1-4 и плавкий предохранитель на входе. Версия была только одна – не до конца локализованный пробой между площадками Q1. Как писал раньше надо также рассверлить гнездо под вывод №3, транзистора Q1, а сам вывод Q1:S, подпаять к площадке с резисторами R5-7, но убрав металлизацию подальше от отверстия вывода Q1:S.
Набравшись терпения, все сгоревшее выпаиваем, зачищаем, затем слесарим плату и по второму кругу устанавливаем все целое:
Потом лаком усилил изоляцию вокруг отверстий.
Повторил весь цикл испытаний, на низком и среднем постоянным напряжением.
Ну и снова подаю сетевые 220В, при этом устройство работает так тихо, что я заподозрил себя в недоработках. Когда взял тестер и сделал замеры в первичных и вторичных цепях то заметил, что все в норме и соответствует принципиальной схеме устройства:
Проверить под нагрузкой длительно нечем. Надо создать электронную нагрузку. Единственно, что смог предпринять в этом плане — взял нихромовую спирать на 42Ома, и подключил к одному из каналов. Спираль начала быстро нагреваться, второй канал был отключен. Пульта, нет потому активировать его не могу. Мне было достаточно видеть, что система работает под нагрузкой, на том и закончил работы над эти многострадальным девайсом. Работает – не трогай)))
По хорошему, надо делать проект платы, с точным внешним контуром, но исправленным косяком с посадкой под транзистор Q1 – применить шахматное расположение выводов с фрезерованием между ними. Заказать у Китайских друзей платы по проекту, и перенести всю элементную базу на правильные платы.
Вы публикуете как гость. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Последние посетители 0 пользователей онлайн
Объявления
подскажите, а как правильно отводы обмоток делать ? вариант 1 - делать как бы 2 отдельных обмотки и потом соединять их концы на коннекторе вариант 2 - делать отвод скруткой (ну в термоусадку ее наверное поместить) к коннектору вариант 3 - в месте отвода прикручивать и припаивать отдельный провод отвода, соединение изолировать термоусадкой как правильнее ?
Что-то я не понял немного - 5 Vрр = 1.77В эфф на входе - х10 = 17-18В клип. х1.414=25.5В + 4-5В падения на выходниках - 30В питания всего? Ясно.
Бекспейсом цитата действительно не удаляется. Чтобы её удалить, нужно навести курсор на её верхний левый угол. Над цитатой появляется квадратик с крестиком (показан стрелкой). При клике на нем цитата выделяется (контур становится более контрастным). Теперь её можно удалить. Аналогично , если потянуть за этот квадратик курсором, цитату можно переместить в другое место поста (поменять местами с другой или в другое место текста). Главное, чтобы на месте ее нового размещения была свободная строка.
Ну да. А разработчики прибора дураки. Поставили мощный разъём и написали 0.1А. Впрочем, я уже писал - Тогда ПараФинн Лайт.
@каминщик Получается что французу отдана. Скажи-ка, дядя, ведь не даром. Москва, спаленная пожаром, Французу отдана?
Спасибо. Перестраховался другим способом. Но ваш буду обязательно экспериментировать, если способ двух переключателей от двух разных фаз питающих прожектор по переменно в практике не оправдает себя. То есть если будет конфликт.
Читайте также: